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ABSTRACT
The achievement of sustainable goals in the home
environment demands an optimized management of
electricity loads from the control side.
The present work proposes a control approach based
on an appropriate load definition, context awareness
regarding user behaviours and the persuasive capabili-
ties of pervasive systems. Beyond further benefits, the
main aim is focused on the improvement of the elas-
ticity of the electricity market.
In order to check the proposal, some simulations com-
paring common users and “optimized” users are per-
formed. The simulations deploy statistical information
from Austria in 2008 and conclude with hypothetical
savings for future homes with the proposed enhance-
ments.

INTRODUCTION
A well-known characteristic of the current electric-
ity market is the low elasticity of its short run prices
(Yusta and Domı́nguez, 2002). This is mainly due to
the fact that end consumers hardly react against peaks
of demand, in spite of the fact that their consumption
habits are largely causing imbalance. Most electric-
ity markets do not consider consumers as active el-
ements capable of adopting optimized strategies and
decisions but simply as loads to be continuously sup-
plied (Kirschen, 2003).
From the point of view of the load side control (or
more exactly from a home control’s scope), the ob-
jectives dealing with electricity loads remain: reduc-
ing energy demand and costs while minimizing CO2

emissions (as a whole, and considering the entire chain
from power generators to end consumers). So, home
control systems are expected to work in three levels to
reach and optimize the exposed aims:
• Reducing energy consumption.
• Displacing consumption from peak to valley

hours, i.e., tending to flatten the consumption.
This is reached by means of load shifting ac-
cording to demand or price forecasting (Kirschen
et al., 2000).
• Giving real-time information to users about en-

ergy prices and demand evolution (Zedan et al.,
2010), advising and instructing them to acquire
optimized energy usage habits.

Indeed, flattening the curve of demand and avoiding

high peaks are two claimed solutions whose benefits
have been calculated in huge amounts of energy and
economic savings (Faruqui et al., 2007).
The present work explores these aspects and suggests
application proposals and control strategies based on
a suitable load definition, context awareness regarding
users habits and load usage, and the exploitation of the
persuasive capabilities of technology.
Moreover, a home load controller that fits the approach
is proposed. It is designed as a flexible and indepen-
dent agent that can run within a multi-agent framework
or under the supervision of a comprehensive home
control system. Thus the present work may be em-
braced under the coverage of a top-down and holistic
smart home control approach (Reinisch et al., 2011).
A set of simulations performed with MATLAB and
Simulink tools supports some of the exposed propos-
als, comparing the consumptions of common or repre-
sentative homes with optimized ones. The simulations
have been performed with real data about how electric-
ity is consumed and distributed in devices and equip-
ments in Austria (2008). Also, real data about electric-
ity spot prices and demand curves for the same period
in Austria/Germany have been deployed to develop
representative home models. The selected models rep-
resent diverse sorts of homes based on the number of
inhabitants (dwellings with 1, 2, 3, and 4 or more resi-
dents), the dwelling size (below 90m2, between 90m2

and 130m2 and over 130m2), and flat/house differen-
tiation (one or two family house or flats).
For the evaluation, data about spot prices are also used
as benchmarks to assess potential benefits obtained by
means of the optimized control, as well as other perfor-
mance indexes based on consumption, demand flatten-
ing and current electricity tariffs for end users. Thus,
the results of the simulations show potential savings
for representative homes where the described propos-
als are applied.

PROPOSED APPROACH
The proposed approach consists of a set of simple and
non-expensive applications for the electrical load man-
agement whose real implementation results in impor-
tant savings. The applications are:
• Definition of loads for control purposes.
• Control of standby loads based on occupancy and

control of shiftable loads.

Proceedings of Building Simulation 2011: 
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November. 

- 957 -



• Usage of an informative panel.

Load definition
The load definition is necessary to identify potential
control solutions as, by means of a good recognition
of energy loads, the system gets more context aware-
ness. It is not mandatory that all the electrical loads
are recognized by the smart control, but the more in-
formation the system has, the better it can react.
Keeping always the flexibility and autonomy of de-
vices, dedicated hardware paves the way for an easy
integration of old and new appliances (Kim et al.,
2007). Here, the integration of wireless technologies
into existing infrastructure (e.g., Zigbee) or usage of
dynamic networking technologies for service discov-
ery and usage (e.g., DPWS, UPnP) fits perfectly the
proposed approach.
Indeed the load definition justifies the intelligent mod-
eling as knowledge base or ontology, that allows the
definition of sound top-down control approaches. The
integration of an ontological description of energy
loads as well as energy supply, as described in (Kofler
et al., 2011), can be seen as profitable in order to model
the dynamic environment in which a high amount of
actuations can be expected. Such a formal categoriza-
tion can be seen as basic form of intelligence, support-
ing semantic inference already on the level of informa-
tion representation.
The load definition involves classification and descrip-
tion. A possible and basic load classification is given
in Table 1, that can be more extensive depending on
the control applications and requirements (e.g., if sup-
porting control for distribution generation systems or
smart grids is considered, new load types can be nec-
essary). The description entails load types but it is
also open to other parameters (if applicable) like status
(on/off), nominal power, supply time, etc.
It is important to remark that load types in Table 1 are
not exclusive labels, a load can be defined as “manda-
tory” and “standby” because it shows both behaviours
depending on the time.

Control strategies
Control strategies can be designed based on the load
definition. The next two examples are explored and
simulated here.
–Control of standby loads based on occupancy.
Nowadays, the standby power consumption is respon-
sible for 5-10% of total electricity use in most homes
(International Energy Agency, 2007). A simple oper-
ation is to switch off loads in standby when there are
no people at home or during night.
It is easily implemented with home occupancy detec-
tion – whether they be simple or use advanced meth-
ods (Dodier et al., 2006) – and allowing to bring the
house to a “sleeping mode”. On the other hand, if users
do not want some loads to be switched off when they
are absent (or sleeping), these loads are not defined as

standby and the system assumes their consumption as
mandatory.
–Control of shiftable loads.
There are some electricity loads that users do not need
to supply immediately and can be shifted to periods
when electricity is cheaper and less demanding.
In those cases smart controllers find the best moments
to supply shiftable loads according to context data
(e.g., load definitions, predicted consumptions, the
next day electricity prices, strategies and some addi-
tional constraints).
The schema of the proposed controller prototype, in-
puts, outputs and communication with the Home Au-
tomation System is shown in Figure 1.

Figure 1: Schema of the shiftable load controller.

The next assumptions are considered:
• The electricity spot price values are available 24h

in advance through remote servers. In case of
linking failures or more day prediction needed,
a module for price prognosis can be used.

• The supply period for each shiftable load is lim-
ited to 24 hours. It states the requirement of sup-
plying shiftable loads within next day. Otherwise,
for wider periods, a module for energy price pre-
diction is necessary.

• The demand curve for the next day is provided
by an electricity demand prediction module (Al-
Alawi and Islam, 1996).

As far as the predictive modules for demand (and for
electricity prices) are concerned, research has obtained
successful results deploying fuzzy and neural network
clustering in similar scenarios. Clustering tools are
remarkable to discover patterns based on behaviours
and optimize the performance of predictive controllers
(Iglesias Vázquez and Kastner, 2011).
The flowchart of the process followed for every
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Table 1: Load definition.
Type Definition Included devices Control action
Stand-by Devices that have a consumption in Cooker, oven, white goods, Open/close electrical supply

standby mode and remain in standby office equipment, entertainment depending on occupancy (or
when people are absent. (TV, DVD, etc.). in sleeping periods).

Permanent Devices that are continuously switched on Fridge, freezer. No control (green devices
with a quite stable energy consumption. or specific solutions).

Shiftable Loads that can be shifted in time. Washing machine, dishwasher, Move the load starting to
(or movable, storage heater and water heater, a best moment for the
deferrable) pumps, etc. energy system.
Priority Normal loads that must be supplied Lighting, communication devices, No control (green devices
(or arbitrary, when it is required for their normal cooker, oven, dryer, white goods, or specific solutions).
mandatory) running. office equipment, entertainment

electronics, battery chargers,
ventilation, cooling devices, etc.

shiftable load is shown in Figure 2. The process is
triggered every time users set a shiftable load in wait-
ing for scheduling. It works as follows:

Figure 2: Shiftable load management flowchart.

1. The controller calculates an objective function
d[n] for the “shiftable load i” Mi (with p as the
supply period and r as the running time).

2. The objective function states the best point for
adding a new load (centered there).

The available objective functions are:

d[n] = τ [n] ∗Mi[n] (1)

d[n] = φ[n] ∗Mi[n] (2)

d[n] = (τ [n]φ[n]) ∗Mi[n] (3)

where ∗marks convolution, φ[n] refers to the next spot
electricity prices curve, and τ [n] is the predicted de-
mand. (1) pursues to maximize the flattening, (2) the
cost savings, and (3) remains as a balanced combina-
tion of both.

The existence of two aims in the shifting control is due
to the fact that, although the ideal situation tends to
consider that all users should have a balanced demand
curve, the possibility of counteracting bad widespread
tendencies or profit from cheaper moments is obvi-
ously satisfactory. It draws a reality where energy re-
tailers or suppliers can inform and automatically con-
figure linked homes with the most suitable strategy (of
course with the users’ agreement or/and within an spe-
cial contract/charging).

Informative Panel
The energy and comfort optimization in smart home
control entail a high and complex casuistry with a high
dependence on users’ habits. A promising approach is
to review the role of users and consider them as ac-
tive actors integrated into control. On this basis, the
design of the Informative Panel (IP) explores the idea
of profiting the persuasive and pervasive capabilities
of technology in order to empower people to improve
their energy behaviour at home (Intille, 2002). With-
out being annoying, a well-designed system is able to
show the right information at precisely the right time
which makes users more aware about the current en-
ergy reality and their own energy behaviour.
The improvements in behaviours are expected as a
consequence of having at users’ disposal usable infor-
mation about the next issues:
• Suitability for the energy consumption.

Using real time information about spot prices, the
system shows if the current hour and day are good
or bad for energy consumption. Tendencies are
shown as well and assessments for the next days
can be fairly forecast.

• Self-consumption evolution.
Users can get motivation comparing the lat-
est consumption with consumptions in previous
weeks, months, season and years. Indirectly, they
evaluate their own habits and are able to find
non sustainable routines and devices that are not
working properly.

• Comparison with benchmarks.
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Analogously, benchmarks facilitated and updated
by linked repositories, services and servers allow
users to check their energy habits and compare
them with the normal rates in their neighbour-
hood, city or country (e.g., to know the expected
consumption per inhabitant or square meter).
• Energy advices and recommendations.

Customized advices or general recommendations
and news about energy, health and lifestyle can
be provided.

An informative panel perfectly fits the load definition
and the proposed control strategies. E.g., the load dis-
placement can be executed by the direct action of the
automated controller or by the indirect action of the
IP (through a well-informed user). Due to the psy-
chological and subjective effect of the IP application,
simulations can hardly consider it in their tests, but its
addition in a real scenario would increase the potential
benefits that are shown below (see “Results” Section).
On the other hand, a continuous interaction between
users and the informative panel is not expected. As
long as energy status has certain cadences in time,
users early abstract the main tendencies and get a ba-
sic awareness about the best moments for the energy
consumption and/or devices that use a big amount of
energy. It is intended that users know and control the
energy or electricity running at home. In fact, the
“teaching” power of the smart system consists of an
underlying supervision of the different energy status,
a clear and easy-to-use interface, and an always quick
and available source of outstanding information.
Together with other applications for the IP, energy sav-
ings and comfort are optimized as long as users get
correct feedbacks to improve their own home experi-
ence. For example, using the example proposed by
Intille, informing users about the convenience of open-
ing or closing windows to balance indoor and out-
door thermal conditions (Intille, 2002) would lead us
to better energy and thermal comfort performances. In
short, IP applications are designed to allow a proac-
tive user management that improves the overall users’
acceptance and satisfaction concerning the automated
environment at home.
The design of the IP must be carefully carried out, pay-
ing attention to usability and ergonomics and focus-
ing on adaptive and self-checking capabilities. It must
be refined progressively by usability studies. Figure 3
shows an example of IP design for the main screen or
screen by default.

SIMULATIONS
Objectives and methodology
The simulations utilize real data published by Statistik
Austria (Wegscheider-Pichler, 2009). The documen-
tation belongs to the year 2008 and informs about the
average (mean and median) consumption distributed
by devices in Austrian homes. Data are arranged ac-

Figure 3: Informative Panel for the energy informa-
tion. Example of the main screen.

cording to seasons, size of dwellings, sort of dwellings
and number of inhabitants. Considering these data,
some representative Austrian home models have been
abstracted. In the same way, real electricity spot prices
from EXAA (Energy Exchange Austria) for the same
year are deployed as control inputs.
Under this perspective, the simulations evaluate two
modes for each model: a normal mode (typical and di-
rectly abstracted from the statistical data) and an opti-
mized mode. The optimized mode adds control based
on load definition. It takes the statistical data as a start-
ing point as well, but saves or moves loads according
to the possibilities of each model.
Comparisons between normal and optimized per-
formances state hypothetical savings for each
case/model.

Models and data adjustments
The device consumption facilitated by the statistical
data is classified according to the load definition (Ta-
ble 2). Median assessments are selected for the model
design considering the dispersion in the whole popu-
lation and the fact that the data is not symmetrically
distributed.
Table 3 represents how the electricity has been used
in Austria in 2008 for dwellings where only one per-
son lives, according to the load definition. The same
table has been calculated for dwellings with 2, 3, and
4 or more residents; dwellings below 90m2, between
90m2 and 130m2 and over 130m2; and differentiating
between one or two family houses and flats. The total
number of polled dwellings is 3.548.532.

Occupancy schedules
Occupancy schedules have been designed for each
model. The designed schedules do not try to be rep-
resentative for the whole Austrian population, they are
just suggesting possible users. In any case, they have
been modeled following the feedbacks from polled in-
habitants, trying to abstract common and extended oc-
cupancy habits.
The importance of schedules does not only remain in
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Table 2: Electricity division from statistical data and
load classification.

Device (consumption) load type
Stand-by cooker, oven standby
Stand-by office standby
Stand by white goods standby
Stand-by entertainment standby
Fridge permanent
Freezer permanent
Water heater shiftable
Washing machine shiftable
Storage heater shiftable
Dishwasher shiftable
Communication devices priority
Dryer priority
Office equipment priority
Battery chargers priority
Lighting priority
Cooker, oven priority
White goods priority
Entertainment electronics priority
Elec. HVAC priority
Circulator pumps priority

Table 3: Representative daily electricity consumption:
1 inhabitant dwelling.

Load type S (kWh) W (kWh)
Stand-by 0.42 0.42
Permanent 1.50 1.50
Shiftable 0.52 0.49
Priority 2.61 4.57
TOTAL (per day) 5.05 6.98

Participants: 1.222.352 Austrian homes (2008)

the effect of the standby control. Note that dwellings
owned by singles or few people are usually unoccu-
pied a considerable part of the time. As far as the de-
sign of model users is concerned, it means that the es-
timated average daily consumption is not fairly shared
in time but concentrated in few hours. Considering this
fact is mandatory to obtain realistic simulations.

Curves of spot prices
The curves of electricity spot prices are useful for the
simulations for three reasons:

1. Model design.
To fix the shape of typical demand curves of nor-
mal users each season. Over this shape, the sta-
tistical rates and the schedules are superimposed.

2. Control input.
Spot prices are known one day ahead, thus they
are utilized to optimize the shifting load control.

3. Evaluation metric.
Spot prices establish instantaneous real costs of
electricity. Likewise, daily curves are deployed.

Figure 4 and Figure 5 show the variability of spot
prices throughout the day (hour prices) in different
seasons and throughout the year (average daily prices).

Thus, the electricity market draws a changeable sce-
nario with good and bad times for the consumption.

Figure 4: Electricity spot prices. Hourly averages for
cold and warm seasons in Austria (2008).

Figure 5: Seasonality. Electricity spot prices. Daily
averages in Austria (2008).

Steps for obtaining the dwelling/user model
The design of models for the simulations follows the
next steps:

1. Schedule function (for each model).
-H[m,n] = Hm,n with Hm,n ∈ N{0, 1}, where
m is the present day and n is the current hour. 0
means absence and 1 presence.

2. Normalized typical consumption.
-C[n] = Cn, where Cn ∈ R[0, 1]. This func-
tion is the same for all the models which is ob-
tained from the normalized average of the de-
mand curves in 2008. There are two functions:
winter and summer.

3. Model consumption functions (for each model).

C′[m,n] = Hm,nCn (4)

In (4) the consumption curve is customized for
the selected model schedule.

C′′[m,n] = C′[m,n]
ĈMN∑
n

C[n]
(5)

where Ĉ is the average total daily consumption
obtained from statistics for the selected model (in
kWh). N is the total simulated hours, M is the
total simulated days. In (5) the level of the con-
sumption curve is adjusted to the statistical infor-
mation of the selected model.
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-S[m,n] = stby,∀(m,n) is the function for
standby loads, where stby is a constant for the
average standby hourly consumption (in kWh).
-P [m,n] = permt,∀(m,n) is the function for
permanent loads, where permt is a constant that
represents the permanent consumption (in kWh).
-Mj [m,n] are the functions for shiftable loads.
There is one for each different shiftable load in
each model. They are defined considering the
load power (powj), the running time (runtj), the
supply period (suppj), certain time constraints
and the peaks of demand in C[n].

Mj [m,n] =

{
powj , ∀(m,n) ∈ {(a, b)j , ..., (p, q)j}
0, ∀(m,n) /∈ {(a, b)j , ..., (p, q)j}

M̂j is a constant that represents the daily con-
sumption of the shiftable load j (in kWh).

M̂j =
(powj ∗ runtj)

suppj
(6)

G[m,n] = C′′m,n + Sm,n + Pm,n (7)

Ĥ =

∑
m,n

H[m,n]

MN
(8)

-K[m,n] distributes the consumption for standby
and permanent loads considering the schedule
and keeping the average level in the statistics.

K[m,n] =

{
G[m,n], ∀Hm,n = 0
G[m,n]− (Sm,n+

Pm,n +
∑

j
M̂j)Ĥ, ∀Hm,n = 1

(9)

-A[m,n] is the function for priority loads.

A[m,n] = K[m,n]− (S[m,n] + P [m,n]) (10)

Finally, the function for total consumptions re-
sults in:

T [m,n] = A[m,n]+S[m,n]+P [m,n]+
∑
j

Mj [m,n]

(11)

where
- T [m,n], total consumption function.
- A[m,n], priority loads function.
- S[m,n], stand-by loads function.
- P [m,n], permanent loads function.
- Mj [m,n], shiftable j-load function.

4. Shiftable loads for normal users:
Mj [m,n] are fixed according to the schedule
H[m,n] fitting with the typical consumption
curve C[n], it is within the hours where the con-
sumption is maximum based on statistical data.

5. Shiftable loads for ”optimized” users:
The controller places shiftable loads based on the
selected strategy. In the simulations, the pre-
dicted demand is calculated as follows:

τd[n] =
1

d− 1

d−1∑
i=1

K[i, n] +

l∑
k=1

Mk[d, n] (12)

where d marks the day to be predicted and l the
total of shiftable loads that have been already pro-
grammed for the next day. Mj [d, n] = 0,∀n
before the first shiftable load have been pro-
grammed. In short, it means that the prediction
takes into account the average of the previous
days consumption without considering shiftable
loads. The already programmed shiftable loads
for tomorrow are added afterwards.
This way to predict consumption is quite defec-
tive for real applications but easy to implement
and suitable enough for simulations. As we have
referred above (see “Control strategies” Section),
real applications require accurate options for the
demand prediction based on user behaviours.

Applied strategies and control cases
Simulations have been carried out combining the next
control options and comparing the results (with a total
of 8 performances: 1, 2, 3, 4, 5, 2&3, 2&4, 2&5).

1. No control.
2. Stand-by control1.
3. Shiftable load control based on flattening.
4. Shiftable load control based on spot prices.
5. Shiftable load control based on flattening and

spot prices.
Figure 6 shows an example of different demand curves
for an arbitrary day of the same model depending on
the applied control strategy: no control (1), flattening
(3) and spot prices/minimize EUR (4).

Figure 6: Example of daily consumption curves de-
pending on the control strategy.

It is obvious that standby control savings (based only
on occupancy) are very easy to calculate and it does
not require any simulation. Furthermore, it depends
directly on the schedule and habits of the respective
user/family. In any case, it has been simulated in order
to show the improvements when strategies based on
occupancy and load shifting are applied together.

1The sleeping mode option is obviated in simulations due to the
uncertainties that its modeling involves.
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Comparison indexes and percentages of savings
In order to compare strategies and evaluate the pro-
posed approaches, the next performance indexes have
been utilized for the simulations:
• Td. Average daily consumption in kWh.

Td =

∑MN

i=1
Ti

M
(13)

Ti is the consumption in kWh in the hour i.
• ES. Average daily Energy Savings in kWh.

ES = Td − T ′d (14)

The prime mark denotes that standby control is
being applied.
• SP . Average daily electricity cost (EUR) based

on Spot Prices.

SP =

∑MN

i=1
Tiφi

M
(15)

φi is the spot price for the hour i in EUR/kWh.
• NT . Average daily electricity cost (EUR) based

on real Austrian electricity Tariff with Night-time
mode contracted (Wien Energie).

NT =

∑MN

i=1
Tiρi

M
(16)

ρi is the tariff price for the hour i in EUR/kWh.2

• UT . Average daily electricity cost (EUR)
based on Usual normal Austrian electricity Tar-
iffs (Wien Energie).

UT = αTd (17)

α is the constant price per hour in EUR/kWh.3

• FI . Index of Flattening. Calculated simply with
the standard deviation of the consumption.

FI =

√√√√ B

MN

MN∑
i=1

(Ti − µ)2 (18)

µ is the mean value of T . B is a constant for the
result customization.

Test features
Tests consist of a 30 simulated days in winter and fur-
ther 30 days in summer. For winter season the selected
month is January (and some days of February) and
July-August for the summer (both in 2008).
For each of the nine models, eight control perfor-
mances are applied. Therefore, a total of 144 exe-
cutions have been fulfilled, analyzing 72 hypothetical
users for two months (cold/warm) periods.

DISCUSSION AND RESULT ANALYSIS
Due to the lack of space, simulation results must be
summarized in order to abstract some important con-
clusions. Tables 4, 5, 6 summarize the different per-
formances focusing in four aspects or comparisons:

2We only consider the energy price (without additional charges
or base prices).

3Idem footnote 1.

1. Savings with market prices instead of normal
rates and both control strategies.
The percentage of savings (EUR) if we compare
the current price of energy that normal users pay
in a flat rate with the price that optimized users
would pay if they take part directly in the elec-
tricity market and apply both control strategies.

2. Savings with both control strategies.
The percentage of savings (EUR) if normal users
and users with both control options (standby and
shifting) are compared using the metric estab-
lished by the spot prices curve.

3. Savings with shifting control (spot prices).
The percentage of savings (EUR) if normal users
and users with shifting control (spot prices) are
compared using the spot prices metric.

4. Improvement with flattening control.
The percentage of improvement (in the flattening
index) if normal users and users with load shifting
control (flattening) are compared using the metric
established by the flattening index.

Table 6: Final average results
winter summer

1. Normal rates vs spot prices 45.11% 33.67%
2. Both control strategies 12.35% 14.24%
3. Spot prices strategy 11.07% 12.34%
4. Flattening 28.91% 21.01%

The four assessments inform about potential improve-
ments when some of the proposed solutions are ap-
plied. If we consider all the enhancements together
(results, case 1), the benefits keep quite stable regard-
less of the dwelling type, but higher in winter than
in summer. On the other side, shifting control seems
to increase its benefits with bigger and more crowded
dwellings, whereas standby control gets importance
with smaller and single dwellings.
We take spot prices as a metric of the real cost of elec-
tricity in essence. It means that economic savings are
virtual as soon as users keep paying flat rates whether
they adopt smart energy behaviours or not.
In any case, the results are encouraging and entail ben-
efits for all the involved actors, from end users to en-
ergy suppliers, who have claimed repeatedly the high
expenses derived from the demand curve imbalance
(Red Eléctrica de España, 2010).
In part, inflated flat rates are due to the fact that energy
retailers have to balance and cover peaks and uncer-
tainties. Even if end users could not profit from the
spot price curve for billing, with an active and spread
load shifting control, electricity costs would have ten-
dency to go down (or lower increases).

CONCLUSION
It is very difficult to measure what would be the real
effect of the proposed approach. The simulations re-
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Table 4: Summarized results for winter
1person 2persons 3persons 4persons small medium large house flat

1 44.16% 44.91% 46.32% 46.63% 43.59% 45.79% 44.17% 43.88% 46.56%
2 7.98% 13.01% 13.95% 15.27% 8.87% 12.49% 13.38% 12.75% 13.45%
3 5.18% 12.21% 12.08% 14.13% 6.84% 11.44% 13.15% 12.53% 12.04%
4 15.17% 22.05% 34.47% 36.68% 3.98% 33.67% 41.00% 42.24% 30.92%

Table 5: Summarized results for summer
1person 2persons 3persons 4persons small medium large house flat

1 33.70% 34.32% 34.37% 34.95% 34.58% 33.14% 30.90% 29.99% 37.06%
2 10.02% 14.64% 14.69% 15.97% 15.55% 13.97% 12.80% 11.40% 19.17%
3 5.84% 13.33% 11.87% 14.24% 12.51% 12.39% 12.42% 11.06% 17.35%
4 12.66% 15.58% 27.22% 26.52% 2.75% 23.11% 26.28% 28.30% 26.63%

sults draw hypothetical benefits under a static scenario
(Austria, 2008) that would change if the proposals be-
come reality in a wide spread.
In spite of this fact, the benefits are obvious and the en-
ergy environment must boost the home-side load con-
trol support in order to improve the sustainability and
elasticity of the electricity management and its market.
The ideal scenario introduced in this work introduces
a smart control system that fulfills the next three as-
pects: (a) an automated management of energy loads
based on a load definition (ontology) and awareness of
other home applications and user habits; (b) a useful
connection with other actors (retailers, suppliers, other
smart homes, repositories, etc.) that allows a fair and
cooperative energy management; and (c) informative
capabilities that bring energy feedbacks within users’
reach and increase user awareness.
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