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ABSTRACT 
To predict the risk if mould growth, rot, deformations 
and cracks in wood, it is necessary to know the 
moisture levels in constructions and building 
components. This paper presents a theory and a two-
dimensional PC-model based on the use of Kirchhoff 
potentials to calculate moisture flow in wood. 
Anisotropy is allowed for using different flow 
coefficients in the different directions, in both 
sapwood and heartwood. The theory also deals with 
the internal boundary between sapwood and 
heartwood, and the external boundary to the outer air. 
The discrete form of the partial differential equation 
and the numerical technique to solve the problem are 
presented. The values of the flow coefficients used in 
the model are based on direct laboratory 
measurements. Calculation results from the model 
are compared with independently measured two-
dimensional moisture distributions. The agreement is 
good. The output data from this model should be 
used as input data in risk models for mould growth 
and rot. 
 

INTRODUCTION 
Moisture transport in porous material is a 
complicated non-linear process that changes with 
moisture conditions. Different models to calculate the 
moisture flow have been developed during the past. 
One class of models does not consider the variable 
moisture distribution through the material. The 
average moisture content curve versus time is found 
from suitable combinations of analytical and 
empirical relations for the boundary flow under 
different conditions.  
Another class of models is the ones based on partial 
differential equations, for example Luikow (1966). 
His equation system has been solved analytically 
with constant parameters (Liu, 1990) and numerically 
with variable parameters (Stanish et al 1984; Plumb 
et al 1984; Avramides et al 1992). The values for the 
different parameters and relations, for example the 
temperature dependence of moisture flow 
coefficients, are often obtained from a mixture 
between assumptions and measurements. Very often 
the results from the models are focused on the 
average moisture content. 

To be able to estimate the risk of mould growth the 
relative humidity- and the temperature variation on 
the surface layer of the wood should be known. If the 
risk of rot should be estimated it is necessary to know 
the moisture distribution during in the wood. A 
model for moisture distributions is much more 
sensitive to the internal flow processes than a model 
for the average, or total, drying or uptake with time. 
It is imperative to have good data for the internal 
moisture flow coefficients and in particular for their 
variation with the moisture state.  
The moisture flow calculation in wood is 
complicated considerably by the polar anisotropy. 
There are different moisture flow coefficients in 
radial, tangential and fibre directions for both 
heartwood and sapwood. These coefficients depend 
strongly on the moisture content, which causes 
interpolation difficulties in the numerical 
calculations. This interpolation problem may 
however be removed completely by the use of a 
Kirchhoff transformation. In the presented two-
dimensional calculation model four different 
Kirchhoff potentials for the moisture flow are used to 
take care of the anisotropy of wood. 
A main purpose of the present model is to predict the 
distributions of moisture content at different times 
during drying. We have endeavoured to use as few 
assumptions as possible and to base the moisture 
flow calculations on data from direct measurements 
on sapwood and heartwood in all three directions. 
The approach is a phenomenological one, where ad 
hoc assumptions about flow on the fibre level are 
avoided.  
A general Fickian approach is used. Fickian moisture 
flow is based on the use of a well-defined moisture 
state variable. The flow is proportional to the 
gradient of the moisture state variable, and the 
moisture flow coefficient depends on the moisture 
state. In a Fickian process, the moisture flow is 
determined by differences of the moisture state 
variable between adjacent layers. In the isothermal 
case with known relations between the moisture state 
variables, it does not really matter which potential we 
use. An exception is, in our opinion, the so-called 
Kirchhoff's flow potential, which has distinct advan-
tages considering simplicity in both theory and 

Proceedings of Building Simulation 2011: 
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November. 

- 2249 -



numerical applications, (Arfvidsson and Claesson 
1989). 
Moisture flow due to temperature or total gas 
pressure gradients in the wood is not considered in 
the theory and model presented here. The 
temperature level may change with time. 

 
THE MOISTURE TRANSPORT MODEL 
In this section, the different parts of the moisture 
transport model are presented. 

Moisture state variables 
 Any one of the following state variables 
may determine or characterize the local moisture 
state in any small part of humid wood: relative 
humidity ϕ, absolute humidity v or water vapour 
pressure p, pore water pressure Pp.w., chemical 
potential μw for water, or moisture content u (kg/kg). 
Let φ denote any of these moisture state variables:
  

φ =ϕ,v, p,Pp.w.,μw or u
                      

(1)
  
 We consider the case of essentially constant 
total air pressure and spatially constant temperature. 
There are a number of relations between the moisture 
state variables. We have the gas law for vapour 
pressure, Kelvin's law for pore water pressure, ln(ϕ)-
dependence for the chemical potential, and the 
measured sorption isotherm. See for example 
Claesson (1997). The moisture state is then 
determined, when one of the above variables is 
known. The process is determined by a single 
moisture state variable φ. The temperature is constant 
throughout the drying wood specimen. The 
temperature level may change with time as long as 
the temperature distribution is kept uniform, without 
a significant temperature gradient in the material. 

 

Fickian moisture flow 
The moisture flow g (kg/m2s) is in most models 
described by a Fickian flow law. In three dimensions 
we have: 

g = −Dφ (φ)∇φ ∇φ =
∂φ
∂x
,
∂φ
∂y
,
∂φ
∂z

⎛

⎝
⎜

⎞

⎠
⎟

            
(2) 

 
The moisture flow coefficient Dφ depends on the 
moisture state φ (and on the temperature). The 
relation between the moisture flow coefficients Dφ 
and Dφ' for any two moisture state variables φ and φ' 
from Eq.(1) is: 
  

Dφ = Dφ '

dφ '
dφ                                                       

(3) 

 
Here, the derivative of φ'(φ) (for constant 
temperature) is involved. It is clear that the choice of 
flow potential does not matter when the functional 
relation φ' =φ'(φ) is known from the relations 
between the moisture state variables Eq.(1).  
In numerical simulations, moisture flows between 
adjacent cells are calculated from Fick's law at each 
timestep. A particular problem is the variation of the 
flow coefficient Dφ with the moisture state φ. In a 
one-dimensional steady state case we have: 

dx
dDg φ

φφ )(=−
                                                      

(4) 

 
This is an ordinary, non-linear differential equation. 
The flow g is independent of x. Integration over an 
interval from x1 to x2, or between two nodes in a 
numerical mesh, gives the exact solution: 

(−g) ⋅ (x2 − x1) = Dφ (φ(x '))
x1

x2

∫ dφ
dx '

dx ' =

= Dφ (φ)dφ
ϕ (x1 )

ϕ (x2 )

∫
         

(5) 

 
In many models a suitable average value for Dφ is 
used. The exact average is given by the above 
integral of Dφ. In numerical modelling of moisture 
transport, we have found that is much better to use 
this integrated form. 
 

Kirchhoff’s flow potential 
In the three-dimensional isotropic case, the moisture 
flow is given by Eq.(2). The flow coefficient Dφ 
depends on φ. Kirchhoff originally introduced Kirch-
hoff’s flow potential for heat conduction with 
temperature-dependent thermal conductivity 
(Carslaw & Jaeger, 1959). For state-dependent 
moisture flow, the corresponding potential is defined 
by: 
 

( ) ( ) φφψφψ
φ

φ

φ dD
ref

ref ∫+=

                                       

(6) 

The potential ψ is the area under the curve Dφ(φ) 
between φref and φ, see Figure 1. It is a function of φ 
for each material: ψ=ψ(φ). It follows from Eq. (3) 
that the flow potential ψ is independent of which φ 
and Dφ one chooses to use. The reference values φref  
and ψref can be chosen arbitrarily for each material.  
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Figure 1 Kirchhoff’s flow potential ψ(φ) which is the 
area under the curve Dφ (φ), (6).  
  
We normally, by convenience, put the value of ψ to 
zero for the reference level φref for the material: ψref = 
0. The derivative of ψ(φ) gives the flow coefficient 
Dφ. Using Eq. (3),  the flow coefficient Dψ becomes 
equal to 1: 

1)( =⋅==
ψ
φ

φ
φ
ψ

φψφ d
dDDD

d
d

                          
(7) 

 
The variable flow coefficient vanishes. The moisture 
flow has the following simple form without a state-
dependent flow coefficient: 
 

ψ−∇=g                                                                 (8) 

Moisture balance equation 
The general moisture balance equation is: 

g
t
u

d ⋅−∇=
∂
∂

ρ
                                                       

(9) 

 
Here ρd is the dry density of the material.  
Using the Kirchhoff's flow potential, the moisture 
balance equation has the following simple form, 
Eq.(8-9): 

ψ
ψψψ

ρ 2
2

2

2

2

2

2
∇=

∂

∂
+

∂

∂
+

∂

∂
=

∂
∂

zyxt
u

d
                      

(10) 

 
This equation for the moisture flow process in an 
isotropic, homogeneous material involves only the 
moisture content u and Kirchhoff’s moisture flow 
potential ψ. The functional relation between u and ψ 
is needed: 

u = u ψ( )                                                             (11) 

 

In a conventional Fickian description, the moisture 
content is given by the measured sorption isotherm, 
u=u(ϕ), and the moisture flow by a flow coefficient 
Dφ(φ). The description involves two functions of the 
moisture state. From Dφ(φ), we get ψ(φ), Eq.(6). The 
combination of u(φ) and ψ(φ) gives the relation u(ψ). 
In our description, based on Kirchhoff’s potential, we 
use the relation u(ψ) internally. The sorption 
isotherm is needed at internal and external 
boundaries. See Fig. 2. 

Determining ψψ   from Steady-state Measurements  
Internally in the material we only need the relation 
u=u(ψ). It is interesting to notice that this basic 
relation may be determined directly from a steady-
state measurement. 
 

Figure 2 Representation of flow and sorption 
properties in two curves. The relation between u and 
ψ is used internally in the material, and the relation 
between u and ϕ at boundaries.
 
We consider a one-dimensional steady-state situation 
in a slab 0 ≤ x ≤ L. The reference state u =uref is kept 
on one side, x=0, and u =uL is kept on the other side, 
x=L, Fig. 3. We have: 
 

g
x

xxg
dx
dg

−
=

−=−⋅−

=−

ψ

ψψ

ψ

)0()()0(

                                    

(12) 

 
Kirchhoff’s flow potential varies linearly with x 
through the slab. The potential ψ is obtained by 
multiplying x by the factor (-g).  Let u(x) be the 
measured moisture content through the slab, Fig. 3. 
The relation between u and x gives the relation 
between u and ψ obtained by multiplying x by the 
factor (-g). 
By measuring u(x) and the constant flow g, we obtain 
u(ψ) directly. In a conventional evaluation, the flow 
coefficient Du(u) is obtained by -g divided by the 
derivative du/dx. In an exact numerical calculation to 
determine the flow between nodes, we need to 

  

Dφ

φref      φ    φ 

u 

ϕ ψ 
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integrate Du(u) according to Eq.(5). This 'circular' 
procedure is avoided if ψ is used directly. 

 
Figure 3 Steady-state distribution of moisture u(x) 
through a slab. The curve and the measured flow g 
give u(ψ) for the material, Eq.(12). 
 

External Boundary  
Let vair be the absolute humidity of the air, and vsurf 
the absolute humidity at the surface (Figure 4). We 
use the following boundary condition:  

)( airsurfv
surf

n vv
n

g −=
∂
∂

−= β
ψ

                          
(13) 

 
Here, n denotes the normal coordinate (directed 
outwards), and βv (m/s) is the surface moisture 
transfer coefficient related to a difference in v. It 
depends on the airflow conditions. There may be a 
moisture flow resistance between vsurf and the open-
air surface. In this case the moisture flow over the 
boundary is lower and βv is lower than values from 
the literature. 

 
 
Figure 4 Steady-state flow through a surface layer 
and a part L1 of the wood. 
 

 
The surface flow may be expressed in moisture 
content u instead. Then we have for the right-hand 
side of Eq.(13): 
 

)()( airsurfvairsurfu vvuu −=− ββ                          
(14) 

 
Here, uair=u(ϕair)  is the equilibrium moisture content 
for the relative humidity ϕair of the air. We expect the 
factor βv to be fairly constant. Then βu may vary 
considerably due to the relations usurf=u(ϕsurf), 
ϕsurf=vsurf /vsat(Tsurf) and uair=u(ϕair), ϕair=vair/vsat(Tair). 
There is a variation caused by the different 
temperatures in the vapour content at saturation, 
vsat(T), and by the sorption isotherm. Therefore, we 
avoid the formulation involving βu and u.  
Let us now consider the boundary condition between 
the outside air and a point at the depth L1 inside the 
material, see Figure 4. The vapour content at this 
depth is v1, which might be the value in the first 
internal node in a numerical model. We seek the flow 
gn and the vapour content vsurf at the surface. We use 
a constant value of βv.  Here, we use Kirchhoff's 
potential ψ(v) with vapour content as dependent 
variable. We have in a local steady-state situation: 

)(
)()(

1

1
airsurfv

surf
n vv

L
vv

g −=
−

= β
ψψ

             
(15) 

 
The equation to determine vsurf is then: 

)()()( 11 airsurfvsurfn vvLvvg −=−= βψψ           
(16) 

 

Anisotropy  
Let r,θ, z be the cylindrical coordinates fitted to the 
sapwood-heartwood boundary. There are different 
moisture flow coefficients Dr(φ), Dθ(φ), Dz(φ), in 
radial, tangential and axial or fibre direction:  

−g = r̂ ⋅Dr (φ)
∂φ
∂r

+θ̂ ⋅Dθ (φ)
1

r

∂φ
∂θ

+

+ẑ ⋅Dz (φ)
∂φ
∂z            

(17) 

Here θ̂,r̂ , and ẑ are unit vectors in the three 
cylindrical directions. 
The flow coefficients may be different in heartwood 
and in sapwood. We get in the general three-
dimensional case six flow coefficients, which all are 
functions of the moisture state φ (and the 
temperature). For each flow coefficient we define a 
corresponding Kirchhoff potential: 

u(x

x=ψ 
L

u

g 

  βv 

vsurf 

v1

L1 
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zr

ref

dD A
ref

A

,,
heartwoodor  sapwoodA

')'(

θα

φ

φ

αα φφψψ

=

=

+= ∫

                              

(18) 

 
All six potentials are evaluated with the Kirchhoffian 
moment method (Rosenkilde and Arfvidsson, 1997). 
The moisture flow vector Eq.(17) in heartwood and 
in sapwood becomes: 

z
z

rr
rg

A
z

AA
rA

∂

∂
⋅+

∂

∂
⋅+

∂

∂
⋅=−

ψ
θ
ψ

θ
ψ θ ˆ1ˆˆ

                 
(19) 

 
This expression for the flow is inserted in the general 
moisture balance equation, Eq.(9). In cylindrical 
coordinates the moisture balance equation for wood 
becomes: 

2

2

2

2

2
11

zrr
r

rrt
u A

z
AA

r
d

∂

∂
+

∂

∂
+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂

∂

∂
=

∂

∂ ψ

θ

ψψ
ρ θ

     
(20) 

 

Internal Boundary 
There is an internal boundary between heartwood and 
sapwood. Intensive variables (ϕ, v, p, Pp,w and μw) are 
continuous at an internal boundary, while u is 
discontinuous. The flow coefficients, and in 
particular ψ, are of course different in different 
materials. We consider the boundary between 
sapwood and heartwood. The radial moisture flow-
coefficients are Dφ,r

sap(φ) and Dφ,r
heart(φ), and the 

corresponding Kirchhoff potential ψr
sap(φ) and 

ψr
heart(φ). The normal flow has to be continuous.  We 

have the following boundary condition: 

rr

sap
r

heart
r

∂

∂
=

∂

∂ ψψ

                                               
(21)

 
Figure 5 shows the one-dimensional steady-state case 
with an internal boundary between any two materials 
A and B. In our case we haveψA=ψr

heart and ψB=ψr
sap. 

The values φ1 and φ2 are known, and the boundary 
value φ12 is to be determined. Here φ denotes any one 
of the variables in Eq.(1) except u. Using Kirchhoff 
potentials, we have: 

B

BB

A

AA

LL
g )()()()( 212121 φψφψφψφψ −

=
−

=         (22)

         
 
or 
 

ψB (φ2 )−ψB (φ12 ) =

LB
LA

⋅ψA (φ12 )−
LB
LA

⋅ψA (φ1)
         (23)

                          
This equation determines φ12.  
 

  
 
Figure 5 Steady-state flow through a slab consisting 
of two materials A and B. 
 

COMPARISON WITH EXPERIMENTS 
Material data 
Moisture content distributions were measured in a 
number of Scots pine (pinus silvestris) specimens 
during a one-dimensional drying process. The 
specimens were dried from green condition in 
climate chamber 60% relative humidity. The 
specimens were made of heartwood and sapwood and 
sealed on four sides to establish a one-dimensional 
moisture flow either in radial, tangential or axial 
direction. Two different methods were used to 
measure the transient moisture distribution in the 
specimens. In the first method the specimen was cut 
into thin slices and the medium moisture content in 
each slice were evaluated using the dry weight 
method. This method worked well in tangential and 
radial directions. In the axial direction computer 
tomography (CT) scanning technology was used. 
This is a non-destructive method allowing 
measurements to be performed in the specimen 
during the whole drying period. The CT-scanner uses 
an X-ray tube and a detector array that rotates around 
the specimen. The method using CT-scanning to 
measure moisture distributions in wood is well 
described by Lindgren (1988, 1992). 
The measured transient moisture distributions were 
then evaluated, using the evaluation method 
presented by Rosenkilde and Arfvidsson (1997). The 
obtained relations between u and ψ for radial, 
tangential and axial flow in heartwood and in 
sapwood are shown in Table 1 and Table 2. 

φ1 φ2 

φ12 

LA LB 

g 

Dφ,
A Dφ,

B 

Proceedings of Building Simulation 2011: 
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November. 

- 2253 -



 
 
 Table 1. The Kirchhoff flow potential ψ for Scots 
pine sapwood in all three directions to grain: radial, 
tangential and longitudinal 

 
Sapwood longitudinal tangential radial 
w 
kg/m3  

ψ ⋅107 
kg/ms 

ψ ⋅107 
kg/ms 

ψ ⋅107 
kg/ms 

40 0.40   
50 0.70  0.13 
60 1.1 0.10 0.18 
70 1.4 0.18 0.25 
80 1.8 0.26 0.35 
90 2.1 0.36 0.45 
100 2.5 0.46 0.60 
110 2.9 0.60 0.78 
120 3.2 0.73 1.1 
130 3.6 0.85 1.4 
140 4.0 1.0  
145  1.0  
150 4.6   
155    
160 5.6   
165 6.2   
170    
 

 
Table 2. The Kirchhoff flow potential ψ for Scots pine 
heartwood in all three directions to grain: radial, 
tangential and longitudinal 

 
Heartwood longitudinal tangential radial 
w 
kg/m3  

ψ ⋅107 
kg/ms 

ψ ⋅107 
kg/ms 

ψ ⋅107 
kg/ms 

40
50 0.13 0.15
60 0.15 0.19 0.20
70 0.40 0.25 0.26
80 0.70 0.33 0.33
90 1.0 0.41 0.40
100 1.3 0.50 0.48
110 1.6 0.60 0.58
120 2.0 0.69 0.67
130 2.3 0.78 0.79
140 2.7 0.90 0.93
145
150 3.0 1.1 1.1
155 1.2
160 3.3
165
170 3.6
 
 

 

Test experiment 
Samuelsson & Arfvidsson (1994) presented two-
dimensional transient measurements on wood during 
drying. The specimens were made of Scots pine and 
contained both heartwood and sapwood. The 
specimens have the following dimensions: length 
1200 mm, width 144 mm and thickness 50 mm. The 
average density (ρd) was 417kg/m3. For the chosen 
specimen (No. 3) the heartwood percentage was 76% 
(Fig. 6). The specimens were dried in a experimental 
kiln, the first 72 hours at 52°C and 67% relative 
humidity, and then for 72 hours at 53,3°C and 52% 
relative humidity. Samples from the specimen were 
cut at different times during the drying. Each sample 
had a thickness of 31mm. The distance between the 
samples was 130mm. After each cut the crosscut was 
insulated with silicon to prevent axial moisture 
transport. The two-dimensional moisture distribution 
was measured using a cutting technique. Each sample 
was cut in 65 small rectangular pieces and the 
moisture content immediately measured using the dry 
weight method. 
 

 
Figure 6 The test specimen used in the comparison 
between measurements and calculations. It is made 
of Scots pine with a length of 1200mm, a width of 
144mm and a thickness of 50mm.  

 

Calculations 
Calculations were made using a PC-program based 
on the described calculation model. The material data 
used in the calculations are given in Table 1. The 
experimental boundary conditions were used. A 
constant surface transfer coefficient is used in the 
calculations (βv =0.01 m/s).  
 

RESULT 
The present study begins with a basic theory for 
anisotropic moisture flow in wood using Kirchhoff 
potentials. Based on the theory a calculation model 
and a computer program are developed. To test the 
model, material data from measurements are used in 
calculations of two-dimensional drying of a piece of 
wood. The calculated result is compared with 
measured ones in Fig. 7.. The calculated values are 
the ones in bold face. The result is given in moisture 
content mass by mass (kg/kg), in percent, at four 

144 

50 
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different times during the drying process. The 
measured values are mean values for the weighed 
cubes and the calculated values are mean values for 
the corresponding calculation cell in the numerical 
mesh.  
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Figure 7 Comparison between calculated (top line, 
bold face) and measured (second line) moisture 
content at different time during drying 
 

DISCUSSION 
The presented model gives the mathematical base for 
moisture flow calculations in wood. If the total air 
pressure and the temperature are constant the 
moisture state is determined by a single moisture 
state variable. The choice of potential does not really 
matter. Treated in a correct way, the result must be 
the same independently of the choice of potential. 

However, the use of different potentials may differ in 
simplicity to use mathematically and in numerical 
models. The use of Kirchhoff potential has distinct 
advantages in both those matters. In the moisture 
flow equation the functional-dependent flow 
coefficients vanishes. Only the difference in 
Kirchhoff potential determines the moisture flow. 
This will considerably simplify the implementation 
of the described theory into a numerical model. 
Moisture flow coefficients must be determined from 
measurements. The use of Kirchhoff potentials has 
distinct advantages here too. An example is the above 
evaluation from steady-state measurements over a 
slab of the material. In a traditional evaluation, the 
derivative of u(x) is used to determine Du(u). Then 
the integral of Du(u), (5), is used to determine the 
flow in the numerical model. This 'going in a 
circle' is not necessary when Kirchhoff potentials are 
used throughout the whole process, from 
measurements through mathematical and numerical 
modelling to moisture flow calculations. 
The situation is more complicated at internal and 
external boundaries. Here, it is not sufficient to know 
u(ψ). We have to go back to continuous variables 
such as relative humidity, vapour pressure etc. to 
solve the boundary flow balance. But it should be 
noted that the simplest way to deal with the flow in 
the material layers adjacent to the boundary surface 
is to use Kirchhoff potentials. 
The calculated results show good agreement with the 
measured ones throughout the whole simulation time 
with one exception. The largest difference occurs in a 
cell after 24 hours. The measured value is 24% and 
the calculated is 19%. The cell with the largest 
discrepancy lies close to the boundary between 
sapwood and heartwood. In the beginning of the 
calculation, parts of the wood have moisture content 
above the fibre saturation point. This indicates 
uncertainties considering the moisture flow above 
fibre saturation. 
The calculated values close to the outer boundary 
agrees well with the measured ones. The used value 
of βv (0.01 m/s) to simulate the boundary transfer 
seems to be quite right.  
The agreement is quite satisfactory considering the 
natural variation in wood from one piece to another. 
The model simulates well the asymmetric drying 
caused by the polar anisotropy and the non-linear 
moisture flow in both sapwood and heartwood. It 
should also be noticed that the computer calculation 
time is very short, although complications such as 
anisotropy and moisture dependent moisture flow are 
taken into account in the model.  

 

CONCLUSION 
The model presented should be able to calculate 
input data to the different available models used for 
prediction of the risk of mould growth and rot. By 
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using the Kirchhoff’s flow potential it is not 
necessary to evaluate integrals in each calculation 
step to obtain the moisture flow. The Kirchoff 
potentials simplify the whole process from 
measurements, through mathematical and numerical 
modelling to numerical calculations.  
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