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ABSTRACT 

This paper presents a novel methodology that aims at 

optimising energy flows and HVAC control in Sport 

and Recreation Buildings. The proposed 

methodology integrates the use of building 

simulation and artificial neural networks to support 

better operation of Sport facilities, which are unique 

in terms of variable energy demand profiles and 

complex environmental conditions. The overall 

methodology is presented in conjunction with a 

demonstration case study. A procedure for swimming 

pool simulation is also tested within the case study 

work. 

INTRODUCTION 

Buildings consume 40% of Europe’s total energy 

consumption (EUROSTAT 2008), about 8% of this 

energy is consumed by sport facilities (Basañez-

Unanue & et al. 2008). Sport facilities are a specific 

building type that possesses unique features such as: 

� variable energy demand profiles (timing and 

peaks) and usage patterns (long periods of 

low use and then short periods of high use 

sporting event); 

� complex environmental conditions (comfort 

and ventilation requirements); 

� facility functional characteristics (e.g. 

swimming pools, indoor courts, saunas, and 

the like) and open spaces (multiple 

buildings, complexes, parking areas, 

lighting, etc.). 

With the Energy Performance Building Directive 

(EPBD) (European Union 2002), Europe has 

introduced a methodology to assess building energy 

consumption as a static measure (e.g. the energy 

consumption of the building independent of the 

behaviours of the inhabitants or operational factors). 

However, building operation performance, especially 

in sport facilities, significantly depends on the 

dynamic behaviour of building occupants, internal 

and external environmental conditions and the energy 

systems servicing these buildings. Building/System 

operation strategy is normally decided at design stage 

according to standard practice and not building 

specific values and schedules. Building operation 

strategies are seldom modified to account for the 

dynamic nature of building operation. Moreover, 

Heating Ventilation and Air Conditioning (HVAC) 

system performance degrades over time and requires 

maintenance, continuous adjustments and tuning of 

the control parameters. Building Management 

Systems (BMS) are used primarily for automated 

control purposes and typically operate on the basis of 

schedules and set points specified at design and 

implemented at commissioning. Although BMS 

provide the functionality to manually adjust 

schedules and set points during building operation, 

this is not common practice (Costa et al. 2009).  

Underpinned by advances in technology, the EPBD 

recast (which recommends intelligent metering 

solutions), and a decrease in installation costs (Jang 

et al. 2008), sensors, sub-metering, and smart 

metering strategies are being championed as potential 

new technology strategies and technology solutions . 

Although these strategies are providing building 

managers with increased information about their 

facilities, there is still a lack of knowledge and 

adequate tools to support the facility manager in 

making the best energy management decisions by 

manually or automatically changing building 

operation strategies according to dynamic building 

usage or testing the effects of different operation 

strategies on building/system performance (IEA 

2005). In sport facilities, it is expected that dynamic 

adjustment of the operational behaviour of HVAC 

systems would result in significant energy savings 

(Messervey & et al. 2011).  

Artificial Neural Networks (ANN) have been applied 

to energy systems in order to improve control and 

performances (Kalogirou 2001), (Sterling Garay & 

Sanz Garcia 2010), however they have not yet been 

widely included in commercial products. Published 

studies (Artuso & Santiangeli 2008), (Trianti-Stourna 

et al. 1998), focus on energy solutions for sport 

facilities utilising energy simulation, however they 

do not address simulation assisted building and 

system operation. 

SportE2 is an ongoing European research project 

(SportE2 2010), which aims at managing and 
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optimising energy flows in Sport and Recreation 

Buildings. SportE
2
 promotes the development of a 

new scalable and modular technology based on four 

different modules: smart metering (SportE
2
 How), 

integrated control (SportE
2
 When), optimal decision 

making (SportE
2
 Why), and multi-facility 

management (SportE2 Where). This paper focuses 

mostly on the “Why” module which has the premise 

that given smart metering data and the ability to 

control facility energy flows, it is then possible to 

determine and execute optimal energy management 

decisions. Over time, and as data is collected, the 

SportE
2
 Why Module will learn how a facility is 

operating, why current practices are not optimal, and 

what control actions will lead to energy savings, 

focusing on energy prices, weather forecasting, and 

the planned facility usage. To achieve this goal, 

SportE2 Why will integrate both energy simulation 

tools and ANN in a commercial product targeted for 

sport facilities. 

This paper presents the initial work on the SportE
2
 

Why Module in investigating how energy simulation 

and ANNs can support an enhanced operation of 

sport facilities with a particular focus on their energy 

and comfort performance. An novel study 

incorporating a swimming pool model in EnergyPlus 

and a coupled artificial neural network is also 

presented as an early stage demonstration of the 

proposed methodology. 

PROPOSED METHODOLOGY 

Overview  

The proposed methodology develops, tests and 

implements optimal operation strategies in sport 

facilities using energy simulation and artificial neural 

networks. The initial test of possible optimisation 

scenarios is carried out in "physical" energy 

simulation models (e.g. EnergyPlus or others) in 

order to identify the energy/comfort impact of the 

suggested changes in the operational strategies. 

These simulation models provide a better 

understating of the problem and of the relationship 

between the different parameters involved in the 

simulation. The high resolution data set generated by 

the physical models is then used to train Artificial 

Neural Networks that are then used for optimisation 

purposes. The goal is to optimise customised HVAC 

systems operation, depending on expect occupancy 

and weather conditions focusing in particular on two 

different types of optimisation: 

� Optimisation of indoor environmental schedules 

(mainly air temperature, and possibly air RH, 

pool water temperature depending on available 

controllers); 

� Optimisation of HVAC control (e.g. air flow 

rate of the Air Handling Unit and water flow 

rate and/or water temperature in the AHU 

coils). 

 

Figure 1 - SportE
2
 WHY methodology 
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Energy consumption and comfort conditions during 

occupied hours is measured and considered for the 

optimisation of the indoor environmental schedules. 

Whereas for the optimisation of the HVAC control, 

the objective function will depend on variation 

between set points and actual values of the controlled 

environmental variables (e.g. avoid unnecessary 

heating/cooling and overshoots of the air temperature 

in conditioned spaces). 

The proposed methodology) incorporates the use of 

building energy simulation (physical model) to 

estimate the impact of different operation strategies 

on both energy consumption and user comfort, in 

order to optimise indoor environmental set point 

schedules. The operation strategies are defined by 

optimisation scenarios and tested in the model 

environment. The test activities facilitate the 

standardisation of such tests for subsequent use in the 

real facility (e.g. test of the response time of the 

indoor temperature for given outdoor air temperature, 

solar radiation, zone occupancy and system 

operation, etc.).  

The datasets generated during the optimisation tests 

are also used to train ANN based controllers, which 

are used in the optimisation of the HVAC system 

operation. In the first phase the controller is trained 

by the virtual data set from the physical model. In the 

second phase the ANN based controller is tuned with 

a real data set measured in the facility. Once the 

ANN controller is trained and tuned it can be used 

for optimal HVAC operation and connected directly 

to the actuator for online control in the real system. 

The next sections describe in greater detail the main 

components of the proposed methodology: physical 

model, optimisation scenarios and ANN based 

controller. 

A physical Building Energy Simulation (BES) 

model allows the virtual simulation of building and 

HVAC system behaviour in given internal and 

external conditions. A whole building energy 

simulation tool is used to model the energy flows in a 

building. Modelling the performance of a building 

and its HVAC system allows a better understanding 

and optimisation of the building and system design 

and operation. Several simulation tools, such as 

EnergyPlus, TRNSYS and ESP-r are available for 

this purpose and include many innovative simulation 

capabilities. However, the main issue with today's 

building simulation programs is that they do not 

address R&D needs in respect of HVAC systems 

operation because they oversimplify controls:  

HVAC models are quasi steady-state and “Control” 

is based on “requested energy” not on actual 

feedback control (Wetter & Haves 2008). In order to 

overcome the control issue in this work, after an 

initial adoption of EnergyPlus for modelling the 

building and the HVAC system, it is intended to use 

the Lawrence Berkeley Laboratory (LBL) Building 

Control Virtual Test Bed (BCVTB) to couple 

EnergyPlus for the building model to the LBL open-

source building library which includes component 

models for HVAC and control systems (LBL 2011). 

This library is based on Modelica, an equation-based 

object oriented language. The library is currently 

developed to support computational science and 

engineering for innovative building energy and 

control systems. Also the integration with Matlab-

Simulink (available within the BCVTB) will be 

considered for control purposes. 

Another issue with whole building energy simulation 

models is that they require high computational power 

and therefore, when many simulations are required 

for optimisation purposes, the simulation time 

becomes a constraint. In order to address this 

problem the proposed methodology intends to utilise 

ANN models to learn and replicate the physical 

models as described in the next section. 

 

Figure 2 - Physical model overview 

Initial optimisation scenarios are used to understand 

the building behaviour under different conditions and 

indentify parameters and schedules that can be 

optimised. This process leads to a definition of tests 

that will be carried out at the facility in order to 

identify facility specific characteristics of the 

considered variables and facilitate the tuning process 

of the ANN based controller. Two example of 

optimisation scenarios are:  

� to understand the energy and comfort impact of 

changes in set point schedules (e.g. air 

temperature); 

� to identify the response time of the system to 

the inputs considered (e.g. occupancy, outdoor 

air temperature and solar radiation). 

The proposed ANN based controller consists of an 

ANN model agent and an optimisation algorithm. 

The ANN model agent is trained to replicate and 

substitute the physical model and will be used to 

predict future behaviours of the environmental 

conditions in the zone due to the application of 

different control strategies. The optimization 

algorithm uses the results from the ANN model agent 

to calculate, within a certain future time horizon, the 

optimal control signal to be applied to the system. 

An ANN model is preferred over a physical model, 

because after training has been made, the neural 

networks can simulate the same physical model 

without the necessity of solving complex differential 
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equations but instead performing simpler arithmetic 

calculations thus improving computational cost of the 

model and the time required to compute any result. 

Nevertheless, a physical model or a real dataset is 

needed for off-line training purposes of the ANN 

model at the early stage of the modelling process. For 

training purposes the choice is between the real 

dataset and the physical model. The latter is preferred 

due to the possibility to train the network to 

efficiently respond to operation of the system outside 

the normal behaviour boundaries which can be easily 

simulated in the model environment and not always 

tested in the real systems. However at later stages 

and since the development of a building model might 

not always be an easy task, available measured data 

will be considered as a possible source for off-line 

training. ANN models have been used to simulate 

building infrastructures, calculation of thermal 

comfort index (Atthajariyakul & Leephakpreeda 

2005), prediction of optimal start/stop time for 

HVAC systems, etc. As will be explained later, the 

first approach taken for this stage of the research is to 

use the ANN to improve the set-back schedule of the 

facility.  

ANN based controllers may be preferred over the 

classic Proportional, Integral, Derivative (PID) 

controllers for different reasons. In particular because 

PID controllers are typically reactive controllers, and 

are designed on the basis of a linearization of the 

model, while ANN controllers do not need any 

linearization of the model and can be 

active/predictive controllers giving the system the 

possibility to start reacting/optimising before the 

actual variation in the conditions occurs. This feature 

can lead to a considerable reduction in energy 

consumption in HVAC systems through the 

elimination of oscillations during transient periods.  

Since the physical models used to train the ANN are 

always simplified versions of the reality, a fine 

tuning of the ANN with a measured dataset (Real 

dataset) is required. As a second step, it is also 

proposed to implement a reinforcement learning 

algorithm in the ANN based controller to provide an 

online continuous adaptation capacity to the ANN so 

it never stops improving its performance (Coulom 

2002). 

 

Figure 3 - ANN based controller overview 

EXPERIMENT 

In order to test and prove the effectiveness of the 

proposed methodology an initial application test has 

been carried out with a sport facility at the National 

University of Ireland, Galway (NUIG). The sport 

facility (Ionaid Spóirt) is owned by the university and 

run the by Kingfisher Club, a private company that 

specialises in sport facilities management. The sport 

facility comprises a gross floor area of approximately 

8,000 m
2
 distributed over two stories which includes 

several functional areas such as: a 25m swimming 

pool, sport halls, gym, studios and several courts. 

 

Figure 4 - NUIG swimming pool 

The experiment presented in this paper focuses on 

the air temperature control of the swimming pool hall 

of the facility, which has an extension of 701.52 m
2
. 

Two identical Air Handling Units (AHUs) constantly 

keep the air temperature at 30°C in the swimming 

pool hall. Each AHU comprises: supply and return 

fan (6.6 m
3
/s), frost coil (73 kW), cross flow heat 

recovery unit and a heating coil (250 kW). The 

facility is open every day and occupancy is 

constantly monitored. 

Simulating a swimming pool environment is a 

challenging task due to the inter relationships 

between water, air temperature and relative humidity 

in the pool hall that affect the water evaporation rate 

and therefore the latent load in the zone. Few 

simulation tools for swimming pools exist and in 

many cases they have limitations.  TRANSYS offers 

one such model (Auer 1996). A recently published 

paper (Ribeiro et al. 2010) documents a procedure to 

model swimming pools in ESP-r, however ESP-r is 

not yet integrated in the BCVTB and for this reason 

EnergyPlus was used. In order to take into account 

the heat exchange between the water in the pool and 

the air in the pool hall sensible and latent load have 

been considered separately. The sensible load has 

been modelled with a surface at the constant water 

temperature of 29.5°C. The latent load has been 

hourly calculated with equation (1).  

�� = �� ����	 ∙ ����
 ∙ �
���           (1) 

Equation (1) calculates the total latent load as a 

multiplication of the water evaporation rate (�� ����	) 

by the water latent heat of vaporization (����
) by 

area of the pool (�
���). The water evaporation rate 

(2) was calculated by the analytical formulas 

published (Shah 2008) which consider water 

temperature (�����	), air temperature and relative 

humidity (���	 , ����	), area of the pool (�
���) and 

pool occupancy (���).  

�� ����	 = �������	 , ���	 , ����	 , �
��� , ����    (2) 

The water latent heat of vaporization (3) has been 

calculated using Watson's equation (Vidal 2003) 

which is constant because it takes into account only 

the water temperature and other physical properties 

of the water (e.g. critical temperature). 

����
 = �������	 = 29.5 ℃" = 2463.42 J/g  (3)  
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Since EnergyPlus does not allow to input values, 

which depend on other variables that are computed 

during the simulation a recursive approach was 

taken. An initial simulation was run with an initial 

estimation of the hourly latent load due to water 

evaporation, then, hourly air temperature and relative 

humidity were used to recalculate a more accurate 

latent load. This process was repeated until reaching 

convergence as presented in the discussion and result 

analysis section of this paper.  

Ventilation in pool environments is mandated by 

regulation (day and night).  For this reason, the 

AHUs are constantly running with 30°C set point. 

Optimisation scenarios for the case study focus 

mainly on the evaluation of night a setback 

temperature in the pool hall (15°C) and its impact in 

terms of energy consumed and relative humidity 

reached. In relation to the comfort, it is required that 

the indoor air temperature reaches the 30°C ( ± 

0.5°C) by the opening time of the facility (7 a.m.). It 

is very important to evaluate the optimal EoS (End of 

Setback) time, when to change the set point form 

15°C (setback temperature) to 30°C (temperature 

required during occupied hours) in order to allow  the 

AHUs to bring the zone back to these conditions on 

time. The optimal EoS time is highly dependent on 

the inertia of the system under different indoor and 

outdoor conditions. To evaluate the energy and 

comfort impact of the set back temperature and 

different EoS times (presented in the discussion 

section), 5 different simulations were run in 

EnergyPlus with no set back and also with EoS at 

different times: 6.15, 6.30, 6.45 and 7 a.m. The ANN 

based controller was then used to optimally predict 

the EoS as described in the next section.  

In this case study, the ANN model agent consists of a 

ANN for EoS prediction (Yang et al. 2003).  

 

Figure 5 - ANN with delayed input basic general 

diagram 

Introducing delayed inputs gives the ANN the 

necessary “memory” capability for effectively 

recognising sequences when dealing with time series 

data and produce a predicted output based on present 

and past inputs. In Figure 5, a basic scheme of an 

ANN with time delay is presented. 

Figure 6 represents the simulation results with a EoS 

at 6.45 a.m. The pink line represents the outside air 

temperature while the pale blue bars correspond to 

the amount of time, in fractions of an hour, during 

which the set-point temperature is not reached in 

occupied hours. During most of the year, this value 

corresponds to 30 minutes (0.5 h in the graph) while 

in some summer days it is 15 minutes (0.25 h) and it 

is here that the ANN will optimise the operation. 

Based on the results obtained in (Yang et al. 2003) 

and since the simulations in EnergyPlus showed a 

potential of improvement during the period between 

May and October (Figure 6) if a dynamic start time 

for the system were used, an ANN was developed to 

learn the optimal start time for the system in that 

period.  

 

Figure 6- EnergyPlus simulation results for a EoS at 

6.45 a.m. 

An artificial neural network with one time step delay, 

25 neurons in the hidden layer and one output was 

trained to determine, at every time step, how much 

time will pass if the system set-point were brought 

back to 30ºC at the present time step, to the moment 

it reaches the established temperature of 30ºC. The 

time was given in time steps of 15 minutes and 

possible outputs were 30 or 45 minutes. The time 

delay allows the system to have memory of previous 

events and therefore eliminates the necessity of 

having to manually compute the variation rate in the 

temperatures since they are already implicit in the 

delay and reduces the number of external inputs to 

the network. 

In this experiment, the variables used as input for the 

artificial neural network were indoor and outdoor 

temperature while the target data was the time for the 

indoor temperature to reach the desired value. These 

variables were normalized to avoid prevalence of one 

input over the other and to reduce the range in which 

the artificial neural network must learn thus 

facilitating the learning process. As in (Yang et al. 

2003) the normalization was made between values of 

0.1 and 0.9 to avoid any absolute value. 

The ANN model agent was trained with a data set 

generated with the model developed in EnergyPlus, 

particularly scheduling 3 cycles per day during one 

year in which the indoor temperature must go from 

15ºC to 30ºC in the “on” cycle and from 30ºC to 

15ºC in the “off” cycle. To ensure a free response of 

the system the control variable was the set-point of 

the indoor temperature. The selection of several 

cycles per day was done aiming at getting the broader 

possible range of combinations of indoor-outdoor 

conditions while ensuring that the system will reach 

steady state values before the next change in the set-

 

Delay (t-τ) 

Input 

Output 

Input 

layer 

Hidden 

layers 
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point. Considerations of condensation, pool water 

temperature, ventilation, etc., were taken into 

consideration for the selection of 15ºC as the set-back 

set-point. Figure 7 shows the scheduled variation in 

the set-point utilised to generate the training data set. 

 

Figure 7 - Setback daily schedule for training 

A simple optimisation algorithm to determine the 

exact start time based on the information provided by 

the neural network (ANN model agent) and the 

opening time of the facility was also developed 

(Figure 8). 

 

Figure 8 - Case study ANN model agent and 

optimisation algorithm 

DISCUSSION AND RESULTS 

ANALYSIS 

This section presents the results obtained by the 

application of the proposed methodology to the NUI 

Galway swimming pool. 

The first results shown in Table 1 and Figure 9 show 

the effectiveness of the simulation methodology 

adopted in EnergyPlus for simulating the swimming 

pool. All the three parameters considered (water 

evaporation latent load, air temperature and air 

relative humidity) converge to zero, at different 

paces, with an increasing number of simulations. 

Table 1  and Figure 9 show the maximum hourly 

positive (overestimation) or negative 

(underestimation) variation between two different 

simulations for each of the considered parameter. 

Being these hourly values, the variation calculation 

compares the 8760 values of each simulation (24h * 

365 days) with the 8760 of the previous simulation 

and identifies the percentage hourly variation. The 

latent load of evaporation is the parameter with the 

highest variation at the second simulation run (Run 

2) with a max overestimation of +213.58% and a min 

underestimation of -25.52% and a total variation of 

±239.11%.  

Table 1 - Variation of Latent load, air temperature 

and RH, between different simulations 

 

Latent Load 

deviation 

Air Temp. 

deviation 

Air RH 

deviation 

 

Max 

[%] 

Min 

[%] 

Max 

[%] 

Min 

[%] 

Max 

[%] 

Min 

[%] 

Run 2 213.6 -25.5 3.30 -0.46 38.82 -12.4 

Run 3 12.56 -35.2 6.32 -4.10 7.78 -16.6 

Run 4 27.61 -6.95 4.28 -5.94 11.65 -3.92 

Run 5 7.89 -12.2 0.01 -0.01 2.24 -5.98 

Run 6 7.69 -1.77 0.01 -0.01 3.64 -1.23 

Run 7 1.01 -3.91 0.00 0.00 0.71 -2.07 

Run 8 2.35 -0.56 0.00 0.00 1.25 -0.41 

Run 9 0.32 -1.34 0.00 0.00 0.24 -0.71 

 

The total variation decreases with the increasing 

number of simulation runs and the resulting 

recalculation based on more accurate air temperature 

and relative humidly. The final convergence after 

nine simulations corresponds to a total variation of 

±1.66%: 0.32% (max overestimation) and -1.34% 

(min underestimation). 

Despite an increase in total variation of the room air 

temperature between simulation Run 2 and Run 3, 

this parameter reaches quickly convergence: ±0.02% 

at Run 5, ±0.01% at Run 6 and ±0.00% at Run 8. 

The air relative humidly total variation also decreases 

with the increasing number of simulation from a total 

variation of ±51.23% at Run 2 to a variation of 

±0.95% at simulation Run 9. 

This recursive calculation of water evaporation latent 

load, air temperature and air relative humidity has 

been proven to be a viable approach. However 

integration between EnergyPlus and the BCVTB 

would allow an online iterative calculation of the 

latent load resulting from the value of air temperature 

and relative humidity at each time step. This option 

would save simulation time. 

For evaluating the impacts of different operation 

strategies the energy consumption metric adopted is 

the annual heating energy consumed by the AHUs 

heating coils and expressed in kWh. The occupied 

hours during which the air temperature set point 

(30ºC) was not met have been used as the metric for 

comfort. Table 2 shows the results of the different 

simulations in the physical model (EnergyPlus) and 

the impact of the four new operation strategies on the 

energy consumption and occupant comfort against 

current operation strategy (without setback 

temperature at night).  
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Figure 9- Variation of Latent load, air temperature 

and RH, between different simulations 

The energy savings achieved with 15ºC of setback 

temperature between 22 p.m. and 6.15 a.m. 

correspond to 30.28% (approx 182 MWh/year). In 

this case there are zero occupied hours during which 

the air temperature set point (30ºC) is not met, 

therefore this strategy does not affect occupants 

comfort. The accurate estimation of the relative 

humidity has allowed to control it within the 

proposed schedule. RH has never been higher than 

maximum value of 85% recommended in literature 

(Arthur 1994). This is due to the constant ventilation 

also at night. Additional savings up to 33.77% would 

be possible with EoS at later times (6.30, 6.45, and 

7). However, in these cases a significant reduction in 

the comfort condition of the zone in the early 

morning would be experienced when the facility is 

open to public with an excess of 219 hours with EoS 

at 7.00. In Table 2 and Figure 6 is possible to 

appreciate that, depending on indoor and outdoor 

conditions, the system takes between 30 and 45 

minutes to increase the zone temperature form 15ºC 

to 30ºC. More specifically, there are 67 days between 

May and October (Figure 10) in the simulated year 

during which an EoS equal to 6.30 a.m. would be 

sufficient to reach the required set point temperature 

by 7.00 a.m.  

As mentioned in the preceding section, the artificial 

neural network model agent for this case study 

application has been used to learn how long the 

system takes to bring the temperature from 15ºC to 

30ºC in different conditions. The optimisation 

algorithm was then able to calculate per each time 

step (every 15 minutes) whether the set point should 

have been changed or not depending on the estimated 

heating time simulated by the ANN model agent. 

Based on indoor and outdoor air temperature the 

ANN based controller was able to identify 52 out of 

67 days during which the EoS time could have been 

moved to 6.30. This represents an accuracy of approx 

77%. The resulting yearly Heating Coil Energy with 

ANN based EoS was 417,187.27 kWh with 0 hours 

of Tset not met.  

Table 2 - Energy and comfort impact of night set 

back temperature 

 

Total 

Heating Coil 

Energy                         

[kWh] 

Energy 

Savings                                                                    

[%] 

Occupied 

hours with 

Tset not 

met                                     

[h] 

No Set Back 602,983.56 - - 

EoS  at 6.15 420,391.19 30.28 0.00 

EoS  at 6.30 413,395.25 31.44 63.25 

EoS  at 6.45 406,402.66 32.60 141.50 

EoS  at 7.00 399,344.80 33.77 219.25 

CONCLUSION AND FUTURE WORK 

This paper presents the overall methodology part of 

the SportE
2
 Why Module which aims at the 

optimisation of energy flows and HVAC systems 

operation in sport facility. The initial results obtained 

in the demonstration case study show the 

effectiveness of the proposed methodology in 

integrating building energy simulation (to test the 

energy and comfort impact of different operation 

strategies) and ANN (to optimise HVAC system 

control). A 15ºC set back temperature and 

appropriate EoS times were identified leading to 

energy savings in excess of 30% in this particular and 

initial experiment. A procedure to simulate 

swimming pool in EnergyPlus was also proposed and 

-50%
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Figure 10 -Response time for typical summer day (left - 30 minutes) and winder day (right - 45 minutes) 
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documented. Future work is required for the 

integration (through the BCVTB) of an online latent 

load calculation. A more complete model should also 

consider a variable pool water temperature including 

its heating system and control. Additional energy 

savings with the utilisation of the ANN based 

controller are very small at this point. Therefore, to 

determine the effective energy impact of ANN based 

controller an appropriate simulation of the HVAC 

control system (with Modelica or Simulink) is 

required. As a subsequent step, optimisation 

scenarios in the real facility will also be scheduled in 

order to validate the model and fine tune the ANN 

with a particular focus on the system inertia. Future 

work with the ANN based controller will also include 

the designing and implementation of a Model Based 

Neural Network Predictive Controller to be actually 

acting on the variables of the system. Also the 

introduction of the on-line continuous learning 

characteristics through reinforcement learning and a 

methodology to allow a rapid development of the 

ANN controller based on real data will be studied. 
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