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ABSTRACT 

This paper proposes an approach to identify the 
coefficients of the chiller model used by the 
EnergyPlus program. Data collected every 15 
minutes from an existing cooling plant are used to 
evaluate the approach. The results demonstrate that 
28-days of data for the first chiller and 7-days of data 
for the second chiller, collected at the beginning of 
the summer season, are sufficient to obtain accurate 
prediction of the electric power input to chillers over 
the summer season: the CV(RMSE) are 3.7% and 
4.9% for the electric power input, respectively, for 
the first and the second chiller over the training data 
set used to identify the model coefficients. For the 
remainder of the summer season, the CV(RMSE) is 
below 7.6%. 

INTRODUCTION 

The use of simulation is becoming more common to 
assess the operating energy performance and to 
identify operating issues in buildings. Different 
studies have demonstrated the use of calibrated 
simulation models to identify opportunities to 
improve the whole building energy performance (e.g. 
Pan et al. 2007, Lawrence and Braun. 2007, Lee et al. 
2007). The calibration of the model is a complex 
process and often the lack of manufacturer and as-
operated equipment performance data leads to 
discrepancies between the simulation results and 
measured data.  

Chillers consume a large amount of electricity to 
prepare the chilled water needed by the HVAC 
systems in large commercial and institutional 
buildings. Thus, it is important to develop accurate 
simulation models that characterize their operation. 
Simulation tools often use default performance 
curves to help users evaluate the electric power input 
to the chillers. Often though, the chillers used in 
buildings are different than the default equipment. 
The user has the option to develop and implement 
more appropriate performance curves in the 
simulation tool. A few approaches have been 
proposed to identify model coefficients for chillers 
by using manufacturer data (Lebrun et al. 1994) or 
laboratory data or curve shifting using short-term 
measurements that cover the full range of values of 
independent variables (e.g., evaporator part-load 

ratio) used in such a model (Hydeman and Gillespie 
2002 and Hydeman et al. 2002). However, it is not 
always possible to have access to detailed 
manufacturer or laboratory data to apply the 
approach presented in the literature. In order to 
address this issue, a new approach using monitored 
data collected via the Monitoring and Data 
Acquisition System (MDAS) is proposed to identify 
the coefficients of one of the EnergyPlus models that 
characterise the performance of a water-cooled 
electric chiller. This approach is an extension of the 
Hydeman and Gillespie (2002) method, which is 
based on Hydeman et al. (2002). Data monitored 
over the summer 2009 season for two chillers of 
3165 kW (900 tons) each, with different operating 
part-loads, duration of daily operation and return 
chilled water temperature from the building are used 
to evaluate the proposed approach. Also, the 
proposed approach is evaluated for different data set 
sizes to identify the minimum training set size 
required to identify the coefficients that accurately 
estimate the electric power input to the chiller.  

PROPOSED APPROACH 

The approach is applied to one of the models used by 
the EnergyPlus program (DOE 2009) to estimate the 
electric power input of an electric liquid chiller.  

Description of the model 

The selected EnergyPlus model simulates the electric 
power input (PE) of an electric liquid chiller based on 
the chilled water supply temperature (TCHWS), the 
temperature leaving the condenser (TCNDS) and the 
evaporator load (QE). The chiller power input (PE), in 
kW, is determined using Equation (1). 

         
  (1) 

where, Qavail is the available cooling capacity of the 
chiller in kW, defined by Equation (2); 

     (2) 

where Qref is the chiller capacity at reference 
conditions (reference temperatures and flow rates 
defined by the user); CapFTemp is the cooling 
capacity factor for different operating temperatures, 
given by Equation (3); 

COPref is the reference coefficient of performance; 
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EIRFTemp is the energy input to cooling output ratio 
at full load, given by Equation (4); 

EIRFPLR is the energy input to cooling output ratio 
at part load ratio, given by Equation (5). 

The model, developed by Hydeman et al. (2002) as 
part of the CoolTools™ project sponsored by Pacific 
Gas and Electric Company (PG&E), uses Equations 
(3) to (5) to determine the various coefficients used 
in the chiller power Equation (1).  

           
       
      

(3) 

           
       
      

(4) 

           
             
    

(5) 

where PLR is the part-load calculated using Equation 
(6). 

 



 (6) 

The coefficients of the performance curves 
(Equations (3) to (5)) can either be generated using 
manufacturer’s data or measured data. In this study, 
the Hydeman and Gillespie (2002) technique, which 
is based on Hydeman et al. (2002), is used with some 
modifications for the identification of the coefficients 
aj, bj, and cj. 

Initial training set 

The training data set contains monitored data at each 
time-step of the following variables: PE, QE, COP, 
TCHWS, TCHWR, TCNDS, and TCNDR, where PE is the 
instantaneous electric power input; QE is the 
instantaneous chilled water load, equal to the 
evaporator load determined using the formulation 
presented in ASHRAE 2002; COP is the coefficient 
of performance equal to QE/PE, dimensionless; TCHWS 
is the supply chilled water temperature; TCHWR is the 
return chilled water temperature; TCNDR is the return 
condenser water temperature from the cooling tower; 
and TCNDS is the condenser water leaving temperature 
to the cooling tower. 

1. In the training data set, the maximum evaporator 
load QEmax is identified. The maximum QEmax and 
the corresponding electric power PEmax, and COP 
are then used as the reference values (Qref = 

QEmax, Pref = PEmax, and COPref) in the modified 
approach, which is proposed in this study; 

2. For all data in the training data set, the CAPFT is 
calculated using Equation (7), where Qref = 
QE,max and QE is the evaporator load at each time-
step;  

 



 (7) 

3. The training data set is split into (1) full-load and 
(2) part-load conditions based on the CAPFT 
values calculated using Equation (7). For this 
study, the full-load conditions data set was 
selected for CAPFT values greater than or equal 
to 0.85 (CAPFT  0.85), while the part-load 
conditions for CAPFT values were lower than 
0.85 (CAPFT < 0.85). A CAPFT greater than 
0.85 is selected for the full-load conditions since 
the chillers operate most of the time around 55-
60% of their full design capacity. 

Full-load conditions data set (CAPFT  0.85)  

4. For the full-load conditions data set (CAPFT  

0.85), the EIRFT is calculated at each time-step 
using Equation (8), where CAPFT is calculated 
using Equation (7); 

 


  
 (8) 

5. The full-load conditions data set is used to 
identify the coefficients aj of Equation (3) where 
CapFTemp is equal to CAPFT (Equation (7)), 
and the coefficients bj of Equation (4) where 
EIRTemp is equal to EIRFT (Equation (8)). 

Full-load and part-load conditions data set 

6. Using the coefficients aj and bj identified in (5), 
the estimates of CapFTemp* (Equation(3)) and 
EIRTemp* (Equation (4)) are calculated for all 
the data in the training data set, i.e. for the full- 
and part-load conditions; 

7. The PLR (Equation (6)) and chillerEIRFLPR 
(Equation (9)) are calculated for all the data in 
the training data set, i.e. for the full- and part-
load conditions, where CapFTemp* is the 
estimate of CapFTemp and EIRTemp* is the 
estimate of EIRTemp; 

 
        

(9) 

8. All the data in the training data set are used to 
identify the coefficients cj of Equation (5), where 
EIRFPLR is equal to chillerEIRFLPR (Equation 
(9)); 

9. Using the coefficients ci identified in (8), 
EIRFPLR* (Equation (5)) is estimated for all the 
data in the training data set, i.e. for the full- and 
part-load conditions; 

10. The electric power input to the chiller (Equation 
(1)) is calculated for all data points with the 
variables calculated in (6), CapFTemp* and 
EIRTemp*, and in (9), EIRFPLR*. 
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DEVELOPMENT OF THE MODELS FOR 
THE CSB CHILLERS 

Chillers installed at the Concordia Sciences Building 
(CSB) of Concordia University are used to evaluate 
the proposed approach and the requirements in terms 
of training data set size. Two centrifugal chillers 
from the same manufacturer, CH1 and CH2, use R-
123 refrigerant, have the cooling capacity of 3165 
kW (900 tons) each, and the coefficient of 
performance (COP) of 5.76 at design conditions. 

Information about the as-built and as-operated 
thermal performance of the CSB is obtained through 
the collaboration of the Physical Plant of Concordia 
University from the Monitoring and Data Acquisition 
System (MDAS). The system uses a leading controls 
manufacturer's DDC control system. Monitored data 
for the summer 2009, from June 22 to September 20, 
are selected to analyze the operating characteristics 
of the chillers. The accuracy of the monitored electric 
power input is 5% of the recorded data. 

Table 1 presents the monitored operating 
characteristics of the chillers used in this case study 
for the summer 2009. 
 

Table 1 

Average operating characteristics of chillers, 

summer 2009 
 

ITEM CH1 CH2 

TCHWS, °C  6.8 ± 0.4 6.7 ± 0.2 

TCHWR, °C  11.3 ± 1.5 11.2 ± 1.3 

TCNDR, °C  28.3 ± 0.4 28.5 ± 0.4 

TCNDS, °C  33.3 ± 1.8 33.3 ± 1.6 

QE, kW 1671 ± 549 1615 ± 477 

PE, kW 313 ± 92 299 ± 77 

COP 5.29 ± 1.0 5.39 ± 1.3 

No. operating hours 1299 663 

Electricity use, kWh 406,155 198,330 
 

Monitored data pre-processing 

Prior to identifying the model coefficients, a detailed 
analysis of the monitored data is performed to 
identify any data monitoring problems or outliers. 
This includes removing any set of monitored data 
that is incomplete at a specific time-step; and 
outliers, which are measurements satisfying the 
conditions of Equations (10a) and (10b), where yi is 
the measured value, ymean is the mean of the measured 
values in the data set, and  is the standard deviation.  

       (10a) 

       (10a) 

Selection of training and testing data sets 

The data set selected from monitored data that is used 
to identify the model coefficients is divided in two 
sub-sets: (1) a training data set and (2) a testing data 
set. Different methods of dividing the selected data 
set into training and testing data sets (e.g., random 

selection) can be considered. For this study, the 
training data set uses the first two-thirds of the model 
data set (Kreider et al. 1994) to identify the model 
coefficients, and the testing data set uses the balance 
of the data set to verify the correctness of the model 
before it is used.  

The first abbreviation of the set name indicates the 
equipment for which the model is developed, for 
example, CH1 for chiller no.1. The second 
abbreviation in the set name indicates the length of 
data set, for example 7D for seven days. The starting 
and ending date of each data set is given for both 
training and testing data sets (Table 2). The data set 
size indicates the number of time-steps, of 15-minute 
each, available for each data set. 

From June 22 to July 6 2009, the chiller CH2 is the 
first chiller to be started-up, while after July 6 2009, 
the chiller CH1 becomes the first chiller to be started-
up, when required. Since the quantity of monitored 
data during operation is different at the beginning of 
the summer, the first data for chiller CH1 is 
composed of 30 hours (CH1-30H), while for chiller 
CH2 is composed of one day (CH2-1D). Table 2 
presents the 12 data sets used for the training and 
testing of the model. 

RESULTS AND DISCUSSION 

The proposed approach is illustrated using the data of 
28 days for chiller CH1. The results are then 
presented for the different data sets size used to 
develop the models for both chillers CH1 and CH2. 

Example of identification of the model 

A sample of data for the CH1-28D data set is 
presented in Table 3. The results for the calculations 
performed on the full-load conditions are presented 
in Table 3 and for the full- and part-load conditions 
in Table 4, while the identified coefficients are 
presented in Table 5. 

The proposed approach is used to identify the 
coefficients of the performance curves for the electric 
power input to the chiller.  

Initial training set (Table 3) 

1. The maximum evaporator load QEmax =2666 kW 
is identified at 07/21 12:45 (bold values in Table 
3); therefore  Qref = QEmax = 2666 kW, Pref = 517 
kW, and COPref = 5.157 . 

2. CAPFT is calculated using Equation (7). For 
example, at 12:00 on 07/21: 

 





   (11) 

3. The training data set is split into (1) full-load 
conditions (FL), where CAPFT  0.85 and (2) 
part-load conditions (PL), where CAPFT < 0.85. 

Full-load conditions data set (Table 3) 

4. For the full-load conditions data set (CAPFT  

0.85), the EIRFT is calculated at each time-step 
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using Equation (8). For example, at 12:00 on 
07/21: 

 


  



   


(12) 

5. The coefficients aj of Equation (3), and the 
coefficients bj of Equation (4) are identified 
using the calculated CAPFT and EIRFT, 
respectively, along with measurements of 
temperatures (Table 3). The identified 
coefficients aj and bj for both chillers CH1 and 
CH2 are presented in Table 5, and compared 
with the default values of a TRANE chiller, as 
presented in the EnergyPlus program. 

Full-load and part-load conditions data set (Table 4) 

6. Using the coefficients aj and bj, the estimates of 
CapFTemp* (Equation(3)) and EIRTemp* 
(Equation (4)) are calculated for all the data in 
the training data set. For example, at 12:00 on 
07/21 , CapFTemp* = 0.9577033 and EIRTemp* 

= 0.9902288. 

7. The PLR (Equation (6)) and chillerEIRFLPR 

(Equation (9)) are calculated for all the data in 
the training data set. For example, at 12:00 on 
07/21 , the PLR = 0.99716 and 






    

 

(13) 

8. The coefficients cj of Equation (5) are identified 
(Table 5) by using EIRFPLR equal to 
chillerEIRFLPR, along with the calculated PLR 
and measurements of temperatures. 

9. Using the coefficients ci identified in (8), 
EIRFPLR* (Equation (5)) is estimated for all the 
data in the training data set. For example, at 
12:00 on 07/21 , EIRFPLR* = 0.98197. 

10. The electric power input to the chiller (Equation 
(1)) is calculated for all data points with the 
CapFTemp*, EIRTemp*, EIRFPLR*. For 
example, at 12:00 on 07/21 : 

         
    


(14) 

 

Table 2 

Training and testing data sets 
 

ITEM TRAINING SET TESTING SET 

DATE DATA SET SIZE DATE DATA SET SIZE 

CH1-30H 06/22 to 06/26 – 22.5 h 85 06/27 to 07/06 – 8 h 29 

CH1-7D 06/22 to 07/10 331 07/11 to 07/12 186 

CH1-10D 06/22 to 07/12 517 07/13 to 07/15 94 

CH1-14D 06/22 to 07/15 610 07/16 to 07/19 227 

CH1-21D 06/22 to 07/19 822 07/20 to 07/26 608 

CH1-28D 06/22 to 07/24 1271 07/25 to 08/02 822 

CH2-1D 06/22 0:00 to 16:00 47 06/22 16:00 to 24:00 32 

CH2-7D 06/22 to 06/26 443 06/27 to 06/28 192 

CH2-10D 06/22 to 06/27 538 06/28 to 07/01 380 

CH2-14D 06/22 to 06/30 833 07/01 to 07/05 400 

CH2-21D 06/22 to 07/05 1233 07/06 to07/12 91 

CH2-28D 06/22 to 07/10 1336 07/11 to 07/19 49 
 

 

Table 3 

Sample of data and calculation of training set for CH1-28D, July 21 2009 
 

DATE TIME 

TCHWS, °C TCNDS, °C QE, kW 

PE, 

kW COP CAPFT FL PL EIRFT 

MEASUREMENTS CALCULATIONS 

7/21 12:00 6.72 36.66 2546 497 5.123 0.955 X  1.0066 

7/21 12:15 6.72 36.55 2586 505 5.121 0.970 X  1.0070 

7/21 12:30 6.72 37.05 2568 481 5.339 0.963 X  0.9659 

7/21 12:45 6.72 36.89 2666 517 5.157 1.000 X  1.0000 

7/21 13:00 6.78 36.83 2644 511 5.175 0.992 X  0.9965 

           

7/21 20:00 6.72 35.66 2346 445 5.272 0.880 X  0.9781 

7/21 20:15 6.78 35.33 2280 435 5.243 0.855 X  0.9836 

7/21 20:30 6.78 34.94 2200 419 5.252 0.825  X  

7/21 20:45 6.72 35.5 2244 420 5.344 0.842  X  

7/21 21:00 6.67 35.22 2262 421 5.374 0.849  X  

Proceedings of Building Simulation 2011: 
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November. 

- 533 -



 

 

 

Table 4 

Sample of calculation for training set of CH1-28D, July 21 2009 
 

DATE TIME CAPFTemp* EIRTemp* PLR chillerEIRFLPR EIRFPLR* Pchiller, kW 

7/21 12:00 0.9577033 0.9902288 0.99716 1.01368 0.98197 481 

7/21 12:15 0.9487055 0.9882193 1.02243 1.04188 1.01906 494 

7/21 12:30 0.9931338 0.9959175 0.96982 0.94064 0.93934 480 

7/21 12:45 0.9779322 0.9938546 1.02257 1.02889 1.01168 508 

7/21 13:00 0.9755892 0.9980719 1.01663 1.01508 1.00464 506 

        

7/21 20:00 0.8920124 0.9654081 0.98647 0.99951 0.98965 440 

7/21 20:15 0.8714134 0.9676649 0.98161 0.99781 0.99049 431 

7/21 20:30 0.8576679 0.9543319 0.96235 0.99016 0.97481 412 

7/21 20:45 0.8848609 0.9600703 0.95127 0.95627 0.95004 417 

7/21 21:00 0.8816749 0.9368144 0.96245 0.98589 0.96905 413 
 

 

Table 5 

Example of coefficients for the electric power input models for chillers  
 

ITEM CH1-28D CH2-7D TRANE  

a0 55.6849 11.9917 -0.2176 

a1 -5.9214 -7.7791 -0.0494 

a2 0.13986 0.71449 8.70 E-05 

a3 -1.98856 0.86498 0.09612 

a4 0.01810 -0.00760 -0.00203 

a5 0.11092 -0.05142 0.00254 

b0 -42.7144 -51.5804 -0.0199 

b1 6.25958 22.43780 -0.07848 

b2 -0.19697 -2.30418 0.00194 

b3 1.19876 -1.34114 0.07123 

b4 -7.36280 E-03 -3.78277 E-03 -9.17380E-04 

b5 -0.09546 0.24441 -0.00058 

c0 1.94517 2.33977 0.35161 

c1 -0.01389 -0.08433 0.00921 

c2 -1.49532 E-03 6.53170 E-04 -2.382325E-05 

c3 -1.91033 -1.91995 0.12232 

c4 -1.53332 -0.10428 -0.18201 

c5 0.12419 0.07856 -0.00784 

c6 0.46424 0.03295 0.68849 
 

Different criteria are used to evaluate the 
performance of different training sets. The 
Coefficient of Variance of the Root-Mean-Squared-
Error (CV(RMSE)), the Root-Mean-Squared-Error 
(RMSE), and the Mean Bias Error (MBE) are used to 
assess the precision of the models for the different 
data sets - Equations (15) to (17) as defined by 
IPMVP (2007). A CV(RMSE) of 3-5% for prediction 
of power input at the component level is acceptable 
(Haberl and Bou-Saada 1998, Kammerud et al. 
1999).  

 

   



  


  

(15) 

     



    

(16) 

 
   


  
(17) 

where yi is the measured value, yi,predicted is the 
predicted value, ymean is the mean of the measured 
value sample data, and n is the number of data.  

An additional criterion, the Relative Error (R.E.), is 
used to compare the estimates of energy consumption 
with the measured values over the verification set 
(Equation (18)).  

 
   
     


   


 
(18) 

Training and testing 

The estimated electric power input to the chillers 
provides good results over the training sets for 
models established using 30 hours or 28 days of data 
for chiller CH1, and more than 7 days of data for 
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chiller CH2 (Table 6). Over the testing set, the 
CV(RMSE) does not exceed 4.5% for the CH1-30H 
and CH1-28D data sets. For chiller CH2, the 
developed models provide good results over the 
testing sets, with the exception of the CH2-1D data 
set: the CV(RMSE) does not exceed 4.2% and the 
average MBE does not exceed -10.8 kW.  

Pre-determined coefficients are available in the 
EnergyPlus program. The chillers installed at the 
Concordia Sciences Building are Trane CVHF0910 
model with COP of 5.76 at design conditions. This 
model is not available as a default in EnergyPlus. 
Therefore, the Trane chiller model that has the 
closest capacity, which is the Trane CVHF0796 with 
COP of 6.4, is used for comparison purposes. The 
coefficients identified for the CH1-28D and CH2-7D 
sets as well as the default EnergyPlus file are 
presented in Table 5. The coefficients identified for 
chiller CH1 and chiller CH2 are different, thus 
demonstrating the need to develop different models 
even if the chillers are identical. The difference in the 
performance characteristics of the chillers are a result 
of distinct operating patterns. Also, since different 
data sets are used to develop each model, the 
identified coefficients vary from one data set to 
another.  

Figure 1 presents the measured electric power input 
variations compared to (1) the EnergyPlus model 
developed using the proposed technique for the CH1-
28D and (2) the default EnergyPlus model. The 
prediction made by the proposed technique over part 
of the testing set shows agreement with the measured 
data, especially when the electric power input is high, 
while the prediction made using the default Trane 
coefficients available in EnergyPlus underestimates 

the electric power input. The CV(RMSE) over the 
testing set for the CH1-28D using the proposed 
approach is 4.5%, while being 12.3% when the Trane 
coefficients available in EnergyPlus are used. 

Verification over the remaining summer season  

For the verification set, it is assumed that the 
monitored data represent normal operating conditions 
that prevailed during the training and testing periods. 
The verification set is used to further assess the 
performance of the models for a longer period of 
time. 

For the models where the coefficients are identified 
from measurements following the proposed 
approach, the CV(RMSE) over the testing set are 
lower than 7.4% (Table 6) for all training data sets, 
with one exception for chillers CH1 and CH2 (CH1-
10D and CH2-1D). However, the CV(RMSE) over 
the verification set vary between 6.0-12.3% and 7.4-
9.6%, respectively for chiller CH1 and CH2 (Table 
7).  

For chiller CH1, the use of a training set of 28-days 
provides good prediction accuracy over the 
verification set, with CV(RMSE) not exceeding 6.0% 
and underprediction of the energy consumption by 
only 0.6%. 

For chiller CH2, the CV(RMSE) are below 9.6% and 
R.E. below ±3.7%, except for the model trained with 
one day of data (CH2-1D). The use of a training set 
size larger than seven days does not improve the 
prediction accuracy of the verification set. Thus, for 
chiller CH2, the minimum training and testing data 
set for the EnergyPlus model should be seven days 
(CH2-7D). 

 

Table 6 

Results for the electric power input for chillers following the proposed approach – training and testing sets 
 

ITEM TRAINING SET TESTING SET 

CV, % RMSE, kW CV, % RMSE, kW MBE, kW 
CH1-30H 2.9 8.9 2.5 7.4 1.72 
CH1-7D 5.3 16.9 5.4 12.9 -3.95 
CH1-10D 5.5 16.1 12.3 29.8 -3.42 
CH1-14D 8.4 23.8 7.4 22.8 -5.29 
CH1-21D 6.5 18.8 7.2 24.1 -1.37 
CH1-28D 3.7 11.4 4.5 14.3 6.25 
CH2-1D 10.8 30.8 11.0 37.7 10.41 
CH2-7D 4.9 16.4 4.0 12.9 -5.56 
CH2-10D 4.8 15.8 4.2 13.9 -1.73 
CH2-14D 4.2 13.9 3.9 12.1 -2.21 
CH2-21D 4.0 12.9 4.0 9.0 -1.34 
CH2-28D 4.1 13.2 3.5 14.5 -10.82 
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Figure 1 Chiller CH1 power electric input variation for EnergyPlus model, July 29th to July 31st 2009.  
 

 

Table 7 

Results for the electric power input for chillers following the proposed approach – verification set 
 

VERIFICATION SET CV, % RMSE, KW MBE, KW R.E. ON kWh, % 

CH1-30H, 07/06 to 09/22 12.3 38.5 -25.4 -9.6 
CH1-7D, 07/13 to 09/22 11.7 36.9 -2.3 -2.3 
CH1-10D, 07/16 to 09/22 11.9 37.7 -2.2 -2.2 
CH1-14D, 07/20 to 09/22 16.0 50.9 0.2 -1.4 
CH1-21D, 07/27 to 09/22 8.1 25.5 3.3 -0.5 
CH1-28D, 08/03 to 09/22 6.0 18.8 3.0 -0.6 
CH2-1D, 06/23 to 09/20 44.7 133.5 91.7 17.1 
CH2-7D, 06/29 to 09/20 7.4 21.2 7.9 -0.7 
CH2-10D, 07/02 to 09/20 8.1 22.9 10.9 -1.5 
CH2-14D, 07/06 to 09/20 8.5 23.4 15.2 -0.2 
CH2-21D, 07/13 to 09/20 9.4 26.2 19.2 0.3 
CH2-28D, 07/20 to 09/20 9.6 26.4 20.3 3.7 

 

Performance of the proposed approach for part-
load conditions 

It is important to evaluate the electric power input to 
the chillers at part-load conditions, particularly for 
this case study, since the chillers operate on average 
at 55-60% of their design capacity. Figure 2 presents 
the measured and the CH1-28D model estimates of 
PE for 40-70% part-load conditions for chiller CH1. 
The estimated value by the proposed approach is 
close to the measured values for part-load conditions. 
Over the summer season, for the CH1-28D data sets, 
the CV(RMSE) is 5.3% for all part-load conditions.  

Comparison with published data 

Hydeman et al. (2002) have evaluated the model 
described by Equations (1) to (6) using 
manufacturer’s data. For centrifugal chiller with 
Variable Speed Drive (VSD), the obtained 
CV(RMSE) were below 2.7%. Figure 3 presents the 
CV(RMSE) for chillers CH1-28D and CH2-7D over 
the training, testing, verification sets of the summer 
2009 compared to the CV(RMSE) calculated by 
Hydeman et al. (2002). The CV(RMSE) are slightly 
higher than the ones available in the literature. It is 
worth being reminded that the proposed models use 

data obtained from monitoring of an existing central 
cooling plant, while the published data came from 
laboratory measurements or manufacturer data at 
steady-state conditions.  
 

 

Figure 2 Measured versus estimated electric power 

input for CH1-28D using the proposed approach at 

part-load conditions for chiller CH1, based on 

coefficients identified using the CH1-28D data set.  
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Figure 3 Comparison of the accuracy of estimates of 

the electric power input.  
 

CONCLUSION 

This paper proposes a modified approach to identify 
the coefficients of one of the models used in 
EnergyPlus to estimate the electric power input to 
chillers. The proposed approach is an extension of 
the Hydeman and Gillespie (2002) method, which is 
based on the Hydeman et al. (2002). The approach 
used monitored data instead of manufacturer or 
laboratories data to identify the coefficients of the 
correlations used to estimate the electric power input 
to chillers. Data monitored every 15 minutes were 
used to identify the coefficients and verify the 
estimated electric power input to the chillers.  

Different data set sizes were evaluated and the 
evaluation criteria, such as the CV(RMSE), was 
calculated over the training, testing, verification sets 
for the summer 2009. The results demonstrate that 
28-days of data for the first chiller and 7-days of data 
for the second chiller, collected at the beginning of 
the summer season, are sufficient to obtain accurate 
prediction of the electric power input to chillers. The 
identified coefficients using the CH1-28D and CH2-
7D data sets are valid for normal operating 
conditions of the chillers installed in the central plant, 
where TCHWS is ~6.8°C and the TCNDR ~28°C. The 
CV(RMSE) for the electric power input are 3.7% and 
4.9% over the training set, 4.5% and 4.0% over the 
testing set, and 6.0% and 7.4% over the verification 
set, respectively for the first and the second chillers. 
The energy consumption over the verification set is 
underestimated by less than 0.7% for both chillers. 
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