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ABSTRACT 
This study proposed the Tikhonov regularization 
strategy coupled with the least-squares optimization 
to identify unsteady gas release processes from a 
fixed spot. The Tikhonov regularization adds a 
regularized term to the optimizing objective function 
and imposes a bound to solution. To accelerate the 
solving procedure, the unsteady gas concentration is 
calculated as the convolution integral between the 
concentration response by a unit impulse release and 
the arbitrary unsteady release. It finds the developed 
inverse model can accurately and efficiently quantify 
the unsteady gas release either in a constant or 
sinusoidal form for a while in a square ventilation 
cavity. 

INTRODUCTION 
In case airborne hazards are accidentally released 
indoors, it is always helpful to know where and how 
the pollutants have been released. Thereafter, 
emergency actions can be appropriately taken to 
protect indoor occupants from being harmed. To 
identify an unknown pollutant release event, some 
detection sensors shall be deployed. However, when 
the sensor alarms the accidental release of a 
hazardous pollutant, the event has already happened. 
An intuitive method to determine the source location 
and identify the unsteady release scenario is by 
recovering the pre-occurring process from the time of 
sensor alarming until to the moment of initial release. 
Such forms the framework of the so-called inverse 
modeling, i.e., finding some unknown causal 
information based on a limited amount of detected 
consequences. 
The current inverse modeling is able to determine the 
pollutant source location. Zhang and Chen (2007) 
developed both the quasi-reversibility and pseudo-
reversibility models to successfully locate an 
instantaneous gas source. The quasi-reversibility 
model reverses the time marching direction of the 
governing equation and improves the solution 
stability by replacing the second-order diffusion term 
with a fourth-order stabilization term. The pseudo-
reversibility model solves the convection transport of 
pollutant based on the reversed flow field. Later, the 
quasi-reversibility model is extended into identify a 

particulate source after including the gravitational 
settling effect, and the Lagrangian-reversibility 
model is proposed to circumscribe a particulate 
source with discrete track particles (Zhang et al., 
2011). With a similar operation to reverse the flow 
field, Liu and Zhai (2008) developed the adjoint 
method to locate an instantaneous point source 
indoors. The backward-in-time pollutant plume 
location and travel time probabilities are found to be 
adjoint states of the forward-in-time local pollutant 
concentration. After solving the adjoint probability 
equation, the likelihood of a pollutant source location 
can be predicted. The above inverse models are 
solved by computational fluid dynamics (CFD), so 
the accuracy is generally good. 
In common situation, if there is no rigor demand in 
identification accuracy, one may turn to the more 
efficient multi-zone model. Sohn et al. (2002) 
developed a data-interpretation model based on the 
Bayesian-probability to search for a location and 
release scenario in a pre-established database, trying 
to find a solution that best matches with the 
measurement concentration. The database presumes 
all possible source locations and release scenarios, 
and then simulates and stores the concentration 
information accordingly. Such interpretative strategy 
based on probability is further extended to establish a 
systematic sensor network (Sreedharan et al. 2006). 
Similarly with the multi-zone model, Vukovic et al. 
(2010) proposed to find an indoor pollutant source 
based on the optimization of the artificial neural 
network. The release scenario of pollutant sources is 
assumed to be known, so interpreting result in real 
time can be realized. 
However, in practice the release scenario of a 
pollutant source is unknown and the unsteady release 
process can be very complicated. It may be very hard 
to enumerate all possible pre-event scenarios to 
establish a complete database, though the multi-zone 
models are efficient. On the other hand, the 
aforementioned inverse CFD modeling should be 
able to catch the pollutant source location but cannot 
quantify the complicated unsteady release process. 
This paper thus presents the inverse fundamentals to 
identify the unsteady release process of a gaseous 
pollutant source based on CFD, by assuming the 
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release is from a known fixed location in a steady 
flow field. 

INVERSE MODELS 
The current sensor system can respond discrete gas 
pollutant concentration at the measurement locations, 
and such concentration information is treated as the 
known inputs to infer the unsteady release process. 
Suppose the steady flow filed is available, the core 
task of inverse modeling is to find a release scenario 
that best matches with the provided measurement 
concentration. Assume the concentration distribution 
and the unsteady gas release satisfies the following 
relation, 
 
c=Aq     (1) 
 
where c=

0
, , , ,

k n

T

t t tC C C     is the concentration 

vector at discrete time tk at the measurement spot, 
q=

0
, , , ,

k n

T

t t tq q q     is the gas release strength, A is a 

matrix that describes the cause-effect relation 
between the release strength and the exhibited 
concentration. Such cause-effect relation is governed 
by the gaseous pollutant transport equation, 
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where  is air density, C is unsteady pollutant 
concentration, t is time, xi (i=1, 2, 3) is the position in 
the Cartesian coordinates, ui (i=1, 2, 3) is the air 
velocity component, and   is the effective 
diffusivity. If the pollutant source location is fixed, 
the concentration varies linearly with the release 
strength at a fixed spot, i.e., A would be a linear 
matrix. 
The inverse determination of the unsteady release 
process is to solve for the vector q based on equation 
(1). If the solution is optimized by the linear least 
squares scheme, the task is to find a q that can 
minimize the residual fucntion Z as, 
 

2

2
( )Z  q A q c     (3) 

 
The above equation weighs the difference between 
the measured concentration (c) and the calculated 
concentration based on the cause-effect relation (Aq). 
Generally, by minimizing the residual equation (3), 
the release vector q can be solved. However, 
equation (3) is ill-posed because matrix A cannot be 
inversed. This paper adopts the well-known 
Tikhonov Regularization (Tikhonov et al., 1977) to 
change the ill-posed problem into a well-posed 
problem. Based on the Tikhonov regularization, the 
objective residual is defined as, 
 

2 22
2 2

( )Z   q Aq c Lq    (4) 
 

By differentiating the above equation with respect to 
q and setting it to zero, the corresponding q when 
minimizing equation (4) is, 
 

2 1( ) ( )T T T   q A A L L A c   (5) 
 
where λ is the regularization parameter that controls 
the relative strength of the regularization operator L. 
The most popular form of L is an N-th order 
derivative operator, 
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For a smooth solution, a typical choice is N=2. 
Therefore, L can be expressed by (Hansen, 1997), 
 

( 2)

1 2 1 0 0
0 1 2 1 0
0 0 1 2 1

n nR  

 
   
 
 
 







     

L
  (7) 

 
Choosing a suitable λ becomes the core of the 
Tikhonov regularization. One effective method to 
find an optimal λ is by applying the L-curve approach. 
The L-curve presents the norm of regularized term 
(Lq) versus the norm of residual term (Aq-c) in the 
log-log coordinate for a sequence of λ. The L-curve 
can be smoothed by the cubic spline as recommended 
by Hansen (1997). The regularization parameter λ 
when obtaining the maximum curvature on the L-
curve is often the optimal choice. The L-curve is 
defined as, 
 

2 2
( (log ), (log )) (log , log )X Y   Aq c Lq  (8) 
 
and its curvature is, 
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   (9) 

 
where the differentiation in equation (9) is with 
respect to logλ. The L-curve criterion is to find the 
λ(logλ) that matches with the curvature maximization. 
So far there is still lack of the explicit form of the 
matrix A. If the governing equation (2) is solved for 
concentration response for each release strength, the 
optimization will be computationally prohibited. 
Fortunately, when the release location is fixed, 
matrix A is linear. The concentration from an 
arbitrary release can be expressed as the convolution 
integral between the unsteady release and the 
concentration response of a unit impulse release as, 
 

  ( ) ( )t t t d   




  ( )c Aq q A  (10) 

 
where ( )q  is an arbitrary release function over 
time, t - τ( ) is a unit impulse release. The discrete 

Proceedings of Building Simulation 2011: 
12th Conference of International Building Performance Simulation Association, Sydney, 14-16 November. 

- 422 -



format of the concentration at a certain point can be 
expressed as (Ishida and Kato, 2007), 
 




  nknknn
k

knkn FqFqFqFqFqC 110
0

∑
∞   (11) 

 
where Cn is the concentration at n time step at a 
location, kq is the arbitratry release strength at k time 

step, and n kF   is the local cocentration response at 
(n-k) time step from a unit impulse release, which is 
also called the local concentration response factor 
(Ishida and Kato, 2007). 
By comparing equation (11) with equation (10), it 
can be seen that the time step (T) is removed in 
equation (11). Hence, the concentration response 
factor shall take into account T. For convenience, 
the unit impulse release process is defined as an 
isoceles triangle as shown in Figure 1, which spans 
2T. The total rate by the unit impulse release would 
be (1unit·T). 
 

 
Figure 1 The defined unit impulse release scenario 

 
DESCRIPTION OF TEST CASES 
For demonstrating the inverse modeling, this 
investigation has designed several unsteady gas 
release scenarios in a two-dimensional square cavity 
as shown in Figure 2. Conditioned air at 15 oC is 
supplied in from a slot inlet located at the upper-left 
corner, while the inside air is extracted by an exhaust 
at the lower-right corner. Except for the bottom 
surface that is maintained at 35.5 oC, other walls of 
this cavity are controlled to be 15 oC. 
Two gas source locations are designed: one is at the 
air supply; the other is at the cavity centre. This 
investigation tests two unsteady release forms: either 
a constant release for a while or the release following 
the sinusoidal curve for a cycle over time. The 
combinations between different gas source locations 
and release scenarios constitute four test cases as 
shown in Table 1. In Cases 1 and 2, the source is at 
the air supply inlet, while the gas source releases at 
the cavity centre in Cases 3 and 4. The detailed 
unsteady release process in each case is illustrated in 
Figure 3.  
 

 
Figure 2 A two-dimensional square cavity to test the 

inverse model 
 
Before conducting inverse modeling, the inside 
airflow and measurement concentation at the 
monitoring point shall be provided. This 
investigation has applied the forward CFD modeling 
to obtain the required information. The inside airflow 
is governed by a set of partial differential Navier-
Stokes equations including fluid continuity, 
momentum and energy. To resolve flow turbulence, 
the Reynolds-averaged approach is applied, and the 
random turbulence effect is approximated by the 
RNG k-turbulence model. Once the flow is solved, 
the flow is frozen for unsteady gas dispersion 
modeling. In addition to gas concentration 
distribution, the corresponding concentration 
response factor by a unit impulse release is also 
solved. A commercial CFD software, FLUENT, is 
applied to carry out the forward simulation. 
 

Table 1 
The designed test cases 

 
Case Source location Release form 
1 Inlet Constant for 3 s 
2 Inlet One sinusoidal cycle for 4 s 
3 Cavity centre Constant for 10 s 
4 Cavity centre One sinusoidal cycle for 20 s 
 
Figure 2 presents the solved flow pattern inside the 
cavity. The flow generally goes clockwise and forms 
a big vortex in the centre. This internal airflow is 
under forced convection. Figure 4 illustrates the 
unsteady gas concentration at the outlet for each case. 
The concentration decays cycle by cycle in Cases 1 
and 2, but gradually increases in Cases 3 and 4.  
Figure 5 shows the concentration response at the 
outlet by the unit impulse release when the source is 
at the inlet and cavity centre, respectively. The time 
step (T in Figure 1) for impulse release is 0.1 s. 
However, to obtain the unsteady concentration 
response with a high resolution, the time step in 
solving equation (2) is 0.01 s. 
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(a) Case 1 (at the inlet) 

 
(b) Case 2 (at the inlet) 

 
(c) Case 3 (at the cavity centre) 

 
(d) Case 4 (at the cavity centre) 

Figure 3 Unsteady release process in each case 
              

 
(a) Case 1 (Constant release at the inlet) 

 
(b) Case 2 (Sinusoidal release at the inlet) 

 
(c) Case 3 (Constant release at the cavity centre) 

 
(d) Case 4 (Sinusoidal release at the cavity centre) 

Figure 4 The discrete concentration over time at the 
cavity outlet 

 
The monitored discrete concentration over time at the 
cavity outlet as shown in Figure 4 and the steady 
flow field in Figure 2, are the given known 
information to conduct inverse modeling. The unit 
impulse concentration response as shown in Figure 5 
will be used to reconstruct the cause-effect relation 
between release strength and concentration. 
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(a) Release at the air supply inlet 

 
(b) Release at the cavity centre 

Figure 5 The unit impulse concentration response 
(RF) at the cavity outlet 

 
RESULTS AND DISCUSSIONS 
The inverse identification is carried out by a self-
developed program in MATLAB. After optimizing 
equation (4) based on the measured discrete 
concentration, the release strength vector, q, can be 
provided. 

Case 1 (Constant release at the inlet) 
With a time step of 0.1 s and the monitoring duration 
of 50 s, the concentration vector c has the form of  

501 1R c and coefficient matrix 501 501R A . Here we 
suppose the contaminant release and concentration 
monitoring are synchronous. 
As previously mentioned, the key to solve inverse 
modeling is to find a suitable regularized parameter, 
λ. We tested different λ in a geometric sequence, 
starting from 1.0e-5 to 1.4458 with an increasing 
ratio of 1.02. Figure 6(a) shows the L-curve, which is 
calculated based on equation (8). The relative weight 
ratio between the original optimizing term and the 
regularized term varying with λ can be viewed. The 
curvature κ of the L-curve with respect to logλ is 
shown in Figure 6(b), which is plotted based on 
equation (9). Here λ starts from 3.9211e-5 (logλ=-
4.41), rather than the initial value of 1.0e-5. This is 
because when λ is very small, the inverse solution 
becomes very sensitive to the regularization 
parameter. The peaks, C1, C2, C3, C4 and C5, indicate 
the inflexion points on the L-curve. Figure 6(c) 
presents the true error (qerror) versus logλ. qerror refers 
to the difference between the recovered release 
strength and the realistic release with the expression 
of, 
 

error ture recovered 2
q  q q    (12) 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6 Identified unsteady release for Case 1 (a) 
linear L-curve, (b) curvature versus logλ, (c) true 
error versus logλ and (d) recovered release rate 

versus time for initial 20 s 
 

Obviously, C1, C2, C3, C4 and C5 are the five possible 
optimal regularization parameters, and O1, O2, O3, O4 
and O5 indicate their corresponding true errors. O1 is 
the point where the true error is the minimum so that 
the regularization parameter at point O1 is the 
optimum between these five choices. Hence, the 
optimal regularization parameter is taken as 
λ=1.0554e-4 (logλ=-3.9766). Figure 6(d) shows 
recovered release strength versus time and the 
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comparison with the actual release scenario. For 
viewing clearly, only the result within the initial 20 s 
is displayed. In the later 30 s, the recovered release 
strength is nearly identical to the actual release. 
From Figure 6(d), it can be seen there are some 
oscillations in the recovered release for the initial 3 s. 
However, the amplitude of the oscillation can be 
controlled within 10% of the baseline value. The 
realistic release suddenly stops after t=3 s. The 
inverse modeling can right catch the trend of such 
sharp change. Though some oscillations emerge 
within 0~3 s, the overall agreement of these two 
processes is quite good. This attests to the good 
performance of the proposed inverse modeling 
strategy. 
It shall point out during the practical use, the true 
release is unknown, so λ shall be selected based on 
Figure 6(b) rather than from Figure 6(c). We have 
tested other λs on C2, C3, C4 and C5, and found they 
generally work. However, when λ increases, the 
generated oscillation also increases. Besides, as we 
searched for λ only within a limited range instead of 
the whole distribution, the provided λ might be only a 
local optimal parameter. It is possible there exists 
such a λ, which may provide better result than that 
shown in Figure 6(d). 

Case 2 (Sinusoidal release at the inlet) 
In case 2, the contaminant source releases for 4 s in a 
sinusoidal form (Figure 3(b)). The concentration is 
monitored at the outlet from t=0 to 70 s. With the 
same time step of 0.1 s, the concentration has a 
dimension of 701 1R c  and coefficient matrix 
of 701 701R A . 
Again, λ is tested based on a geometric sequence 
from 1.0e-5 to 1.4458 with an increasing ratio of 1.02. 
Figure 7(a) plots the L-curve. Its curvature versus 
logλ is shown in Figure 7(b), where λ starts from 
3.9211e-5 (logλ=-4.4066). Similar to Case 1, the 
peaks C1, C2, C3 and C4 indicate the inflexion points 
of the L-curve and thus are possible choices for the 
optimal regularization parameters. O1, O2, O3 and O4 
indicate the corresponding true errors as shown in 
Figure 7(c). Among them, O1 is the point with the 
minimum error. Therefore, λ=6.6929e-5 (logλ=-
4.1744) at C1 (O1) is adopted for inverse release 
recovering. 
The comparison between the recovered unsteady 
release and the true release for the previous 20 s is 
shown in Figure 7(d). It shows that the recovered and 
true releases have excellent agreement in the initial 
3.5 s. The recovered release captures the first release 
peak clearly and accurately. However, the second 
peak is only a half of the true release. The underlying 
possible reason is the concentration response delay or 
insufficient monitoring data that results in some 
unknown identification uncertainty. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7 Identified unsteady release for Case 2 (a) 
linear L-curve, (b) curvature versus logλ, (c) true 
error versus logλ and (d) recovered release rate 

versus time for initial 20 s  
 

Case 3 (Constant release at the cavity centre) 
In case 3, the contaminant source releases for 10 s at 
a constant rate (Figure 3(c)). The concentration is 
monitored at the outlet from t=0 to 50 s. With the 
same time step of 0.1 s, the concentration has a 
dimension of 501 1R c  and coefficient matrix of 

501 501R A  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8 Identified unsteady release for Case 3 (a) 
linear L-curve, (b) curvature versus logλ, (c) true 
error versus logλ and (d) recovered release rate 

versus time 
 

Similar to the previous cases, the L-curve, curvature 
of the L-curve and true errors are plotted in Figure 
8(a), (b), (c), respectively. λ ranges from 5.0e-6 to 
0.7229 with an increasing ratio of 1.02. The true 
error at O1 is the minimum, so the regularization 
parameter at O1 is the optimal value. Therefore, we 
selected λ=1.0403e-5 (logλ=-4.9828) at C1 (O1) for 
inverse release identification. 
The recovered unsteady release process is compared 
with the true release process in Figure 8(d). Similar 
to case 1, some oscillations exist. However, the 

amplitude of oscillation is within 10% of the actual 
baseline value. 

Case 4 (Sinusoidal release at the cavity centre) 
The source releases for 20 s in a sinusoidal form 
(Figure 3(d)) in Case 4. With the monitoring duration 
of 70 s and a time step of 0.1 s, the concentration 
vector c holds the form of 701 1R c  and coefficient 
matrix 701 701R A . 
Figure 9(a), (b) and (c) show the L-curve, curvature 
of L-curve and true errors of inversed solution, 
respectively. λ varies in a geometric sequence from 
5.0e-6 to 0.7229 with an increasing ratio of 1.02. 
Here, O1 with λ=4.2209e-4 (logλ=-3.3746) is the best 
choice because its error is the minimum. 
Figure 9(d) shows the comparison between the 
recovered and the true release. The recovered and 
true release processes agree excellently before t=18 s. 
When the true release suddenly stops after t=20 s, the 
response in the recovered release lags behind a little 
bit. Though there is some difference in the second 
peak, the overall trend of the recovered release 
matches well with the actual process. 
The above four cases are conducted in a personal 
computer with a frequency of 2.4G Hz and memory 
of 3.25GB. The computational time for inverse 
identification depends on the search range of λ as 
shown in Table 2. The third column lists the 
execution time for a big range of λ. It ranges from 
around one to three times of the acutual monitoring 
duration of the polluant release. However, if λ is 
limited to a small range but still including the optimal 
λ as listed in the last column of Table 2, the inverse 
identification can be fulfilled faster than the real time. 
The solution time for the local concentration 
response factor (by the unit impulse release) for 100 s 
is around 3.5 hours, but such computation can be 
carried out before the inverse identification. This 
indicates the proposed inverse identification is quite 
efficient. 
 

Table 2 
Cumputation time for each inverse identification 

 
Case Inverse 

duration 
Calculating time 
for a big range of 

λ

Calculating 
time for a small 

range of λ 
1 50 s 63 s 

(-5<logλ<0.16) 
20 s 
(-5<logλ<-3.4) 

2 70 s 143 s 
(-5<logλ<0.16) 

46 s 
(-5<logλ<-3.4) 

3 50 s 70 s 
(-5.3<logλ<-0.14) 

24 s 
(-5.3<logλ<-3.4)

4 70 s 158 s 
(-5.3<logλ<-0.14) 

55 s 
(-5.3<logλ<-3.4)
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(c) 

 
(d) 

Figure 9 Identified unsteady release for Case 4 (a) 
linear L-curve, (b) curvature versus logλ, (c) true 
error versus logλ and (d) recovered release rate 

versus time 

SUMMARY 
This paper proposes an inverse modeling strategy to 
identify the complex unsteady release process from a 
fixed gaseous pollutant source. The Tikhonov 
Regularization is coupled with the least squares 
optimization to solve for the unsteady release 
strengths. To accelerate the solving procedure, the 
cause-effect relation between the release strength and 
concentration response is described by the 
convolution integral theory. The test results show the 
developed inverse model can quantify the complex 
release process accurately and efficiently. Though 

there are some oscillations when the release rate 
changes sharply, the generated error is within 10% of 
the baseline value. If the regularized parameter is 
limited to a small range, the inverse identification can 
be fulfilled faster than the real time, once the 
concentration response of a unit impulse release is 
pre-calculated. This shows the proposed inverse 
strategy is promising to be applied for emergency 
response when airborne hazards are accidentally 
released. 
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