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ABSTRACT
We present a new analysis and optimisation procedure
to aid decision-making regarding Combined Heat and
Power (CHP) and Combined Cooling, Heat and Power
(CCHP) installations. Our holistic model incorporates
analysis of plant operation (including part-load perfor-
mance) and provides guidance regarding applicability,
sizing and phasing of plant.
A multi-objective genetic algorithm has been used
to optimise a set of possible configurations. This
produces a “trade-off front” of solutions. The outputs
are reported for a case study. Additionally, a wide
range of scenarios have been optimised and the outputs
examined graphically to derive innovative design
guidelines (a process known as “innovization”).

INTRODUCTION
Combined Heat and Power
A Combined Heat and Power (CHP) system allows
financial and carbon savings by making use of the
heat produced when electricity is generated, which
is usually wasted. The heat may be used to meet
the thermal demands of a development, for example
for space heating and domestic hot water, or used to
run absorption chillers to provide cooling, known as a
Combined Cooling Heat and Power (CCHP) system or
tri-generation.
Great care must be taken in sizing a CHP system to
match the demands of a development, and in partic-
ular the profiles of demand fluctuations. There is a
minimum load, usually 50% of the maximum load,
below which a CHP engine cannot run. Therefore
the system must largely be used to supply a base load
which is present for a large part of the time, perhaps
8 hours per day. A thermal store (TS), usually a hot
water tank, can be used to buffer these fluctuations,
but a large thermal store is expensive and takes up a
lot of space. Also, CHP engines should not be started
and stopped frequently; an average of one startup per
day is recommended. If a system is too large, it will
not operate often enough; if a system is too small, it
will not be providing the full potential carbon and cost
savings.
The general system under consideration consists of
two CHP engines, a thermal store, an absorption
chiller (if CCHP), a gas boiler used to meet any
remaining heat demand, and grid electricity used for
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Figure 1: Schematic of the CHP system under consid-

eration.

unmet electrical demand and unmet cooling demand
via electric chillers (if CCHP); surplus electricity may
be sold to the grid. This is illustrated in Figure 1.

Multi-objective Optimisation
Computational optimisation is a rapidly emerging
discipline for aiding engineering design. Multi-
objective optimisation is particularly useful as it
involves the consideration of several objectives simul-
taneously, with no weightings or aggregations, allow-
ing the robust resolution of complex trade-offs
between conflicting objectives. This involves finding
the non-dominated- or Pareto-front, a set of points in
the objective space for which no point performs better
in all objectives (see Figure 2).

Previous work
Ooka and Komamura (2008) developed a two-stage
design process using genetic algorithms to simultane-
ously optimise plant capacities and operational details,
applied over one day. Li et al. (2006) looked at the
configuration of a CCHP system to maximise Net
Present Value using a genetic algorithm. Tanaka et al.
(2007) optimised plant configuration and operation
using a genetic algorithm. Song et al. (1999) and
Vasebi et al. (2007) investigated the CHP dispatch
problem (see next section) using ant colony optimi-
sation and harmony search respectively.

ANALYSIS OF CHP OPERATION
Predicted loads
Standard daily demand profiles have been used for
heating, cooling and electricity demands (see Figure
3). Each profile consisted of a base component
and a weather-dependent component which is scaled
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Figure 2: An example of a Pareto front for the minimi-

sation of two objectives, one on each axis. Triangles

are members of the Pareto front; dots are not. For the

highlighted point there is no point within the shaded

area, therefore it is non-dominated; in this work, this

corresponds to there being no solution which has both

lower emissions and lower costs.

Figure 3: Daily load profiles for heating, cooling and

electricity for three sector types. Blue areas are the

base profile; yellow areas are weather dependent. The

first graph of each pair is for weekdays, the second for

weekends.

Table 1: Energy use benchmarks (KWh/m
2
/year) and

standard deviation σ used for profile diversity.

Heating Cooling Electricity σ

Residential 250 0 50 4
Retail 100 15 200 1
Hotel 220 0 78 2

Figure 4: Example of diversity applied to a daily load

profile. Each curve shows a different value of σ.

according to the temperature difference (taken from an
annual series of daily averages) from a set point (below
15C for heating, above 18C for cooling). Different
profiles have been used for each sector type (in the
case study these are residential, retail and commercial)
and for weekdays and weekends. Site-wide hourly
demand profiles for heating, cooling and electricity
were formed by summing the demands for each sector,
scaled according to the area and benchmark values for
annual demand (given in Table 1).
Diversity between different demands can have impor-
tant implications in CHP design, as diverse demands
will smooth peaks and troughs leading to lower
maximum demands and a higher continuous baseline
demand. Diversity has been introduced to the demand
modelling described above by applying a normal
distribution to all values in the daily demand profiles
(see Figure 4). Each hourly value of the new profile x�

i

is the sum of the original profile value xi multiplied by
the probability density function of the normal distribu-
tion with the mean at hour i and standard deviation σ

(see Equation 1); three distributions offset by 24 hours
are used to allow the profile to wrap around when
bridging midnight. Different values for the standard
deviation of the distribution have been used for each
sector type (given in Table 1); retail has a low diver-
sity as opening hours will be similar, whereas residen-
tial has high diversity as people get up and go to bed
at very different times.

x
�
i =

24�

j=1



xi
1√
2πσ2

�

k=−24,0,24

�
e
− (j+k−i)2

2σ2

�



(1)

Hourly simulation of plant performance
The site-wide hourly demand profiles for heating,
cooling and electricity have been used as the input
for the CHP operation algorithm, along with plant and
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Figure 5: Control logic for CHP 1 and CHP 2. The algorithm determines heat outputs H1 and H2 for the two

machines based on the availability schedule Sched, the heat supplied Hsup, the thermal store contents TS, the

thermal demand including thermal store deficit HΣ = Hsup + (TSmax − TS), and the state of each machine in

the previous hour H
�
1 and H

�
2, as well as the operating ranges of each machine H

min
1 , H

max
1 , H

min
2 and H

max
2 .

thermal store capacities. It is desirable to model the
CHP system hourly (or better) since sharp peaks of
short duration can have a great effect on performance
(see Hawkes and Leach (2005)). It is desirable to
model a full year of operation in order to assess perfor-
mance over the whole range of expected demands
(which vary based on the weather).
The main function of the CHP operation algorithm is
to determine whether and at what load the generat-
ing plant will be operational. Rather than optimise
the many parameters of an operational schedule (as
for example Ooka and Komamura (2008)) or address
the full CHP dispatch problem relating to balancing
thermal and electrical demands with efficiency (as for
example Vasebi et al. (2007)), a number of assump-
tions have been made to allow a fixed (though compli-
cated) control logic to be used.

The first assumption is that surplus electricity can be
sold to the grid for a reasonable price (and credit can
be taken for the associated carbon savings) during
peak hours (7am - midnight). This bypasses the
dispatch demand problem as it will always be desirable
to run at as high a load as the thermal demand permits.
The second assumption is that efficiency differences
between systems of different capacity and between
full-load and part-load operation are small. This
bypasses the efficiency drop-off problem, meaning it
is always acceptable to run at part-load if this improves
the contribution from CHP. The remaining require-
ment for the operation of CHP engines is the limit on
the number of start-ups (taken as an average of once
per day).
The control logic used (as shown in Figure 5) aims
to maximise the CHP contribution to thermal demand
whilst remaining within the machine operational limits
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and minimising the number of start-ups. Priorities
of use differ depending on the previous state of the
machines, for example if both are off, the load will be
met by the thermal store if possible, whereas if any are
on, they will be used to supply the load and charge the
thermal store if possible. If it is necessary to start up
one machine and it doesn’t matter which one, the one
with the fewest startups will be chosen. The availabil-
ity schedule Sched has been set to zero from midnight
to 7am (when off-peak electricity prices make running
uneconomic) and for two days per month and one
week in the summer for maintenance (612 on-peak
hours, ∼10% of on-peak hours per year).

Environmental performance

Table 3: Financial and system inputs. Prices are given

at year one of the project lifespan.

Price index: retail 4 %
Price index: electricity 5 %
Price index: heat 3 %
Price index: gas 3 %
Price index: construction 4 %
Price: electricity sold on-site 95 £/MWh
Price: electricity exported 80 £/MWh
Price: heat sold on-site 50 £/MWh
Cost: gas 37 £/MWh
Cost: grid electricity 95 £/MWh
Cost: CHP maintenance 10 £/MWhelec
Network loss 5 %
Community boiler efficiency 85 %
Domestic boiler efficiency 88 %
Absorption chiller efficiency 100 %
Electric chiller efficiency 400 %
Carbon Factor (CF): gas 0.19 kgCO2/kWh
CF: electricity from grid 0.43 kgCO2/kWh
CF: electricity sold to grid -0.52 kgCO2/kWh

Using the control algorithm discussed above, an
annual hourly series is constructed of thermal outputs
from both CHP engines and gas boiler backup. The
thermal outputs from CHP are converted into percent-
age loads, and the electrical outputs and fuel consump-
tions are found via interpolation between the values
in Table 2. Grid import or export of electricity is
calculated from the amount generated and the electri-
cal demand. Fuel used and grid import and export
are then summed for the whole year, and these totals
are used to obtain the associated carbon emissions
for the year using the appropriate carbon factors (see
Table 3). Electricity exported to the grid is converted
into a carbon emissions credit. The objective used
for environmental performance was the carbon savings
of the project over a baseline system (individual gas
boilers and grid electricity), summed over the project
lifespan.

Financial performance
The financial performance of the system has been
evaluated by using a projected profit and loss approach
over the project lifespan. Costs included capital
expenditure, depreciation (calculated by dividing item
cost by expected lifetime), maintenance, fuel and grid
electricity; incomes included heat sales, electricity
sales internally and electricity sales to the grid. All
prices were subject to increase over time, governed by
indices for retail costs, electricity, gas and construction
costs (the percentage increase being applied cumula-
tively to the index). Table 3 gives details of the
prices and index rates used. All costs and incomes
were projected over the project lifespan, and a running
balance kept. The objective used for financial perfor-
mance was the cost saving of the project over the
baseline system at the end of the project lifespan.

OPTIMISATION
There are many computational means of accom-
plishing multi-objective optimisation. One of the
most widely applied is the genetic algorithm, and
many other methods follow a similar approach. The
Non-dominated Sorting Genetic Algorithm (NSGA-
II) of Deb et al. (2002) used here is a very popular
genetic algorithm for multi-objective optimisation.
The algorithm maintains a population of possible
solutions, each corresponding to a particular choice
of input variables. Solutions may be changed to
form new variations by crossover (combining features
of two solutions) or mutation (randomly changing
values). In this way a second population is formed,
and solutions are selected to continue to the next
generation from either population based firstly on non-
domination rank1 and secondly on crowding distance2.
The two objective functions were the environmental
objective and the financial objective as detailed above.
Two constraints were imposed which limited the start-
ups of each CHP to less than 365 per year. The
variables used were CHP 1 unit (0 to 17) and CHP
2 unit (0 to 17) (see Table 2), Thermal Store (TS)
size (15 to 150 m3) and CHP or CCHP; there was
an additional variable for the second study, CHP 2
construction year. The following NSGA-II parame-
ter values were used: population size 20; number of
generations 20; crossover probability 0.7; mutation
probability 0.5.

RISK ANALYSIS
In order to better understand the CHP decision-making
process and to provide an indication of risk for CHP

1Rank 1 solutions are the non-dominated front. These are
removed and domination is recalculated to form a new front, which
is given rank 2. This process continues until all solutions are ranked.
This ensures that the algorithm progresses towards the true non-
dominated front.

2A measure of the distance of a solution from its neighbors in
the objective space. Solutions in less crowded regions are preferred,
ensuring that the algorithm explores the whole front.
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Table 2: CHP units available. Electrical output Ei, heat output Hi and gas used Gi are given for 100%, 75% and

50% load conditions.

Unit # Capital cost, £ Ei, kW Hi, kW Gi, kW
100% 75% 50% 100% 75% 50% 100% 75% 50%

1 33,150 26 20 13 46 35 25 81 62 44
2 55,000 50 38 25 82 75 52 150 128 88
3 75,000 75 56 38 127 110 78 223 185 128
4 95,000 100 75 50 161 128 102 291 228 174
5 111,020 122 92 61 196 166 129 348 283 213
6 132,880 151 113 76 232 199 155 418 343 254
7 147,915 173 130 87 264 224 171 483 392 287
8 157,250 185 139 93 274 236 184 507 415 309
9 181,500 220 165 110 307 247 173 590 460 323

10 189,895 233 175 117 284 232 171 618 483 340
11 208,000 260 195 130 335 266 191 689 536 378
12 270,000 360 263 175 413 339 249 919 717 501
13 292,000 400 300 200 503 402 295 1055 822 581
14 353,000 500 375 250 608 490 367 1273 994 712
15 408,030 609 457 305 731 583 408 1559 1196 860
16 522,614 809 607 405 945 765 565 2057 1583 1090
17 622,000 1000 750 500 1216 980 734 2546 1988 1424

system decisions, six parameters of the system model
have been altered and changes in the optimal solutions
noted. The six parameters were project length, grid
carbon factor, gas and heat price index, electricity
price index, standard deviation of profile diversity,
and demand for heat and power. Each parameter in
turn was set to first 50% and then 150% of the origi-
nal value. The performance of the main solutions
found initially (Figures 8 and 13) was calculated for
each of these scenarios, forming a normal sensitiv-
ity analysis. Additionally, a new optimisation run
was conducted for each scenario, providing informa-
tion on the opportunity cost of selecting each main
solution in the context of each scenario. These results
were analysed by finding the distance from each of
the main solutions (using the peformance values for
the relevant scenario) to the nearest optimal point for
the new scenario. This goes beyond sensitivity analy-
sis as it provides information on the performance of
each solution relative to the optimal solutions for each
scenario. However, the summary statistic - distance
to the nearest optimal point - is only an indication
of a single “better option”; for a more comprehensive
answer, it would be necessary to visually compare the
complete Pareto front obtained for each scenario with
each of the main solutions.

CASE STUDIES
Study 1: Single-phase development
The first case study sought to optimise the CHP
system for a development in which all buildings are
constructed in a single phase at the start of the project.
The development consisted of 30,000m2 residential,
20,000m2 retail and 10,000m2 hotel. UK climate data
was used.

Figure 6: All solutions evaluated. Non-dominated

solutions are shown in red. Initial random solutions

are shown in yellow.

Figure 6 shows all solutions evaluated by the
algorithm. There is a large degree of variability :
carbon savings over the baseline range from 1 to 28
ktCO2, and costs vary between £2.3m better than the
baseline after 20 years to £14m worse.
There were only four non-dominated solutions: Figure
7 shows the objective values of these solutions in
detail, and Figure 8 gives the variable values. The
solution which performed best financially did not use
CCHP; all others did. The thermal store was sized
to the maximum permissible value in all but one case
(solution 1). CHP 1 was sized at 809 kWelec in all but
one case (solution 2 was sized at 609 kWelec). CHP 2
was more variable in size: the total capacity increased
gradually as the solutions progressed from low to high
carbon savings.
Figure 9 gives the results of the sensitivity analy-
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Figure 10: Variation under each scenario for study 1. Bars give the distance between the solution in question and

the nearest optimal solution (negative values being an improvement). See Figure 9 for key.

Figure 7: Non-dominated solutions. The radii of the

two circles represent the CHP capacities.

sis. This indicates which scenarios are beneficial,
detrimental or neutral to each of the objectives. For
example the greatest detrimental effect to the environ-
mental objective came from a low carbon grid factor,
whereas the most detrimental to the financial objective
was a shorter project span.
Figure 10 gives the results of the broader risk analysis;
solution numbers correspond to those in Figure 8. As
was to be expected, the main solutions were almost

Figure 8: Variable and objective values for the four

non-dominated solutions.

always out-performed by the nearest optimal point
(shown by positive values). Sometimes an improve-
ment in one objective was balanced by poor perfor-
mance in another (for example for the low demand
scenario all main points were better environmentally
but worse financially). For the low electricity price
index scenario there was zero change for solutions 2
and 4, indicating that the main solution was a member
of the optimal Pareto set.
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Figure 9: Average change in objective value under

each scenario (negative values indicate an improve-

ment over the main solution).

This information provides a valuable complement to
the objective and variable values given above. For
example solution 4 has the best financial performance,
so may be chosen if the carbon savings are deemed
to be sufficient. However, it has the greatest degree
of risk regarding the carbon objective: 7 out of 12 of
the scenarios would reduce the carbon savings by over
10%. Solution 1 provides a much lower level of risk
for a relatively small financial penalty. Alternatively,
if other aspects of a development indicate that high
demand is unlikey (for example better fabric speci-
fication) then this source of risk may be discounted,
making solution 4 onace more a plausible choice.

Study 2: Multi-phase development

Figure 11: All solutions evaluated. Non-dominated

solutions are shown in red. Initial random solutions

are shown in yellow.

The second case study sought to optimise the same
development, but taking place in five two-year phases:
all phases consisted of 6,000m2 residential and
4,000m2 retail, with phase one having an additional
10,000m2 hotel.
Figure 11 shows all solutions evaluated by the
algorithm. There is a similarly large degree of variabil-
ity. There were eight non-dominated solutions; Figure
12 shows the objective values of these solutions in
detail, and Figure 13 gives the variable values. The
thermal store was sized to the maximum permissible

Figure 12: Non-dominated solutions. The radii of the

two circles represent the CHP capacities.

Figure 13: Variable and objective values for the eight

non-dominated solutions.

value in all cases. The construction date of the first
CHP unit was always the start of the project, and the
second almost always six years subsequently, in phase
four of five (the exception being solution 2, in which
it was constructed in phase five). In most solutions
(the exceptions being 6 and 8) the larger CHP unit was
constructed first. All solutions used CCHP.
The sensitivity results for study 2 were very similar to
study 1 (Figure 9). The main difference was a small
improvement in the environmental objective for many
scenarios. However, this is due to a wider spread of
possible changes: the scenario may cause the solution
to improve or to decline.
Figure 14 gives the results of the broader risk analy-
sis; solution numbers correspond to those in Figure
13. Due to the large number of solutions, colour
codes have been used to indicate changes. Again there
is high variability between the solutions: solution 1
remains largely unchanged, whereas solutions 5 and 6
have many beneficial changes balanced by many detri-
mental ones.

CONCLUSIONS
This work has drawn together three key areas relating
to CHP and CCHP decision-making: environmental
benefits, financial performance, and the risks associ-
ated with model uncertainties. This has been achieved
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Figure 14: Variation under each scenario for study 2. Colours indicate the distance between the solution in question

and the nearest optimal solution (negative values shown in green being an improvement).

through use of a holistic model, which combined plant
control on an hourly basis, annual analysis based
on weather-dependent loads, and financial evaluation
over the project lifespan. This allowed optimisation of
phased developments, adjusting plant capacities and
construction dates.
The process has been applied to two case studies.
Results were analysed visually to highlight variable
trends amongst the optimal solutions (part of the
process known as innovisation, coined by Deb and
Srinivasan (2006)). The optimisation process was also
conducted for a range of scenarios involving changes
in the model parameters, and the affect on the optimal
solutions analysed (Deb terms this higher-level innovi-
sation).
The results show the large range of financial and
economic performance of a CHP system: it is impor-
tant to make correct decisions regarding sizing, as
poorly-sized systems perform very badly. An inter-
esting feature of the optimal solutions for both case
studies was the asymmetric sizing of the CHP units:
two smaller units appear to be always preferable to one
large one, and it is very often good to have two units of
different sizes. The analysis of many different scenar-
ios has highlighted differences in resilience to chang-
ing external circumstances: some solutions remain
near-optimal, whereas others are badly affected.
Future work in this area could investigate the links
to other aspects of the development (balance of use-
types, climate). A more holistic optimisation could
examine CHP (and CCHP) as one of a number of
supply technologies (biomass, fuel cells), or in combi-
nation with measures to lower demand.
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