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ABSTRACT 
Because of the complexity and diversification of 
today’s HVAC systems, Fault Detection and 
Diagnosis (FDD) systems have become necessary to 
reduce maintenance cost and to provide building 
energy efficiency, but with a minimum of 
engineering cost. Based on a generic method of 
generating Fault Detection (FD) systems from 
Building Information Models (BIM), we now 
propose an  extension of the underlying Heat Flow 
Model (HFM) to implement a diagnosis engine and 
thus create the complete software system called 
HFM-FDD. The diagnosis uses an associative 
network to map the dynamically reported failure rule 
vectors to a small set of probable faults. The 
associative network is automatically created at every 
time-step through fault simulation that takes the 
current conditions such as outdoor temperature, set-
points, and occupancy into account. While keeping 
the engineering costs low, the shown diagnosis result 
is very promising. 
 

INTRODUCTION 
HVAC system Fault Detection and Diagnosis (FDD) 
is an important topic to both researchers and 
practitioners. While commercial building HVAC 
systems become more complex in order to satisfy 
user requirements on thermal comfort and energy 
efficiency, maintenance cost is expected to be kept 
minimal through the building lifecycle. Automated 
FDD is proposed as a suitable technology to meet 
these needs. In order to minimize the engineering 
cost of creating specialized FDD systems for 
individual HVAC installations, we have proposed an 
automatic generation process from BIMs to HFM 
model-based fault detection systems that report 
failures resulting from faults in the observed 
mechanical system (Zimmermann et al. 2010, Lu et 
al. 2010). Here, we report our latest research on 
extending the Heat Flow Model (HFM) with 
distributed fault simulation functions and using an 
associative network for fault diagnosis to map the 
reported failures back to the most probable faults. 
This completes the automatically generated FDD 
system and provides critical support for both finding 
and locating faults. Using the definition by 

Katipamula and Brambley (2005a and b), the HFM-
FDD is classified as Quantitative and Simplified 
Physical Model based approach, using some Rule-
Based features. 
 

HFM-FDD BASICS 
Method overview 
The HFM fault detection method works in principal 
as follows:  The HFM represents the components 
(e.g. coils, fans) and mass flow connections (pipes 
and ducts) of the observed HVAC system as a 
directed graph of nodes and arcs. Each node 
estimates valid intervals for local state variables 
(temperature, flow rate, etc) based on knowledge 
about the component’s properties, state variables of 
connected nodes (downstream and upstream) and 
dynamic inputs from the observed system (sensor 
values, set-points, control values). The estimated 
interval can be propagated to both downstream and 
upstream nodes through the directed arcs. Generic 
failure rules are designed to compare related intervals 
from either observations or propagations for overlap. 
If the intervals do not overlap, a  failure value is 
reported which can be derived from the relative 
distance of the intervals. Related intervals are for 
example a sensor value with applied sensor 
tolerances and the estimated value interval from 
propagations. A sensor fault will result in nonzero 
failure values from this and possibly other rules. At 
every time step, for example 5 minutes, a failure 
output vector is created for the observed system. This 
vector needs to be interpreted in the fault diagnosis 
system to locate the faults.  
Fault detection typically results in several reported 
failures.  Each of the failures can be caused by 
different faults. Locating the faults uniquely requires 
a diagnosis process that will map the reported 
failures to one or more faults.  Among many AI-
inspired diagnosis methods to resolve the n-to-m 
relationship between reported failures and causing 
faults, associative networks (Baer et al. 1996) 
represent these relations in a direct form based on 
first-order physical principals. Traditionally, the 
relations can be derived offline through exhaustive 
examination of all the possible failures caused by 
each fault from a fault list for a given HVAC system. 
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A popular way is to insert single or multiple faults 
into an off-line fault simulation where the failure 
rules can be exercised, creating the n-to-m relations 
for the associative network.  A problem with this 
approach is that the fault-failure relations also depend 
on external influences such as outdoor temperature, 
manual set-points and space occupancy. With the 
exhaustive approach, a laborious effort is required to 
engineer such a fault diagnosis engine to create 
associative networks for different condition 
combinations. Instead, we propose to make fault 
diagnosis based on extended HFM with runtime fault 
simulation to create the associative networks 
dynamically. In addition to saving engineering effort, 
the proposed approach improves the reliability of 
fault diagnosis since it is based on exact current 
HVAC system operation mode and weather 
conditions.   

The HFM graph 
The nodes of the graph can represent both simple and 
complex HVAC system or building components of 
the observed system. For example, a valve is a 
simple, and an AHU is a complex component. It is an 
engineering decision, at which complexity level 
nodes are selected. The goal is to keep the number of 
nodes in a graph small while making the nodes as 
generic as possible. A good compromise includes 
nodes such as coils including valves, mixing boxes, 
ducts with sensors. In some cases such as VAV 
boxes or spaces as nodes, a higher complexity is 
acceptable. Pipes or ducts without functionality are 
only necessary as branches or joins for air or water 
flows. 

Figure 1 Nodes and arcs example of the FD graph 
 
As shown in Figure 1, nodes with mass flow 
connections are connected by anti-parallel arcs. The 
forward arcs (Fwd) follow the main mass flow 
direction, the reverse arcs are against the flow. These 
arcs transmit state vectors at each time step. 
The additional arcs DataIn transmit data from the 
observed system, e.g. temperature measurements and 
control values. The RulesOut arcs transmit the failure 
rule values to the diagnostic system. 
Figure 2 shows the fault detection (FD) part of a 
node that transforms state vector components. For 
example, a heating coil calculates the FwdIn air 
temperature increase in the estimator est1 and 
transmits the result as FwdOut to the next node 
downstream. In the reverse path, the downstream 
node sends an air temperature that is RevIn for the 
heating coil and est2 calculates the corresponding 

RevOut temperature for the next upstream node. The 
two generic rules  r1 and r2 compare the 
temperatures from propagations and estimations, and 
generate failure values. 

 
Figure 2 Transformation node 

 
To make the nodes as generic as possible, the 
estimators use the Simplified Model paradigm. In the 
heating coil example in Figure 2, no water supply 
data are available for the estimators. The estimation 
is based on known design data such as maximum and 
minimum temperature increases in the case of a fully 
open hot water valve. These two values are called 
node parameters. The actual air temperature increase 
after heating coil is assumed to be proportional to the 
hot water valve control value CtrlIn with some 
nonlinearity factors between these extremes. The 
estimation result is a temperature interval.  
Since all node estimations  produce intervals, the 
state vectors that are transmitted by the anti-parallel 
arcs have intervals as components. For airflow 
connections, we us air temperature, flow rate, 
pressure, and humidity as state vector components. 
Other node types are sensor ducts, control sensor 
ducts, and composite nodes. The sensor ducts 
transmit the DataIn sensor intervals as FwdOut and 
RevOut. The intervals are calculated as measured 
value plus/minus sensor tolerance. In the control 
sensor ducts, set-point intervals are compared to 
sensor intervals as additional failure rule calculations. 
In composite nodes such as reheat VAVs, more rules 
are defined for internal state vectors.  
 

Figure 3 Sensor duct interval overlap cases 
 
The interval calculations allow for very generic 
failure rules. Figure 3 shows an illustrative example 
for a sensor duct. Temperature intervals are shown as 
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yellow bars, where TaFwdIn represents propagated 
interval from upstream node. For measurement 
interval TsaSens, five possible overlap cases are 
shown. If the intervals define valid state values, as  in 
cases 2 to 4, no fault is assumed and the 
corresponding failure rule reports zero. In the cases 1 
and 5, faults are assumed and the red bars indicate 
failure values. The larger the failure value, the higher 
is the probability that faults exist. In order to make 
failure values comparable, the values are normalized 
with a factor that is set to the expected state variable 
range. The factors are node parameters. 
The results of all failure rule evaluations create a 
normalized rule vector at every 
time step. 

The case study 
The so called Small Bank example was used as case 
study because a basic IFC building information 
model existed. This model was compiled and 
augmented interactively to create an HFM at the 
required level of detail with features of the 
experimental HVAC system of the Iowa Energy 
Center Energy Resource Station (ERS) being 
introduced as far as possible for comparison of 
research results with other projects. 
The Small Bank has three spaces with individually 
controlled reheat VAVs and one central AHU with 
economizer. Figure 4 shows the AHU structure. 
 

 
Figure 4 Small Bank AHU structure 

 

 
Figure 5 Small Bank total structure 

 
Figure 5 shows the overall system and Figure 6 
shows the simplified HFM of the AHU. The mapping 
is straightforward: Rfan is the return fan in Figure 4. 
Rduct represents a piece of duct with the return air 
temperature sensor Tra. The Mixer is the economizer 
with three coupled dampers and the outdoor air 
sensor. The Mduct contains the mixed air 

temperature sensor. Hcoil and Ccoil are the heating 
and cooling coil with valves, Sfan is the supply fan 
and Sduct has two sensors. Sduct also receives the 
supply air temperature set point. In a similar way the 
additional components in Figure 5 are mapped into 
the HFM. The data inputs and the rule outputs are 
connected with the Building Energy Management 
and Control System (BEMCS) of the observed 
system. 
 

 
Figure 6 HFM of the AHU. Only the air flow arc are 

shown 
 

DIAGNOSIS 
Faults cause failures that are also called symptoms or 
manifestations. The relations between faults and 
failures are an m to n relation. In most publications 
on diagnostics, this relation is assumed binary and 
logic equations can be applied to express the relation. 
However, the failure rules as described above result 
in continuous values that define a failure probability. 
Therefore, a new interpretation of the relation has 
been introduced. 

The associative network 
Associative networks express n to m relations. 
Applied to fault diagnosis, an associative network 
defines an mxn-matrix D between the fault set 

 and the symptom set
. The elements  of matrix D are 

either zero (no relation) or represent a positive or 
negative failure value. Therefore, this is not a binary 
diagnostic matrix as used by other diagnostic 
methods. 
 

 

 
A column vector j of the diagnostic matrix is called 
the signature of fault j. With a singular fault 
assumption, fault diagnosis is the task to find at each 
time step the signature that best fits the rule vector. 
Since experience shows that the best fit is not always 
the signature of the fault that caused the observed 
failure, a small set of best fitting faults is generated 
out of fault diagnosis. 
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Pattern matching 
Fitting rule vectors and fault signatures is in principle 
a pattern-matching problem. On one hand, the 
problem is simple because n and m are no large 
numbers. Therefore, exhaustive tests are possible. On 
the other hand, it is not just the problem of the 
Euclidean distance of two vectors, because the value 
of the vector component has the meaning of a failure 
probability. We are still experimenting with different 
metrics to find the best results for the diagnosis. As a 
first metric, a sum of products has been chosen to 
calculate the matching score Cj for each signature at 
every time step. Experiments with this metric have 
shown that large failure values carry too much 
weight. Therefore, as second metric, the square root 
of the products was chosen, according to equations 2 
and 3: 
 

 
 

The interpretation of the products is simple: if ri and 
gi,j are both greater or both less than zero, the rule i 
score ci,j  is positive and contributes positively to the 
total score Cj. If they have opposite signs, the total 
score is reduced. If one or both are zero, the 
contribution is zero. The highest matching score 
indicates that the corresponding fault has the highest 
probability of causing the reported failures. Since this 
relation is not unique, the five highest scores are 
reported at every time step as an indication of which 
faults should be further analyzed.  

The diagnostic matrix 
The quality of the fault diagnosis depends on the 
entries in the diagnostic matrix. The best but also 
very expensive solution would be to insert the faults 
of the assumed fault list into the real observed HVAC 
system and use the fault detection system to generate 
rule vectors that can be entered as signatures into the 
matrix. A less expensive solution is the use of a fault 
simulator that models the observed system.  
For the latter solution, two options exist: Simulation 
with a detailed model and Simulation with a 
simplified physical model. The detailed model 
requires a big engineering effort and deep knowledge 
of the observed system structure and parameters. 
Such a model has been developed by Li (2010) for 
the experimental HVAC system of Iowa Energy 
Center ERS that has been used in several FDD 
studies as well. 
We have opted for the simplified model which can 
be, in principle, derived automatically from BIM 
descriptions if they are created with enough details. 
Otherwise the BIM can be interactively augmented 
by additional structural and parametric data. This 
technique has been used to automatically generate the 

HFM-FDD (Lu et al. 2010). The approach of 
generating rule vectors from inserting faults to a 
simulator offline still requires engineering effort to 
run the simulation for all faults and set up the 
diagnostic matrix. 
There is an additional problem with all off-line 
approaches shown so far. The matrix elements are 
not independent of the environment. Weather 
conditions, manually controlled set-points, and 
occupancy for example influence failure rule 
manifestations strongly. Multiple matrixes  have to 
be generated for a set of external condition 
combinations, which increases the engineering effort 
considerably. 
We have a different approach, also based on fault 
simulation with a simplified physical model, but 
executed at runtime of the fault diagnosis. This 
approach required an extension of the HFM while 
maintaining its generic features.  

Fault simulation 
The HFM fault simulation is based on the same 
physical models used for the interval estimation of 
the fault detection system, but with the difference 
that average values are computed instead of intervals 
and only propagated in the mass flow direction. The 
simulation is distributed to the nodes and creates 
sensor and actuator values at each time step that 
replace the data inputs from the EMCS during the 
diagnosis phase.  

 
Figure 7 Extended transformation node 

 
Figure 7 shows how a transformation node is 
extended for fault simulation. The FDD is centrally 
controlled to execute in three different phases: 
detection phase, simulation phase, and diagnostic 
phase. In the detection phase at the beginning of each 
time step, state variables are estimated as before, 
forward and backward to the flow. The control signal 
switch is in the shown position. The failure rule 
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results are stored as local components of the rule 
vector R in the rule components.  
Next, if there is any nonzero failure value resulting 
from the detection phase, fault simulation is triggered 
followed by a diagnostic phase subsequently. The 
fSim component reads the SimIn state variable vector, 
the SimCtrl input, checks the FaultIn fault id and 
calculates the SimOut vector. A fault is only applied, 
if the node recognizes its assigned fault id. 
Otherwise, a normal fault free simulation takes place. 
The simulation requires iterations because the mass 
flows form loops and also control values are fed back 
against the flow.  The number of iterations is 
determined experimentally to guarantee certain 
stability. 
A good transformation node example for fault 
simulation is the heating coil. Considering the air 
temperature only, the output TSimOut can be 
calculated as 
 

The air flow rate is assumed to change not very much 
and therefore the temperature increase is assumed to 
be independent of the air flow rate. fuhc is in the 
range 0 … 1. HT is the average of the upper and 
lower limits of the coil temperature increase 
parameters that are used for the estimation functions. 
fuhc is the faulty valve control signal calculated from 
Eq. 5: 
 
   (5)
 
where the fault values f is: 0 for no fault, -1 for stuck 
closed, >0 for leaking, and 1 for stuck open. The 
limit function limits fuhc between the two 
parameters, in the above equation between 0 and 1. 
In the case of the example node, the fault directly 
influences SimOut, but not the detection part of the 
node. Indirectly, an influence can be fed back 
through SimCtrl. 
SimCtrl is generated by a simulated controller. It is 
assumed that the supply sensor duct node Sduct 
receives the supply air temperature set point from the 
BEMCS and generates control signals for both coils 
and the economizer. It is also assumed that all control 
signals are normalized to the range 0 … 1. 
During the following diagnostic phase the switch is 
in the dashed line position and the estimations and 
rule evaluations take place. The components for the 
signature vector are produced. By applying Eq. 2 and 
Eq. 3, ScoresOut is created as a partial vector of rule 
scores that has components ci,j for computing  Cj for 
the fault j in a central diagnosis component.  
The phases alternate between the simulation and the 
diagnostic phase for all faults including no fault. The 
diagnostic matrix D is thus created dynamically exact 

to the external conditions that exist at the time step. 
The matrix is not stored. Finally the scores of all 
faults are sorted by values and the top scores are 
reported to the BEMCS for further manual fault 
localization and repair. 

Additional fault simulation details 
Principally, actuator faults influence the fault 
simulation directly, but the estimation and rule 
evaluation during the diagnosis phase indirectly as 
the previous node example has shown. Sensor faults, 
on the other hand, do not have direct influence on  
the fault simulation, but the estimation and thus the 
rule evaluation. Sensor faults also influence control 
signal calculations if they are controller inputs. The 
supply sensor duct is a good example node to 
demonstrate both features. Figure 8 shows the 
extended node structure of a sensor node used for 
control.    

 
Figure 8 Extended sensor/controller node 

 
Figure 8 shows that the simulation values are not 
changed from in to out. The fSim component applies 
the faulty sensor values that are used by the 
controller to calculate Sctrl and for the diagnostic 
phases. The controller has to apply the same 
principles as the controller of the observed system. 
Here, the assumption is that the economizer has no 
individual controller but is controlled by the feedback 
controller Sctrl. It does not matter if the controller is 
a P, PI, or PID controller as long as the controlled 
variable, here the supply air temperature, is stable at 
the end of the simulation iterations. 
Simple sensor nodes without controllers are similar 
to the one in Figure 8, without Sctrl, tol2, and r3.  In 
the complex nodes for the reheat VAV and the space, 
the same principles are applied. The Branch and Join 
nodes split and combine the airflows. Branch does 
not change the air temperature, Join calculates a 
weighted mean air temperature with air flow rates as 
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weights. The rates are calculated in the VAV 
depending on the supply air pressure, the duct 
resistance and the VAV damper position. These 
weights may not be correct because of open doors 
between the three spaces or open windows, but it is 
the best assumption we could make for a simplified 
model.  

Fault diagnosis example 
Figure 9 shows an example for a sensor fault: sensor 
Tra always shows a temperature that is 5°C too high. 

 
Figure 9 Failure rule and score output example  

 
Figure 9 shows the results of a test run for 5 day or 
120 hours with a time resolution of 1 hour. The 
outdoor temperature and occupancy patterns will be 
explained in Chapter Results. Here, the four AHU 
controller modes are shown in the bottom diagram. 
The nearly perfect match between the two curves 
shows that the fault simulation generated control and 
the control values from the normal operation 
obtained using the Matlab/Simulink generator, are 
very close. The first diagram from the top shows 
failure values of three selected rules in the AHU that 
reach the highest values during the 5 days. There is a 
time period between Hour 56 and 85 when only one 
rule shows non zero values. This rule detects the fault 
at all times. 
The second diagram shows the simulated failure 
values for the same rules during the diagnostic phase 
for the fault that matches the fault in the input data. 
The rule outputs for all other faults of the list are 

generated as well, but not shown here. The diagram 
is in most parts very similar to the first diagram; only 
in the time period between 56 and 85 it shows more 
failures. The third diagram shows the products of 
three failure values from the two top diagrams. The 
products promise a high total score for this fault, but 
do not guarantee it. At least the high score gives a 
hint where to look for a fault during maintenance. 
 

RESULTS 
For testing purpose, artificial outdoor air temperature  
and occupancy pattern time sequences are generated 
with a time resolution of 0.1h. The total time duration 
is 5 days with temperatures ranging from -14 to 40°C 
and a daily sinusoidal variation between 4 am and 4 
pm of 14°C. Occupancy is regular between 7 am and 
6 pm in all three spaces. The supply air temperature 
set-point is a function of the outdoor air temperature. 
Space temperature set-point ranges are (20, 22°C) 
during occupancy and (17, 25°C) otherwise. 
Occupancy also determines the heat load in the 
spaces.  Figure 10 shows the outdoor temperature and 
occupancy of the data files. 
 

 
 

Figure 10 Test data outdoor temperature and 
occupancy 

 
Additional parameters are assumed, for example, 
space heat gains and losses.  A Simulink model has 
been set up with interactive fault settings to generate 
data files with fault simulation. The AHU controller 
model has three PI controllers to generate control 
signals for the economizer damper and the two coils. 
All three controllers share the supply air temperature 
and its set-point as inputs. The controller switches 
between four modes: heating, swing, cooling with 
full and with minimal outdoor air.  Each of the three 
VAV controllers has two PI controllers for the 
damper and the reheat coil.  Inputs are the space 
temperature, the set-point range, and the occupancy. 
The controller switches between heating and cooling 
mode. 
The modes are important for FDD because they 
determine the observability of faults, especially 
actuator faults. For example, in the heating mode, the 
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outdoor air damper of the mixing box is set at 
minimum position. The cooling coil valve is closed. 
Accordingly, stuck closed faults cannot be detected 
in either node during the heating mode. Therefore, 
the results have to be interpreted in relation to the 
modes.  

 
Figure 11 total score result for Tra sensor +5°C 

fault  
 

Figure 11 shows the measured total scores for the 
fault example (Tra +5°C) in Figure 9. Figure 11 
shows that the causing fault does not always have the 
highest rank. The mixing box return  air  (ra) damper 
stuck 0 fault  reaches the highest total score for low 
outdoor temperatures (Hours 0 to 55), the outdoor air 
(oa) damper stuck 1 fault reaches the next highest 
total score for nearly the same period. This can be 
understood because both faults have similar effects as 
the return air +5°C fault. For high outdoor 
temperatures (Hours 55 to 120) the causing return air 
temperature sensor  fault has the highest total score, 
followed by the Tma -5 fault.  
This example shows how difficult fault diagnosis is 
in detecting the causing fault uniquely. Therefore, it 
is more realistic to sort the scores and apply ranks 
from the highest score as rank 1 down and  to test, 
how often the causing fault is one of the top three 
ranks, as shown in Table 1. 
Looking at the fifth column of the table, there are 
several cases with 80 or more % of the time being 
diagnosed as one of the top three ranks. Some cases 
such as oad stuck 0 can partly be explained with the 
modes: in modes 1 and 4 the outdoor air damper is 
closed anyway and the fault cannot be detected. The 
same explanation can be applied to the heating and 
cooling coil valve stuck closed cases because they 
are also closed during several modes. More 
problematic are Toa faults. In these cases the generic 
solution does not work because the result of the 
outdoor air sensor is one of the external conditions 
and the fault simulation  does not work correctly in 
this case. 
 

Table 1 Total score ranking results for the AHU 
faults  

rank 1 2 3 1 to 3 
fault % 
Tra sens +5 56 13 29 98 
Tra sens -5 69 26 2 97 
Toa sens +5 0 0 0 0 
Toa sens -5 0 0 2 2 
oad stuck 0 6 4 12 22 
oad stuck 1 1 51 4 56 
oad leak 0 0 6 6 
rad stuck 0 72 4 4 80 
rad stuck 1 2 7 1 10 
rad  leak 0 0 0 0 
Tma sens  +5 76 13 11 100 
Tma sens -5 55 36 9 100 
hcv stuck 0 9 2 0 11 
hcv leak 0.2 0 7 40 47 
cv stuck 0 51 1 0 52 
cv leak 0.2 34 17 5 56 
Tsa sens +5 73 18 1 92 
Tsa sens  -5 82 2 1 85 

 
Offline tools have been developed to analyze the 
reasons why the diagnosis does not show better 
results in some cases. Figures 9 and 10are sample 
outputs. The HFM-FDD java implementation has 
several reporting features to provide the necessary 
data. This is planned as future work, in addition to 
testing HFM-FDD with different HVAC systems, 
real or simulated. Future simulations will be based on 
HVACSim+ models to get more realistic fault 
simulation  data inputs. Li’s work (Li 2010) will be 
used for this purpose. It is also expected that more 
detailed BIMs of HVAC systems and related spaces 
will become available. 
There are several potential ways to improve the 
results. Special rules can be introduced; 
normalization factors can be tuned; fault simulation 
parameters can be adjusted and so forth.  We are 
currently looking for solutions for such 
improvements that are generic, can be automated,  
and do not increase the engineering effort. Such 
solution will also require additional information 
about the analyzed HVAC system, defined in the 
appropriate BIM notation.  
 

CONCLUSION 
In this paper we report our latest research on 
extending the Heat Flow Model (HFM) with 
distributed fault simulation functions and using an 
associative network for fault diagnosis to map the 
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reported failures back to the most probable faults. 
The main contribution is the automatic generation of 
the associative network at run-time and for the 
current external conditions. This has been achieved 
by extending the HFM nodes by fault simulation 
functionality. The diagnosis results are not yet 
satisfying and will be improved, for example by 
better similarity metrics. This is ongoing research.  
A software prototype implementation of the proposed 
FDD, based on extended HFM, has been performed 
and tested with a Matlab/Simulink simulated HVAC 
control system. The implementation uses the  java 
Reflection model to translate the building model 
based HFM automatically into an executable java 
program for fault detection and diagnosis, based on a 
generic java class library for the HFM components.  
The simulation results demonstrate the effectiveness 
of our approach. 
Currently, a test with a real and complex HVAC 
system with two AHUs and 130 temperature 
controlled spaces  has been started. In addition to the 
air flow circuit, hot and chilled water supplies will be 
modelled. 5850 data points can be accessed via 
BACnet. Due to the generic nature of the FDD-HFM 
such experiments can be conducted with relatively 
low effort, based on the automatic generation 
capabilities of java and the provided node library. 
Therefore, we mainly use the current implementation 
as engine to learn from experiments and further 
develop and improve the field of FDD for HVAC 
systems. Nevertheless, the implementation can also 
be used as an application directly or can be treated as 
specification for an implementation in a different 
computer language if required. 
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