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ABSTRACT

Building energy systems often consume 20% more
energy than is necessary due to system deviation
from the design intent. Identifying the root causes of
energy waste in buildings can be challenging largely
because energy flows are generally invisible. To
help address this challenge, we present a model-
based, whole building energy diagnostics and
performance monitoring system. The proposed
system will continuously acquire performance
measurements of HVAC, lighting and plug
equipment usage and compare these measurements in
real time to a reference EnergyPlus model that
represents the design intent. A proof-of-concept case
study will be discussed in this paper.

INTRODUCTION

The total energy consumption for US commercial
buildings was 17.43 quads (2003 CBECS database),
approximately 18% of the total U.S. energy
consumption. The Department of Energy (DOE), the
International Energy Agency (IEA),
Intergovernmental Panel on Climate Change (IPCC)
and other agencies have declared a need for
commercial buildings to become 70-80% more
energy efficient. Although energy-efficient building
technologies are emerging, a key challenge is how to
effectively maintain building energy performance
over the evolving lifecycle of the building. It is well
known that most buildings lose most of their desired
and designed energy efficiency shortly after they are
commissioned and recommissioned (Haves 1999,
TIAX 2005). Achieving persistent low-energy
performance is critical for realizing the energy,
environmental, and economic goals expressed in the
Energy Policy Act of 2005, Executive Order 13423,
and the Energy Independence and Security Act of
2007. Field experience shows that energy savings of
five to thirty percent are typically achievable simply
by applying fault detection and diagnostics (FDD) in
buildings (Liu et al., 2001, Katipamula and Brambley
2005a).

Generally, FDD methods fall into three categories

(Katipamula and Brambley 2005b).

= Quantitative model-based methods that include:
1) physical first principles (‘textbook’) models
(Li, 2004) and 2) polynomial curve fits of the

components and equipment (e.g., fans, pumps,
chillers) (Sreedharan and Haves 2001). Faults are
detected as the difference between measurements
and the model output. Significant differences
indicate the presence of a fault somewhere in the
part of the system treated by the model.
= Qualitative model-based methods include rule-
based systems and qualitative physics (House et
al., 2001).
= In contrast to the other groups, process history-
based methods (data driven) assume no a priori
knowledge of the process. Most time, these
methods are suitable when significant amounts of
data are available. The black box models using
linear regression models are employed to perform
automated fault detection in buildings (Jacob et
al., 2010).
Currently, the key barriers/challenges that have
prevented energy diagnostics from being pervasively
applied are: 1) an integrated whole building energy
FDD system does not exist. Major building
subsystems are independently controlled with
limited, add-on FDD capability. Both control and
FDD do not adequately capture the functional and
behavioural interactions  between  subsystems
resulting in sub-optimal building energy performance
and increased false alarm rates; 2) existing FDD
methods are based on available data and simple, ad-
hoc rules that do not adequately capture either the
component or system functional and behavioural
interactions. This limits the scalability and utility of
FDD methods; 3) existing FDD methods, which are
currently an “after thought” add-on to building
control systems, require manual intervention and
labor-intensive analysis. This limits the ability of
FDD methods to provide real-time actionable
recommendations for ensuring pervasive lower
energy building performance; and 4) most of existing
FDD systems to perform energy diagnostics are not
scalable because they rely on manipulation of data
by a limited number of experts which makes the
scalability of the existing process to the entire
industry infeasible.

Haves et al. 2001 explored the idea of model-based
performance assessment at the whole building level
and pointed out additional measurements are
important to provide necessary input data. Lee et al.
2007 used a whole building simulation for energy
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Figure 1 Diagram of real time energy diagnostics System.

consumption fault detection and concluded that it is
important to have a methodology to define an error
threshold to differentiate a true system fault from a
false alarm caused by imperfect simulation. We
propose an automated, model-based, whole building
performance monitoring system. The proposed
system will continuously acquire performance
measurements of HVAC from the existing Energy
Management and Control Systems (EMCS)
augmented by additional sensors as required. The
system will compare these measurements in real time
to a reference simulation model that represents the
design intent for the building. The proposed approach
mainly aims at large problems, e.g., problems that
typically lead to increase of 5% or more in energy
use (Claridge et al., 1999).

TECHNOLOGY APPROACH

The proposed technology is a dynamic model-based,
whole-building performance monitoring system that
compares measured performance metrics to those
generated by a physics-based reference model
representing “design intent” or ideal performance.
The system is depicted in Figure 1. The proposed
system integrates and compares the output from a
building simulation model to measurements to detect
deviations from design intent model that represents
the design intent for the building. The comparison
will allow for identification and quantification of
sub-optimal performance, identification of the
conditions under which sub-optimal performance
occurs, a means to compare alternative corrective
actions using whole building metrics, and finally a
means to validate improved performance once
corrective actions have been taken.

The six key elements of the system are described as
follows:

1. Building Reference M odel

A whole-building EnergyPlus simulation model
representing the desired performance of the envelope,
HVAC, lighting, water, and control systems.
EnergyPlus (EnergyPlus 2010) is a whole-building
simulation program developed by the Department of
Energy. It models heating, cooling, lighting, and

ventilating processes in buildings and includes many
simulation capabilities such as time steps of less than
one hour, modular systems, multizone airflow,
thermal comfort, and natural ventilation. The model
can also represent “plug” loads including computers
and calculates both the direct electrical energy
consumption and also the effects of heat gains in the
building. The model takes as input a description of
the building (e.g., geometry, materials, roof type,
window type, shading geometry, location, orientation
etc.), its usage and internal heat loads, and the HVAC
system description, and then computes the energy
flows, zonal temperatures, airflows, and comfort
levels on subhourly intervals for periods of days to
years.

The design intent baseline model represents the
design intent/desired performance of the building.
The building descriptions are directly pulled from the
design documentation and as-built drawings. In the
case where some of the information is not available,
an on-site investigation will be used to determine
these parameters. The HVAC sequence of operation
stands for the initial design intent or the desired
performance that the facility management team is
attempting to achieve based on the capability of
existing equipments. The weather data is collected
from the on site weather station if available. The
lighting and plug load profile in the design intent
baseline model will signify an “ideal” performance
that has only minimum lighting and plug loads on
during unoccupied hours and lighting and plug loads
proportional to the occupancy profile during
occupied hours. If the building usage is changed
(e.g., conference room is changed to office room),
then the internal load profiles will have to be updated
with the new intent.

2. Building Envelope and Systems

This represents the physical building, the envelope,
HVAC, and lighting systems — the physical plant.

3. Extended Energy Management and Control
System (EEMCS)
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The building management and control system,
together with additional sensors, are used to measure
key building performance metrics. Additional sensors
will include electrical power submetering, fluid flow
meters, and temperature sensors to determine thermal
energy flow rates. Measurement of electrical input
and thermal output, for example, enables the
monitoring of chiller efficiency. Installation of
permanent instrumentation connected to the existing
EMCS ensures that the benefits of the additional
performance monitoring capability are available over
the long-term. The existing building EMCS is
expanded to provide data acquisition for the
additional sensors and to interface to a new personal
PC where the proposed system will sit.

4. Data Mining and Anomaly Detection

The proposed algorithms, based on literature from
Statistical Process Control, take measured and
reference data as inputs and process the deviations of
the measured data from model predictions to detect
outliers or changes.

The application of statistical theory to monitor
processes relies on the assumption that the
characteristics of the data variations are relatively
unchanged unless a fault occurs in the system. It
implies that the properties of data variations, such as
the mean and variance, are repeatable for the same
operating conditions, although the actual values may
not be very predictable. The repeatability of
statistical properties allows thresholds for certain
measures, effectively defining the out-of-control
status, to be determined automatically. This is the
essence of the underlying principle used in the FDD
module.

The basic approach is to monitor a variable for out-
of-control behaviour by obtaining upper and lower
thresholds (either statistically or from domain-
expertise) that define boundaries for in-control
operation. A violation of these limits would indicate
a fault. However, analyzing each variable this way
when we have multivariate data will fail to capture
correlations between variables. We use Principal
Components Analysis (PCA) to account for such
correlations. PCA is an optimal dimensionality
reduction technique in terms of capturing the
variance of data and is widely used in monitoring
industrial ~ systems. The lower dimensional
representations of data produced by PCA are used to
generate the Hotelling T statistic and the Q-statistic
(Chiang et al., 2000) which serve as “anomaly
scores” — indicators of in-control and out-of-control
behaviour.

The T? statistic is a scaled squared 2-norm of an
observation vector from its mean. The scaling on the
observation vector is in the direction of eigenvectors
obtained by PCA. Given a level of significance,
appropriate threshold values for the T”2 Statistic can

be determined automatically (See Chiang et al., 2000
for details).

The Q-statistic is a similar measure and indicates the
squared 2-norm of an observation vector from its
mean in directions orthogonal to the eigenvectors
retained from the PCA decomposition. In other
words, it is a 2-norm of the residues. T and Q
statistics thus are complementary and together, give a
good indication of the statistical process going out of
the normal operating range.

The FDD module utilizes operational data from the
BMS such as temperature, airflows and electricity
consumption as well as output data from EnergyPlus
simulations. T and Q statistics are computed on the
deviations of the measured data-points from model
predictions for the purpose of fault detection and
fault identification. PCA, which underlies T? and Q
statistics, models the multivariate data as multivariate
Gaussian distributions but this assumption may not
be true in the cases of the measured data from BMS
or data from EnergyPlus simulations. However, it is
more reasonable to assume that the differences
between measured points and corresponding
predictions from EnergyPlus can be approximated as
a multivariate Gaussian distribution. This is the
motivation for computing the anomaly scores on the
deviations rather than the measured data or model
predictions directly.

5. Energy Performance Visualization Dashboard

The current state-of-the-art building management
systems (BMS) provide facility managers with a rich
set of building data. This building data includes
system and equipment performance (temperature,
pressure, energy consumption, etc.), controller status,
and equipment fault status. However, the
interconnected complexity and shear volume of this
building data often make facility manager building
operation decision-making difficult. Today, facility
managers rely on their personal intuition and
experience to perform building operation decision-
making. We are developing an interactive, visual
interface for facility managers to more effectively
exploit available building data to improve building
operation decision-making. The energy performance
visualization dashboard aims to enable: 1)
visualization of energy-related metrics at different
building and HVAC systems levels; 2) comparisons
between measured quantities and data derived from
the integration of both data mining and physics-based
modeling methods; 3) energy fault diagnostics and
classification to aid in decision support targeting of
root cause analysis; and 4) identifying persistent
trends in energy usage.

6. Integrated Softwar e Environment

Represented by the Y symbol in Figure 1, a software
environment and supporting signal processing
integrated with the EEMCS and Reference
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EnergyPlus Model such that the Reference Model
outputs can be automatically assimilated with and
compared to measurements. This software system is
built upon the Building Control Virtual Test Bed
(BCVTB) (Wetter 2011) an open source software
platform for integration of EEMCS data and a range
of energy modeling software tools including
EnergyPlus. The BCVTB makes use of Ptolemy II
(Eker et al, 2003), an open source software
environment for combining heterogeneous modeling
and simulation tools. Figure 2 shows a screen shot of
BCVTB.
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Figure 2 Diagram of the Building Control Virtual
Test Bed.

The BCVTB enables the integration to the EEMCS
and also scripting and signal processing within the
Ptolemy II environment. The BACnet module in
BCVTB allows the user to interface with any
BACnet (A Data Communication Protocol for
Building Automation and Control Networks)
compatible building management system so as to
collect the real time building operation data. To real
time run EnergyPlus in BCVTB, the external
interface objects are used to exchange data between
EnergyPlus and BCVTB. Details about this
implementation can be found from (Wetter 2011).

CASE STUDY

The implementation of the proposed system greatly
depends on the existing building control system
communication capability. It is desirable that the
existing EMCS should support open communication
protocols such as BACnet, LonWorks, or Modbus.
The building used in this case study is the Atlantic
Fleet Drill Hall, at Naval Station Great Lakes, Great
Lakes, IL.

Building Facts

Drill Hall is a two-story facility with a gymnasium-
like drill deck, office, classroom, and administrative
rooms. The gross area of this building is 69,218 ft2
(6,431 m2). The construction was finished in October
2007. This building is LEED® Gold certificated.
Figure 3 shows the exterior and drill deck interior
views for this building.

Figure 3 Drill Hall building at Great Lakes Naval
Sation

The Drill Hall HVAC system consists of four airside
subsystems and two separate waterside subsystems.
The drill deck is served by two variable-air volume
(VAV) air handling units (AHU) with heating and
cooling capability. A classroom on the second floor
is served by one VAV air handling unit. Unit
operation depends on the occupancy of the drill deck
space. Double-walled sheet metal ductwork with a
perforated liner and drum louvers distribute the air
throughout the space. The office and administrative
area is served by one VAV air handling unit with
VAV terminal units (with hot water reheat). The
chilled water system consists of two 110-ton (386.85
kW) air-cooled rotary-screw type chillers with fixed-
speed primary pumping and variable-speed
secondary pumping. Heating is supplied from the
existing campus-wide steam system through a steam-
to-water heat exchanger. The hot water serves unit
heaters, VAV box reheating coils, and air handling
unit heating coils. There is an instantaneous steam-
to-domestic hot water generator for domestic hot
water service. The server room and communication
service room are served by dedicated duct free split
systems. A distributed Direct Digital Control (DDC)
control system is installed in this building to monitor
all major environmental systems. Building electric
and water meters are also read by the DDC system.
Operator workstations provide graphics with real-
time status for all DDC input and output connections.

Additional meters and sensors are required to
calibrate models and accurately measure energy
consumption to validate results. An on-site weather
station, including a pyranometer, aspirated wet and
dry bulb temperature sensors, and wind speed and
direction sensors, is installed on the roof. BTU
meters (a matched pair of supply and return water
temperature sensors, water flow meters) are installed
for the chillers, secondary chilled water loop, and hot
water loop. Lighting load power, plug load power
and individual chiller power are also monitored
through sub meters. These sensors and meters are
integrated into the existing building Energy
Management and Control System (EMCS).

EnergyPlus Reference M odel

The EnergyPlus model used in this study is version
5.0 (build 5.0.0.035.). The structure of the HVAC
system in the EnergyPlus model is a series of
modules connected by air and water fluid loops that
are divided into a supply and a demand side. In order
to keep the size of the model and computation time
manageable, zoning simplifications were made when
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entering the building geometry. All the rooms
serving by the same VAV box were integrated into
one thermal zone. The building model consists of 30
conditioned zones (12, 12, and 6 zones for the drill
deck, first, and second floors respectively). Some
zones represent a physical room in the building while
other zones represent adjacent multiple rooms
operating under similar energy usage/requirements.
Each zone includes an "internal mass" that represents
the thermal storage capacity of the room(s) (e.g.,
interior walls, furnishings, books, etc.).

Both an extensive sensitivity analysis and an
uncertainty analysis were performed to understand
the EnergyPlus model behaviours (Eisenhower et al.,
2011). The top three input parameters, which
influence the facility annual total electricity
consumption most, are the AHUs (serving the drill
deck) supply air temperature setpoint, chiller
reference COP (Coefficient of Performance) and drill
deck lighting schedule. The top three input
parameters with significant impact on facility
electricity peak demand are chiller optimum part load
ratio, chiller reference COP and the AHUs supply air
temperature setpoint.

Real Time Performance Monitoring and Energy
Diagnostics System

The overall system schematic diagram is shown in
Figure 4. The personal computer (PC) server running
the proposed system is located in the same building
location as the PC running the EMCS. The required
building performance data is collected through the
existing EMCS and then made accessible to the
energy diagnostics system through a BACnet
gateway.
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Figure 4 Energy diagnostics system schematic
diagrams

Within the BCVTB, there are two modules necessary
to achieve the proposed functional requirements. The
BACnet module is used to acquire the relevant
building performance data from the EMCS BACnet
interface through an FEthernet connection. The
sampling interval is 5 minutes. The data then is
transferred to the PostgreSQL database. The
EnergyPlus module establishes the communication
between the BCVTB and an external pre-built

EnergyPlus model that represents the design/optimal
building performance. The EnergyPlus simulation
timestep is 15 minutes. The EnergyPlus module
receives the relevant real time data (e.g., weather
data) and execute the external EnergyPlus reference
model. The EnergyPlus output results then are passed
back to the PostgreSQL database.

The Matlab Data Diagnostic tool applies data mining
and anomaly detection methods to identify building
faults using building measurements and building
EnergyPlus reference model predictions data stored
in the PostgreSQL database.

The Visualization dashboard is the user interface to
demonstrate the results as well as to display the real-
time building performance data. It should be noticed
that the BCVTB, EnergyPlus building model, the
Matlab Data Diagnostic and database software are all
running in the background and not be visible to the
user.

Energy Diagnostics Results

The proposed energy diagnostic tool was installed in
the drill hall since April 2010. The facility was well
maintained and so many things were done right from
an energy perspective. However, the tool did
indentify a series of improvements that include
changes to lighting, controls and other further
optimizations in the drill hall. Currently, anomaly
scores and thresholds are computed by analyzing data
form the previous 30 days. In other words, data used
for analysis comes from a 30-day sliding window and
thus the thresholds can vary with time.
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Figure 5 Potential sensor bias diagnostics

Figure 5 shows an anomaly in an AHU displayed in
the visualization dashboard (discussed in the next
section). The biggest contribution to this anomaly
comes from a difference between the simulated and
measured air temperature exiting the heating coil.
The anomaly corresponds to potential sensor bias for
the temperature sensor located right after heating
coil. It was confirmed with other data analysis that
this temperature sensor was drifting.
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The upper plot in Figure 6 compares the outside air
fraction for an AHU on May 4th, 2010 in the actual
operation with that calculated from the reference
EnergyPlus model. The anomaly scores (blue line)
based on T? statistics are plotted in the lower part.
Whenever the anomaly score is above the threshold
(red dash line), a potential fault is indicated. Since
only one variable (outside air fraction) was used to
compute anomaly score, there is no contribution
weights plot. In non-economizer mode, the outside
air intake is up to around 50% of total supply airflow,
which is around 8,000 CFM (3.775 m’/s). According
to the design intent, the building needs about 6,000
CFM (2.831 m’/s). to make up the exhaust and
ensure a slightly positive building pressure.
Therefore, there is a potential to further reduce the
outside air intake under non-economizer mode,
which will save both cooling and heating energy. The
annual steam consumption in heating season will be
reduced by about 30% based on reference
EnergyPlus model prediction.
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Figure 7 Lighting fault

Figure 7 shows the identified faults due to lights on
during unoccupied hours from November 1% to
November 15" 2010. Lighting submetering data
from June 2010 was used as training data. The top
plot shows the anomaly score. The middle plot shows
the actual lighting electricity consumption. The
periods marked with red line correspond to the hour
when lights on during unoccupied hours. While, the

periods that lights were off when supposed to be on
is marked with green line.

Visualization Dashboard

Figure 8 shows a snapshot of the interactive user-
interface. The interface is divided in three panes —
(a) loading data (shown in red box in figure below);
(b) energy usage (shown in green box); and (c)
system health —anomalies (shown in blue box).

The top part of the user interface is for visualizing
energy usage data. There are five visualizations that
display various aspects of how energy usage is
distributed across different modalities (lights, plug
loads, cooling, fans etc.) in the selected time period.

= The first pie-chart displays energy breakdown at
any given time instant,

= The second pie-chart displays energy breakdown
at the time-step corresponding to peak overall
power consumption during the selected time
period,

= The third pie-chart displays energy breakdown of
the total energy usage over the selected time
period,

= The line plot describes the power breakdown over
the entire history of the selected time-period.

= The bar chart displays total energy consumed on
the HVAC Hot Water side for the selected time
period.

There are two kinds of data that can be explored: (a)
real time data from BMS and (b) data from the
EnergyPlus simulation model. There is a pull-down
menu from which user can select either the BMS data
or the model data to visualize. User also can select a
modality (lights, plug loads, cooling, fans, total) and
visualize comparison between the model data and
measured data from BMS. Once the selection is
made, a new plot opens up that displays the
comparison for the selected attribute (shown in
Figure 9).
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Figure 9 User interface showing hot water
consumption comparisons between the model
predictions and measurements
(noon February 14, 2011 to noon February 16, 2011)
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System Health—Anomaly Scores

The bottom part of the user interface (Figure 8) is
dedicated to Anomaly Scores and monitoring the
health of each subsystem (Chilled Water System, Hot
Water System, Air Handling Units and Variable Air
Volume Boxes). Each subsystem (AHU, Chillers,
and the Hot Water System) has a graph associated
with it indicating the anomaly score (in blue)
corresponding to the system health. Also shown in
red is a threshold calculated mathematically. If the
anomaly score exceeds the threshold at any time
instant, it indicates an anomalous event. The anomaly
score is computed only when the system is in
operation and no anomaly score is displayed when
the system is not running.

Subsystem Drilldown — Diagnose

The user interface displays the anomaly score and the
threshold. In addition, the display also plots the
“contributions” of individual variables that were used
in computing the anomaly score (see an example in
Figure 6). This gives the user an idea of the
significance of different variables in causing an
anomaly. A slider functionality is provided where the
user can explore a time-instant of his/her choice to
understand the variable contributions. The user
interface also allows the user to select any of the
variables via a pull-down menu and view time-
history of the BMS data corresponding to that sensor,
data from the model and the difference between the

raw data and model simulation.

CONCLUSIONS AND LESSONS
LEARNED

A proof-of-concept real time whole building energy
and diagnostics tool is developed and demonstrated

Figure 8 Visualization dashboard energy usage and performance monitoring

in a real building. There are a few lessons and
observations from the case study.

= A real-time whole building performance
monitoring and energy diagnostics tool using
EnergyPlus has been developed and demonstrated
in proof-of-concept form. The EnergyPlus model
is a dynamic representation of expected building
performance, and it does not represent the real
conditions in buildings. Real buildings often don’t
perform as expected by their designers due to 1)
faulty construction, 2) malfunctioning equipment,
3) incorrectly configured control systems, and 4)
inappropriate operating procedures, etc.

= A framework of whole building simulation-based
FDD has been established. FDD algorithms based
on statistical process control method such as T*
and Q statistics have been tested.

0 The quality and availability for both nominal
and faulty data are very important to establish
ground truth to test and wvalidate FDD
algorithms.

0 Variable contributions to the anomaly scores
provide a good insight into probable causes of
a detected change and/or fault.

0 Transient periods including system start-up
and shut-off need to be excluded to avoid
some false alarms.

= A visualization dashboard for building
performance energy monitoring and energy
diagnostics has been developed and deployed in a
real building. This dashboard provides an
effective way for building facility manager to
perform building performance decision-making.

= Real-time weather data are essential to real-time
whole building performance monitoring and
energy diagnostics.

= Electrical submeters and thermal energy meters
(BTU meters) are important for FDD.
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