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ABSTRACT 
Nowadays, important efforts are deployed to reduce 
our current residential building consumption. The 
most common retrofit option concerns the air 
tightness and the thermal insulation improvement. 
However, this latter retrofit option could decrease the 
air indoor quality because of a reduction of air 
infiltration flow rate. Installation of an air-to-air heat 
recovery system allows for an efficient combination 
between consumption reduction due to the air 
tightness improvement and acceptable air indoor 
quality. The study presented in this paper has been 
realized in the frame of the ‘Green +’ project, which 
aims at developing decentralized heat recovery 
ventilation systems. 
 
The present paper focuses on modeling and 
experimental validation of an air-to-air heat recovery 
exchanger in partially wet conditions (i.e. where 
condensation might occur in one of the two air 
streams). The knowledge of the thermal performance 
in dry and wet regimes is essential since it highly 
impacts on the heat recovered from the vitiated air 
flow rate (extracted from the building) to the fresh air 
flow rate (coming from the outdoor). 
 
The first part of the paper briefly describes a solving 
procedure able to determine the regime (completely 
dry, completely wet and partially wet). A moving 
boundary model for the partially wet regime is 
applied in order to predict performance of such 
device.  
 
Secondly, the experimental apparatus (and its 
control) designed to characterize thermal 
performance in different operating conditions (dry 
and wet regime) is presented. 
 
Thirdly, experimental data are presented and 
analyzed, which includes a comparison with 
simulation results.  

 

INTRODUCTION 
Quantification of the condensate flow rate is also 
important in the design step of such systems 

(especially the decentralized ones) in order to size the 
condensate evacuation. Decentralized heat recovery 
ventilation units are wall or window-frame mounted 
heat exchangers coupled with fans (dedicated to 
extract vitiated air and to pulse fresh air into the 
room). Such devices are mostly used as retrofit 
ventilation options since they avoid any air extracting 
and air pulsing ducts through the house.  
Accurate and robust model, able to predict the 
behavior in dry and wet regimes, is then needed for 
the sizing step and the performance characterization 
of such device. 
Modeling and experimental investigations described 
in this paper concern a quasi counter-flow heat 
exchanger made in synthetic material.       
 

DESCRIPTION OF THE DEVELOPED 
MODEL 
As mentioned above, quantification of the heat 
performance and the condensate is important in the 
design step of a heat recovery exchanger and 
especially the decentralized ones.  

Regimes of the heat recovery device 
In heat recovery devices, three regimes can be 
observed: 

- Totally dry regime: no condensation of 
water occurs in the heat exchanger; 

- Totally wet regime: since air entering the 
heat recovery device is saturated, 
condensation appears directly after the inlet; 

- Partially wet regime:  condensation occurs 
in the heat recovery device but not directly 
(there is a dry and a wet part of the heat 
exchanger).  

 
A schematic representation of the partially wet 
regime is given in Figure 1. We can observe two 
parts of the heat recovery device: a dry and a wet 
one. The interface between these two parts 
corresponds to a wall surface temperature equal 
to the supply dew point temperature of the 
(warm and humid) vitiated air-flow rate. 
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Figure 1 : Schematic representation of a partially 
wet heat recovery device

 
Developed model 
Rose et al. (2008) have already presented a
heat-exchanger model. This model is based on a 
discretization of the heat exchanger. This latter is 
split into a finite number of segments, wherein the 
heat exchanger is considered to occur as 1D steady 
state. Conservation of mass and energy are 
for each of the defined control volumes. 
 
The present paper proposes a less ti
model to implement.  
 
Actually, the presented simulation model of the heat 
recovery exchanger is a mix between three 
initially dedicated to describe the behaviour of
cooling coils: 
- The one presented by Lebrun et al. (1990); 
- The one presented by Brandemuehl et al. (1993);
- The one presented by Morisot et al. (2002).
 
All of these three models present advantages and 
disadvantages. The main advantage of models 
developed by Lebrun et al. (1990) and Morisot et al. 
(2002) is the simplicity. In reality, these models 
consider simultaneously fully dry and fully wet 
regimes and applies Braun hypothesis by considering 
that the regime to be considered (totally wet or totally 
dry) is the one leading to the maximal cooling 
capacity. Braun (1988) showed
approximation generally leads to an error less than 
5% on the prediction of the total energy rate
Lebrun’s and Morisot’s models show
and performance predictions, except in the case of
cooling coil operation with a sensible heat ratio 
(SHR) around 1. This is related to the Braun’s 
hypothesis that, for SHR close to one
coil to be completely dry. Morisot’s model presents 
an interesting solving procedure able to identify 
quickly the regime. 
Since the Brandemuehl’s model uses a 
boundary, good performance prediction is achieved 
even for SHR close to one. This conclusion has 
already been pointing out by the authors (Gendebien 
et al., 2010). 
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The developed model describes the partially wet 
regime in the same way than Brandemuehl et al. 
(1993).  It divides the heat transfer area of the 
cooling coil in two parts: a totally dry portion and a 
totally wet portion. These portions are separated by a 
moving boundary, whose position is determined by 
means of the surface temperature. In reality, this 
method requires two interlinked iterations: one 
concerning the dry part of the heat recovery device 
and one concerning the fresh air temperature at the 
interface. In the cooling coil model, water enthalpies 
are replaced by “fictitious fluid” enthalpies, defined 
as the enthalpy of saturated air at the temperature of 
the water.  
The difference between the model
paper and the one proposed 
(1993) concerns the description of the wet regime. 
Here, the wet regime is described 
as proposed by Lebrun et al. (1990)
perfect gas, whose enthalpy is fully defined by the 
actual wet bulb temperature, replaces the 
 
The determination of the regime (totally dry, totally 
wet and partially wet) is realized by means of a 
solving procedure developed by Morisot et al. (2002)
and presented hereafter. 
In the rest of the paper, the supply fresh air 
temperature is always considered as 
vitiated air temperature (we assume that conditions
correspond to winter conditions).   
 
The implemented solving algorithm includes the 
following steps:  
 

1. The first step is to compare T
Tsu;af. 
 
Obviously, if Tsu;af  

the coil is supposed completely dry.
 
If T su;af  is lower than
considered completely wet in a first time
 

2. The second step is to compare T
supply cooling coil contact temperature
Tc;su. 
 
If the supply cooling coil contact 
temperature is lower than
cooling coil is completely wet.
 

3. In the opposite case, the third step is to 
compare Tdp;su;av  and
coil contact temperature 

 
If the exhaust cooling
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the cooling coil is completely dry.
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In the opposite case, the cooling coil is 
considered partially wet 
boundary model dedicated to partially wet 
regime is applied. 

 
The “partially wet” model only requires three
parameters: convective heat transfer coefficients for 
vitiated and fresh air and conductive heat exchanger 
wall resistance (generally neglected)
convective heat transfer coefficients are determined 
by means of correlations (Gendebien
 
The whole model procedure is summarized in
2. 
 

Figure 2 : Solving procedure of the developed model
 

In the opposite case, the cooling coil is 
 and the variable 

boundary model dedicated to partially wet 

model only requires three 
parameters: convective heat transfer coefficients for 

and conductive heat exchanger 
wall resistance (generally neglected). These latter 
convective heat transfer coefficients are determined 

(Gendebien et al.,2011).  

The whole model procedure is summarized in Figure 

 
procedure of the developed model 

EXPERIMENTAL APPARAT
The present section presents geometric characteristics 
of the studied heat exchanger and offers a description 
of the designed test rig. In the context of the 
development of a heat recovery exchanger, carrying 
out an experimental study on a
commercialized heat exchanger can be 
different levels:  

- To realize a performance benchmarking
- To validate by means of experimen

results some of the modeling hypotheses 
considered during the design of the future 
heat exchanger. 

- To point out some some defaults and/or 
dysfunctions of the test bench
of tests realized on the future ‘Green +’ heat 
exchanger. 
 

Investigated heat exchanger 
The investigated air-to-air heat recovery is made of 
several corrugated plate in polystyrene. The central 
and main region of the heat exchanger is in counter
flow and is composed of parallel triangular ducts
shown in Figure 3. The inlet and outlet regions’ 
arrangements of the heat exchanger are cross
and are composed of channel with rectangular cross
sections. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 : Schematic representation of the studied 
exchanger

 
According to the manufacturer, the air flows (for 
both vitiated air stream and fresh air stream) 
operating range is comprised between 30 and 9
[m3/h]. The dimensions of the heat exchanger 
(Figure 3) are 213*318*139 [mm] (W*L*H). 

Test bench description 
A schematic representation of the 
in Figure 4. Fresh air can be cooled 
of the direct-expansion evaporator of an air
chiller.  
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In order to avoid freezing of the evaporator, the latter 
is supplied with fresh air delivered by an air 
compressor coupled to an industrial dryer.  
 
It is possible to control the fresh air temperature at 
the inlet of the heat exchanger by post-heating the 
fresh air flow rate with the use of variable electrical 
resistances. Ducts containing fresh air flow are 
insulated by mineral rock of 25 [mm] thickness. 
 
Vitiated air (ambient air) can be cooled down and/or 
dried by by-passing a part of the flow rate exhausting 
from the evaporator in a mixing box situated at the 
inlet of the vitiated air fan. Once again, it is possible  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
to control with precision the vitiated air temperature 
by means of variable electrical resistances.  
 
Humidity is controlled by the use of electrical steam 
generators supplied with variable electrical power.  
 
The mass flow rate of both fluids (fresh and vitiated 
air) are adjusted by means of a set of regulating 
valves and are measured by means of orifice plates, 
as recommended in the ISO 5167.  
Differential pressure sensors dedicated to both air 
flow rates measurement have an accuracy of +/- 2.5 
Pa. Air temperatures are measured with type T 
thermocouples with accuracy of +/- 0.3 K. In the rest 
of the paper, the mean supply temperature 
correspond to the average of two type T 
thermocouples measurements and the mean exhaust 
temperature corresponds to the average of eight type 
T thermocouples measurements. 
 
The differential pressure between the inlet and the 
outlet of the heat exchanger is measured by means of 
two distinct differential pressure sensors: one 
dedicated to the lowest air flow rates with an 
accuracy of +/- 1 Pa with a full-scale value of 100 Pa 
and another one with an accuracy of +/- 2.5 Pa with a 
full-scale value of 500 Pa. In reality, quantification of 

the pressure drop associated with the passage of the 
air flow rate through the exchanger is really 
important in such devices because it highly 
influences fan consumption and thus, the total 
performance of the heat recovery device.  
 
Determination of hydraulic performance was carried 
out in a previous paper (Gendebien (2011)).  
 
The relative humidities (RH) at the inlet and at the 
outlet of the vitiated exhaust air stream are measured 
by means of a humidity sensor with an accuracy of 
+/- 2 percent points. These sensors have been 
calibrated by means of LiCl and NaCl, which permits  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
to create an atmosphere at respectively 11.3% and 
70% of relative humidity.  
 
The range of the several used sensors and their 
accuracy are summarized in Table 1. 
 

Table 1 : Accuracy of the measurement devices 
Measurements Accuracy 

 
Type T 

Thermocouples 
 

 
+/- 0.3K 

 

 
Differential pressure 

sensors 
(Full-scale: 500 Pa) 

 

 
+/-2.5 Pa 

 
Differential pressure 

sensors 
(Full-scale: 100 Pa) 

 

 
+/- 1 Pa 

 
Relative humidity sensor 

(0 to 100%) 
Simultaneous measure 

of relative humidity and 
temperature 

 
 

+/- 2 % 
+/- 0.4K 

 

Figure 4 : Experimental apparatus 
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The heat exchanger is located in a box insulated by 
30 [mm] thick polystyrene in order to reduce heat 
losses to the atmosphere. 

TESTING CONDITIONS  

The present part of the paper presents the testing 
conditions.    

Mass flow rate 
According to the manufacturer, the range of the 
volumetric flow rate is comprised between 30 to 90 
[m3/h]. Condition concerning tests was to well-
balance both mass air flow rates. This condition was 
fulfilled by using regulating valves of the test bench. 
An example of measured mass air-flow rate for both 
fluids is given hereafter in Figure 5. These latter air 
mass-flow rates correspond to the conditions in terms 
of relative humidities and temperature presented in 
Figure 7. 
 

 
Figure 5 : Example of a well-balanced flow rates test 
 
 
As we can see in Figure 6, air-flow rates are well-
balanced for all of the performed tests:  

 
Figure 6 : Comparison of the mass air-flow rates for 

all tests 
 
Vertical and horizontal bars indicate the uncertainty 
on measurements on the flow rates according to ISO 
5167, respectively for the fresh air the vitiated air 
side.  

Temperature and humidities 
Temperatures at the inlet of the heat exchanger were 
respectively comprised between 0°C and 5 °C for 
fresh air-flow rate and between 20 °C and 25°C for 
the vitiated air-flow rate. Inlet relative humidity of 
the vitiated air flow rate ranged between 45% and 
80%.  
The value of the inlet fresh air temperature was 
chosen in order to avoid any risk of freeze and to 
allow the partially wet regime. 
Inlet vitiated temperature and relative humidity 
representative of inside conditions of a domestic 
building were imposed.  
The results presented in the following part of the 
paper correspond to the average value of stabilized 
regime of 500 [sec]. An example of stabilized test is 
given in Figure 7 and shows the mean temperatures 
at the inlet and at the outlet of the heat exchanger for 
both fluids. Relative humidities of the vitiated air at 
the inlet and the outlet of the heat exchanger are also 
given in Figure 7. It is interesting to stress the fact 
that the difference between the inlet and the outlet 
temperatures of the heat exchanger of both air flow 
rates are not the same. This fact can be explained by 
the appearance of condensation (and thus a part of 
latent heat transfer rate) on the vitiated side of the 
heat exchanger.  
 

 
Figure 7 : Example of stabilized test 

 

Balance of the heat transfer rate 
Measured heat transfer rates on vitiated and fresh air 
sides are compared in Figure 8. It can be observed 
that energy balances on the fresh and vitiated air 
streams are comprised in a band of +/- 15%. 
These results are considered as satisfactory for this 
kind of device, due to the little heat transfer rate. 
Fernandez-Seara (2010) has obtained the same range 
of error on tests realized on the same type of heat 
recovery exchanger. 
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Figure 8 : Heat transfer rates determined from the 
experimental data through the energy balances on 

the vitiated and fresh air-flow rates. 
 

VALIDATION OF THE MODEL 
The aim of this part of the paper is to compare 
simulation results of model with experimental results. 
The correlations used for the estimation of the 
convective heat transfer coefficients were identified 
for the calibration of the model in dry conditions 
(Gendebien et al., 2011). It should be stressed that 
the same correlations were used for the description of 
the wet regime. 
 
Validation compares simulation and experimental 
results in terms of : 
 

- Total heat transfer rate; 
 

- Sensible heat transfer rate; 
 

- Latent heat transfer rate; 
 

- Condensate flow rate (which is obviously 
linked to the latent heat transfer rate).    

 
Comparison between model and experimental results 
presented hereafter are realised by comparing only 
measured sensible heat transfer rate. This is justified 
by the fact that sensible heat transfer measurement 
present less error than the latent heat transfer 
measurement (RH sensor present an important 
uncertainty measurement compared to the type T 
thermocouples). Thus, the considered measurements 
taken into account for the validation are: 
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Total heat transfer rate 
Figure 9 presents the comparison between model and 
experimental results in terms of total heat transfer 
rate.  
 

 
Figure 9 : Comparison between model and 

experimental results in term of total heat transfer 
rate 

 
The model is able to predict the total heat transfer 
rate within 5% (vertical bars represent an error of 
5%). 

Sensible heat transfer rate 
Figure 10 presents the comparison between model 
and experimental results in terms of total heat 
transfer rate.   
 

 
Figure 10 : Comparison between model and 

experimental results in term of sensible heat transfer 
rate 

 
Sensible heat transfer rate can be predicted with a 
maximal error of 3%, as it can be observed in the 
previous figure. 

Latent heat transfer rate 
Latent heat transfer rate is predicted by the model 
with a mean error of 10% over all the measurements. 
Comparison between experimental and results model 
is given in Figure 11.  
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Figure 11 : Comparison between model and 

experimental results in term of sensible heat transfer 
rate 

 

Condensate flow rate 
As already mentioned, condensation flow rate is 
obviously linked to the latent heat transfer rate. 
Comparison between experimental and model results 
is given in Figure 12.    
 

 
Figure 12 : Comparison between predicted and 

measured condensate flow rate 
 

CONCLUSION 
The present paper proposes a solving procedure and a 
model based on a mix of different cooling coil model 
in order to describe the behaviour of a ventilation 
heat recovery exchanger for residential buildings.  
Thermal performance tests have been carried out and 
focused more precisely on the partially wet regime. 
The model is able to predict with a good accuracy the 
heat transfer rate (as well as latent and sensible 
parts). The proposed model requires only two 
parameters (two convective heat transfer resistances), 
that have been determined previously based on 
measurements in dry regime.   
Determination of latent heat transfer rate is important 
in heat recovery device (and especially the 
decentralized one) since it allows to quantifying the 
condensate flow rate.  
The model can be used in the design step of a heat 
recovery exchanger to determine the annual total 
amount of condensate flow rate and the heat transfer 

rate by integrating the presented model in an hourly-
based simulation model of a domestic building. 
 
The following step of the work will consist in the 
experimental study of frost formation that can occur 
in very low exterior temperature condition. 
Experimental investigations on new prototypes of 
heat recovery exchangers will also be carried out.   
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NOMENCLATURE 
 
Cp: specific heat [J/kg-K] 
H: height of the exchanger     

     [m] 
  L: length of the exchanger 
     [m] 
 
�  : mass flow rate [g/s]  
       or   [g/h] 
 �� : heat transfer rate [W] 
 RH : relative humidity [%] 
 T : temperature [°C] 
 w : humidity ratio [kg/kg] 
 W: width of the exchanger 
      [m] 
 Y: Dry part of the heat 

     Exchanger [-] 

 
Subscripts 
 a: air 
bnd: boundary 
 c: contact 
 cond : condensate 
dp: dewpoint 
ex : exhaust 
 f : fresh 
hx : heat exchanger 
lat: latent 
 meas: measured 
 new: new (result of an 
         algorithm run) 
 sen: sensible 
 su : supply 
 tot: total 
v : vitiated 
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