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ABSTRACT 
The sensitivity of a real (under construction) UK 
school building’s energy consumption to input 
parameters was investigated using IES Virtual 
Environment.  Differential sensitivity analysis and 
Monte Carlo analysis were conducted for two base 
models, one set at 2006 Building Regulation 
standards and one at Passivhaus certification level.  
Heated temperature and envelope specification were 
the dominant factors governing energy consumption 
for the Building Regulation model, while for the 
Passivhaus model occupancy parameters and class 
equipment load were most important.  In addition, 
the range of final energy consumption was far 
smaller for the Passivhaus base case than for the 
Building Regulation equivalent. 

INTRODUCTION 
Whether in response to concerns about future energy 
security (Bang, 2010; Bäckstrand, 2010) or damaging 
climate change (Solomon et al, 2007), there is an 
increasing trend in national policies towards both 
energy efficiency (Dixon et al, 2010) and developing 
or diversifying current energy supplies. 

Buildings in use account for ~25% of the world’s 
total energy consumption; this percentage is greater 
in more developed countries.  For example, the USA 
and Britain consume 40% and 39% of their total 
energy budget supplying buildings respectively 
(Pérez-Lombard et al, 2007).  The International 
Energy Agency (IEA) predicts that energy use in the 
built environment will grow by ~30% in the next 
twenty-five years, primarily fuelled by developing 
nations increasing and replacing their current 
building stock (IEA, 2009).  It is evident that 
buildings’ energy consumption in use must 
necessarily be one of the primary foci for national 
energy policy.   

In the construction industry, there is a trend towards 
increasingly stringent building regulations.  In 
England and Wales, Part L of the 2010 Building 
Regulations (which refer to energy consumption for 

non-domestic buildings) require a reduction in 
associated CO2 emissions of 25% relative to the 2006 
building regulations (UK Government, 2010).  This 
reflects a similar pattern of increasingly stringent 
energy use targets for buildings across the EU, driven 
by the Energy Performance of Buildings Directive 
and the Energy End-Use Efficiency and Energy 
Services Directive (Ekins & Lees, 2008).  In 
addition, voluntary certification schemes 
guaranteeing a level of energy efficiency or CO2 
emissions (such as Passivhaus (PH) (PHI, 2011) or 
LEED (USGBC, 2011)) are growing in popularity 
internationally. 

A concern for some time in the UK has been the clear 
discrepancy between the predicted performances at 
design stage of buildings in comparison to real data 
(Bordass et al, 2004).  This worry is not unique to the 
UK, as buildings in other countries have had similar 
issues (Branco, 2004; Torcellini et al, 2004).  This 
can have a significant impact on the goal of energy 
efficiency in buildings by giving the design team an 
incorrect impression of the energy their building will 
consume in practice.  This performance gap has been 
attributed to many causes, but the commonly cited 
reasons include poor assumptions during modelling 
(Raslan et al, 2009) and/or occupant behaviour 
(Masoso, 2009; Torcellini et al, 2004).   

Whether poor modelling assumptions, occupant 
behaviour or failure to meet the expected standards 
on site are responsible, there is evidence that there is 
an element of variability in the energy performance 
of buildings.  Most likely, this is the result of several 
of the above factors acting in combination. 

Classically, energy efficient building design employs 
two types of approach – the use of passive and active 
measures.  Passive measures are features of the 
building that contribute to energy efficient 
performance with no direct energy input, such as 
insulation within walls.  Active measures require 
some energy input to operate – for example, the use 
of heat pumps.   
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In the recent past, it has been popular to focus on 
passive measures, such as optimising building 
orientation and improving the fabric of the building, 
from simply improving the U-value of glazing to 
trying to minimise thermal bridges and utilise 
thermal mass.  As building regulations tighten and 
the uptake of certification methods such as 
Passivhaus rises, an important consideration is what 
aspects of a building’s design, construction and use 
need to be controlled to minimise energy use as its 
basic design parameters improve.  Perhaps it is the 
case that improving the fabric further is of the most 
value, however this is not self-evident and it might be 
better to control unregulated power use or other 
aspects of occupant behaviour  (the term unregulated 
power is used here to refer to the appliances installed 
in the building post-handover).   

BACKGROUND 
A building’s energy performance is dependent on a 
large number of factors.  The form and construction 
techniques used have a major effect on the physical 
performance.  Building form can affect factors such 
as wind shielding and solar gain, whilst not forgetting 
the impact of surface area to volume ratio.  
Construction methods and materials directly affect 
the U-value, available thermal storage, daylighting, 
acoustics and a variety of other input parameters.  
Construction techniques such as off-site manufacture 
can improve the match between initial design and 
final achieved building parameter value (Blismas & 
Wakefield, 2009).   

Occupant behaviour can also have a large effect on 
the energy consumption of a building.  Occupants 
can have many effects, including thermal gain, 
control of unregulated power devices, door and 
window opening or using the building in a way that 
counteracts the designed ventilation or lighting 
strategy.  

Finally, other variables that may affect a building’s 
energy performance exist which are not under human 
control.  These factors are related to weather and 
climate.  Examples include external air temperature, 
wind speed and insolation.  

There have been a variety of sensitivity analysis 
techniques developed which allow investigation of 
how a building’s final performance is affected by the 
state of a set of input factors, whether architectural 
features, construction specifics or occupant 
behaviour.  The primary sensitivity analysis 
techniques used with building thermal simulation 
programs are differential sensitivity analysis (DSA), 
Monte Carlo analysis (MCA) and stochastic 
sensitivity analysis (Lomas & Eppel, 1992).   The 
purposes of each vary considerably and a short 
discussion follows of each method. 

In DSA, a base case model is created with a set of 
typical values assigned to all input parameters.  Each 

parameter is then varied independently of the others 
to extract a direct relationship between the input 
variable and the performance indicator (PI) of 
interest. 

MCA is used in analysis of systems in several 
scientific fields.  In MCA, all the input variables are 
assigned a definite distribution.  Individual 
simulations are then run with these variables being 
determined probabilistically according to their 
distribution.  This process is repeated a suitably large 
number of times (in this work, 80), ensuring that the 
PI distribution is likely to be normally distributed 
according to the Central Limit Theorem (Fisz, 1963).  
Once this process is complete, a mean and standard 
deviation for the PI distribution are calculated, which 
represent an estimate of the realistic range of 
outcomes for that PI in the completed building. 

Lastly, stochastic sensitivity analysis works almost as 
a combination of the two previously discussed 
methods.  A single stochastic sensitivity analysis run 
varies all inputs simultaneously much as in the MCA 
method.  This process needs to be repeated a number 
of times (typically fewer than for MCA) to avoid 
skewing results.  However, through use of regression 
techniques it is then possible to extract the sensitivity 
of the PI to any single input variable.  Stochastic 
sensitivity analysis does not lend itself to using 
graphical and dialogue box based software such as 
IES VE because it relies on programming the 
simulation to take account of variation in inputs, 
although it is possible to create a program ‘shell’ to 
allow this (Struck et al, 2007).  Due to this conflict 
with the chosen building modelling tool, SSA was 
not used in this work.   

DSA will allow investigation of the relationship 
between input variables and PIs to be answered in a 
simple way.  It was also decided that MCA would be 
used to get an understanding of the possible ranges 
for the PIs in both the basic building regulation case 
and the energy efficient case.   

A complication in building modelling is that 
buildings vary widely in their purpose and this in turn 
strongly influences the design and patterns of use.  
As mentioned above, the building being investigated 
in this case is a recently designed school in the UK.  
Schools have relatively different occupancy patterns 
and hours of use to other non-domestic buildings.  
However, there are a large number of schools in most 
countries.  As public buildings are at the centres of 
many communities, they are buildings that 
governments may feel it is important to improve 
early on in the drive to improve building efficiency, 
as has been argued for in the UK (Sustainable 
Development Commission, 2009). 

There has been some previous work done on the 
subject of variability of performance in schools.  
Pegg et al. (2007) found that predicted CO2 savings 
were not consistently achieved real UK schools, 
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while Demanuele et al. (2010) concluded that 
variables related to occupancy have a major influence 
on the energy performance of schools, using DSA in 
a similar way to this study. 

Research Goal 

In this work, the change in the response of a building 
to changes in specific input variables, both in terms 
of direct relationship and in terms of the potential 
range of final performance, is measured.  This has 
been termed the ‘robustness’ of the building (Leyten 
& Kurvers, 2006).  Variables studied include those 
related to building fabric, such as U-value, and others 
related to design and occupancy.  To investigate how 
changes in the input variables influence final energy 
consumption, DSA and MCA techniques were used. 

It was desirable to use a dynamic thermal modelling 
program to run the simulations for several reasons.  
Dynamic thermal modelling allows the effects of 
hourly weather data and occupancy schedules to be 
taken into account, as well as modelling airflow 
within the building.  The latter was deemed important 
for accurate simulation of door and window opening 
as well as the performance of mechanical ventilation 
systems.  Finally, dynamic thermal modelling allows 
extraction of further PIs, such as overheating hours.  

The school building used in this experiment is a real 
building being constructed in Exeter at the time of 
writing.  The actual building is designed to 
Passivhaus standards and thus incorporates some of 
the passive energy efficiency measures discussed 
earlier.  In addition, the design team have made all 
design data available for this research, and there is an 
intention to monitor the building’s performance for 
five years after completion.  This will be valuable 
data for comparison with this study.    

METHOD 
The Model 

The school chosen was modelled using Integrated 
Environmental Solutions Virtual Environment (IES 
VE), which is industry standard software.  The 
geometry and surrounding geography of the building 
were recreated as they are in the physical case.  

 

Once the geometrical structure was completed, two 
‘base case’ buildings were created by setting a group 
of input parameters.  The parameters and the values 
for each base case are shown in Table 1.  No 
weather-related variables were changed; the 
Plymouth Test Reference Year was used for all 
model runs. 

One base case building took values matching those 
specified as the minimum acceptable in 2006 Part L  
England & Wales BRs, while the other took input 
values equivalent to those required as a minimum by 
the PH certification scheme.  This scheme was 
chosen as a base case for three reasons.  Firstly, the 
scheme has a pedigree of measured performance, in 
energy terms as well as occupant satisfaction 
(Schnieders & Hermelink, 2006).  Additionally, there 
has been growing interest in the PH method of 
construction in the UK, as evidenced by the national 
PH conferences held in the UK in 2010.  Finally, the 
real building is designed to achieve PH certification.  
The values that vary between base cases are 
primarily those relating to envelope standards, 
although some others (such as heated temperature) 
are also different.  They are shown in Table 1.   

The input parameters have been divided into three 
groups.  Envelope standards incorporate the 
parameters that are decided at design stage but are 
subject to changeable standards on site.  Design 
variables includes of those parameters which are 
decided at design stage but are somewhat subject to 
occupant behaviour.  Occupancy includes variables 
that may be controlled by a building management 
system but are essentially under the occupants’ 
control. 

The BR base case building was calibrated to real UK 
school data (DfES, 2003; DfES 2007) by iterative 
model design.  The annual energy consumption was 
calculated to be approximately 130 kWh/m2; this is 
close to the 25th percentile of mean energy 
consumption for UK schools.  While low, this value 
was deemed reasonable given the energy efficient 
nature of the building design.  The PH base case was 
simply a modified version of this building to match 
PH criteria – the annual energy consumption for the 
PH base case was approximately 65 kWh/m2.  

The wall, roof and glazing U-values were taken from 
building regulation and Passivhaus literature.  The 
floor U-value was calculated by taking the specified 
value and then applying the appropriate correction 
for potential edge losses etc. (CIBSE, 2006).   

Thermal bridging was calculated by applying typical 
!-values (BRE, 2010) to the geometry of the 
building model and summing estimated thermal 
losses from this approach.  This effect was then 
averaged over the wall area.  Heated temperature 
describes the realised set point.  In typical naturally 
ventilated schools, this is frequently higher than the 
design set point as it is rare that all rooms have a way Figure 1: An image of an IES VE model of the school. 

!
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of maintaining a given set point via any controls.  
This is less of a problem with designs such as the PH 
one where each room has controlled heat delivery. 

Table 1: Base case inputs for Building Regulation 
and Passivhaus case base models. 
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Wall U-value (W/m2K) 0.35 0.15 

Glazing U-value 
(W/m2K) 2.2 0.8 

Roof U-value (W/m2K) 0.2497 0.15 

Floor U-value 
(W/m2K) 0.168 0.1134 

Infiltration Rate 
(Ach/h) 0.326 0.042 En

ve
lo
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ta
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Thermal Bridging 
(W/K) 181.7 181.7 

Ventilation Rate 
(l/s/person) 5 5 

Heated Temperature 
("C) 21 19 

Lighting Load (W/m2) 12 12 

Class Equipment Load 
(W/m2) 7.3 7.3 

Office Equipment Load 
(W/m2) 4.7 4.7 

D
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n 

V
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Heat Recovery 
Efficiency  n/a 0.85 

Door Opening 
(Minutes) 95 95 

Lighting Schedule 
(Minutes) 540 540 

Equipment Schedule 
(Minutes) 900 900 O

cc
up

an
cy

 

Occupancy Hours 
(Minutes) 315 315 

All Occupancy variables and most of the Design 
Variables were kept constant between the PH and BR 
models, as the assumption is that occupants’ 
requirements and activities would remain 
approximately similar between different buildings.  It 
is of course possible that this would not be the case, 
and the occupants of an energy efficient building 

would behave more carefully.  With no evidence to 
support this, the alternative assumption was 
considered reasonable.  The PI studied in this work is 
final energy consumption, although in the future it is 
anticipated that additional PIs will also be 
investigated. 

DSA Method 

Differential sensitivity analysis is one of the simplest 
methods of determining the direct relationship 
between input parameters and output PIs.  In 
conducting a DSA process, one input parameter is 
varied while all the others remain fixed.  This method 
assumes linearity of response; in many cases, this is a 
reasonable assumption but some variables may be 
non-linear.  To ameliorate the effect of this, both 
higher and lower values for each input variable were 
simulated.  The relationship was then considered as 
an ‘average sensitivity’ over the range measured.  
The upper and lower values for each parameter were 
chosen to be within a realistic range of the mean 
value.   

The results of the DSA analysis are initially 
expressed as an ‘influence coefficient’.  This is equal 
to the change in the PI divided by the change in the 
input variable.  As discussed in Lomas & Eppel 
(1992), the value of the influence coefficient is an 
estimate.  They recommend calculating the change in 
PI due to a relatively large change in input variable 
and then using interpolation to estimate the effect of 
smaller changes.   

The main output of the DSA is the normalised 
influence coefficient (NIC).  This is a modified 
influence coefficient, adjusted to represent the ratio 
of the percentage change in the PI to the percentage 
change in the input variable.  While this is one of the 
most useful outputs from the DSA process, it must be 
remembered that each input variable has a different 
range of realistic variation.  Using the normalised 
influence coefficient without considering this will not 
give a full picture of how the relationship might play 
out in reality. 

MCA Method   

All input variables used in the DSA were considered 
for the MCA.  Where the NIC was found to be very 
low (<0.05), that variable was held static at its base 
case for all iterations.  In these cases, the PI would 
change by less than 1% in response to a 20% change 
in the input variable.  As such, the sensitivity of the 
PI to these variables was deemed negligible.  The 
exception to this was that the most responsive inputs 
from the three sections (Envelope Standards, Design 
Variables and Occupancy), which were always 
included.  This was done to get a general 
understanding of how important each subdivision of 
factors might be as a whole.  The mean and value of 
2.33 standard deviations for each variable included in 
the MCA analysis is shown in Table 2. 
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Table 2: Values used in the MCA analysis for each variable.  N/A denotes a variable that had an NIC of <0.05 
and thus was kept fixed for all simulation runs. 

Building Regulation Base Case Passivhaus Base Case 
Variable Units 

Mean 2.33 Standard 
Deviations Mean 2.33 Standard 

Deviations 

Wall U-value W/m2K 0.35 0.2 N/A N/A 

Roof U-value W/m2K 0.25 0.1 N/A N/A 

Floor U-value W/m2K N/A N/A N/A N/A 

Glazing U-value W/m2K 2.2 1.2 0.8 0.015 

Infiltration Rate Ach/h 0.326 0.094 N/A N/A 

Ventilation Rate l/s/person 5 2 5 2 

Lighting Load W/m2 N/A N/A 12 6 

Class 
Equipment Load W/m2 N/A N/A 7.3 5.4 

Office 
Equipment Load W/m2 N/A N/A N/A N/A 

Heated 
Temperature 

"C 21 3 19 2 

Heat Recovery 
Efficiency % - - 0.85 0.1s 

Door Opening Minutes 95 47.5 95 47.5 

Lighting 
Schedule Minutes N/A N/A 540 120 

Equipment 
Schedule Minutes N/A N/A 900 180 

Classroom 
Occupancy Minutes 315 60 315 60 

These values were typically estimates.  Where 
possible, values were related to research by 
Demanuele (2010) into real school buildings.  

Ideally, distributions for the variables would be 
assigned distributions from research.  As such 
research was not available, each variable was 
assigned a normal distribution, as has been done 
previously for work of this type by de Wit and 
Augenbroe (2002).  The normal distribution is 
generally the most appropriate for measured physical 
data (MacDonald, 2002).  In some cases, the variable 
was dependent on another that was more likely to 
have a normal distribution.  For example, wall U-
value is unlikely to vary as a normal distribution, 
whereas it is much more reasonable to assume that 
the variation of insulation thickness would.  In such 
cases, the independent variable was assigned the 

distribution, and then the dependent variable of 
interest was derived from this.    

RESULTS 
DSA Results 

The NICs for the BR and PH base case are shown in 
Figure 2.  The NICs are grouped by general input 
variable type as done in Table 1.  It can be seen that 
there are significant differences in the coefficients for 
the BR case as compared to the PH case.  In envelope 
terms, the BR base case is more sensitive to changes 
in all inputs except for floor U-value; for this 
coefficient, the reverse is true. 

The designed variables section shows the BR case to 
be particularly sensitive to heated temperature in 
comparison to the PH case.  This is as might be 
expected; the BR case has a lower level of fabric 
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Figure 2: NICs for the Building Regulation and Passivhaus base case models, split into input parameter groups. 

 

performance and so will lose more heat energy than 
the PH case.     

In comparison, the PH design is far more sensitive to 
changes in the class equipment load.  In occupancy 
terms, it can be seen that door opening has a non-
negligible effect for both models.  Class occupancy 
(in the form of hours of operation in this case) is also 
highly relevant to the PH design due to their 
increased proportion of total energy use. 

It can be seen that the primary factors to which final 
energy consumption is sensitive for the BR case are 
the heated temperature and envelope parameters.  
This is logical as the BR base case has a lower level 
of envelope performance.  As such, small changes in 
the envelope parameters can have a significant 
impact on the building’s energy performance.  The 
high sensitivity of the heated temperature follows 
from this; with a lower level of envelope 
performance, raising the heated temperature will 
have the two-pronged impact of requiring more 
energy to raise the temperature of the building and 
more energy to maintain that temperature.  The 
reverse is true of dropping the heated temperature.  
For the PH case, it can be seen that the envelope is of 
far less importance; the total energy consumption of 
the building is not very sensitive to the envelope 
parameters.  Rather, due to the lower total 
consumption of the base building, small power  

 

becomes a much more important variable.  This is 
evident by the relatively high sensitivity coefficients 
to class equipment load and equipment schedule.  
The energy consumption of the PH building is also 
shown to be far more sensitive to occupancy 
parameters than the BR case.  

 

 

Figure 3: Box-whisker plot of the results from the 
MCA analysis.  The box shows the 25th and 75th 
percentiles while the whiskers extend to the 5th and 
95th percentiles. 

Envelope Design Occupancy 
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MCA Results 

A box-whisker plot showing the form of the MCA 
data is shown in Figure 3.  In each case, 80 iterations 
of the base model were run.  This number was 
deemed sufficient to ensure accuracy (i.e. bring the 
normalised confidence interval down to a reasonable 
number).   

It can be seen that the BR base case has a higher 
mean (as is to be expected) and a larger standard 
deviation than the PH Base Case.  In practical terms, 
this means that the range of possible final energy 
consumptions of the BR base case is larger than that 
for the PH base case.   

CONCLUSION 
Bearing in mind that this is a single case study, it is 
possible to draw some interesting conclusions from 
this work.   

As the industry move towards designing and 
constructing more energy efficient buildings, the 
pivotal design features and parameters in the design 
stage are likely to change.  Where once reducing 
energy consumption required that designers focus on 
ensuring the building fabric and thermal performance 
of a building were as good as possible, when 
designing to higher standards of energy efficiency 
other factors have been shown in the case discussed 
in this paper to be of more relevance.  With a better 
building fabric, incremental changes in thermal 
performance of the building are shown to have a 
reduced impact on energy consumption.   

Instead, occupant behaviour and equipment load have 
been shown to be of much greater importance in 
these energy efficient designs.  This matches up 
relatively well with the popularly held belief that 
occupant behaviour is crucial when it comes to the 
energy consumption of a building; however it may be 
the case that it is the evolution of building standards 
that have brought occupant behaviour towards a 
greater dominance as an input variable. 

In terms of variability of energy consumption in the 
final design, it has been shown that for this school 
building that the energy consumption of the 2006 BR 
design is almost double that of a building designed to 
Passivhaus certification.  The standard deviation of 
the BR model’s energy use is over double that of the 
PH model when put through the MCA process, 
although it must be borne in mind that the range of 
the input variables was lower.  We can say that the 
PH model is a more robust design in the sense that 
the final energy consumption of the building model is 
less responsive to realistic variations in the input 
variables.  This implies that with a greater level of 
performance targeted, the variation in possible 
outcomes is reduced, which will be reassuring for 
designers aiming at achieving such buildings as any 
predictions made at design stage have an associated 
increase in accuracy.  In future design work, as 

building regulations tighten, it will be of increased 
value to focus on occupant effects and unregulated 
power usage. 

The next step in this project is an extension of the 
experimental process used in this paper to further 
school buildings in the UK.  By using buildings of 
varied architecture, it will be possible to investigate 
how case-specific the NIC and variability 
demonstrated there truly is.  In addition, it would be 
interesting to extend the study to other PIs – in 
particular a comfort indicator such as overheating 
hours. 

The production of statistical information on the likely 
energy consumption of a building has potential to be 
used effectively in the design process.  It can be 
envisioned that by varying the input variables, risk in 
terms of energy cost is quantifiable.  With the 
application of appropriate probability distributions, it 
would then be possible to assign an ‘energy risk’ to a 
project as design data becomes known to greater 
certainty.  It would be useful if thermal modelling 
software could do this automatically.  For example, it 
could vary the infiltration rate between predefined 
limits and output a range of possible performances 
with associated likelihoods. 

Once the building is constructed, its performance will 
be monitored over five years.  The resultant data will 
be used in a comparative study with the modelling 
work reported on here and completed in the interim.  
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