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ABSTRACT 

Standard office building control systems operate the 
heating, ventilating, and air conditioning on a fixed 
schedule, based upon anticipated occupancy and use 
of the building. This study introduces and illustrates a 
method for integrated building heating, cooling and 
ventilation control to reduce energy consumption and 
maintain indoor temperature set points, based on the 
prediction of occupant behaviour patterns and local 
weather conditions. The experiment test-bed is setup 
in the Solar Decathlon House (2005), with over 100 
sensor points. The results show that there is a 17.8% 
measured energy reduction in the cooling season test 
case.  
 

INTRODUCTION 
The World Business Council for Sustainable 
Development recently published their first report on 
energy efficiency in buildings stating that buildings 
are responsible for at least 40% of energy use in 
many countries (Lafarge and UTC, 2008). A 
fundamental goal of an integrated high performance 
building is to provide comfortable environment for 
occupants while minimizing energy usage. There 
have been many previous research efforts on using 
model predictive controls (MPC) in building to 
reduce total building energy consumption. However, 
the outdoor conditions used in most MPC designs for 
buildings are based on historic information (Cho, et 
al. 2003) or available data from NOAA website (Ma, 
et al. 2010).  
Only recently, Morari and Tödtli (2008) begin to 
combine numnerical local weather forecasting and 
MPC to enhance building energy usage and indoor 
thermal comfort.  Zavala, et al., (2009) studied the 
economic impacts on building energy consumptions 
based on local temperature forecasting. Through a 
proof-of-concept simualtion study and the use of a 
supervisory dynamic optimization strategy, the 
proposed framework can lead to significant savings 
(more than 18 % reduction) in operating costs. 
However, their research still focuses on local 
temperature (Zavala, et al. 2009) or tempearture and 
solar radiation predictions (Morari and Tödtli, 2008). 
The prediction of wind speed is not mentioned, 
which is a dominate factor for infiltration 

calculations for residential buldings such as the Solar 
House. This is one of the issues that will be 
addreesed in this paper.  
Another important input parameter for MPC design, 
the number of occupants inside a space, is still an 
assumption such as a fixed schedule for most of the 
previous studies. Detection occupancy behaviour 
based on a single sensor or sensor network becomes 
an interesting topic for building scientists. Wang et 
al. (2005) applied Poisson process to generate daily 
occupancy profile in a single-occupied office based 
on PIR sensor data. Duong, et al. (2006) used hidden 
Semi Markov models for modelling and detecting 
activities of daily living such as cooking, eating, etc. 
in a home environment with a single occupant. 
Youngblood, et al. (2007) introduced a new method 
of automatically constructing hierarchical Hidden 
Markov Models (HMM) using the output of a 
sequential data-mining algorithm to estimate 
occupants’ moving patterns and thus control an office 
environment. Page, et al. (2007) targeted individual 
occupancy behaviour by developing a generalized 
stochastic model for the simulation of occupant 
presence in single occupied offices with derived 
probability distributions based on Markov chains.  
Most of the above studies focus on individual 
behaviour in a single occupied space. Dong, et al. 
(2010) applied HMM to estimate occupants’ 
behavior in four bays of a large scale open office 
based on a complex sensor network involving five 
different types of sensors. A later study by Dong and 
Lam (2011) combining Gausian Process and HMM 
shows better results and an energy saving of 18.5% is 
achieved if applied into building energy management 
based on the EnergyPlus simualtion results.  
This paper introduces an innovative building control 
approach, which integrates local weather forecasting 
(temperature, solar radiation and wind speed) with 
occupant behaviour detection (number of occupants 
and occupancy duration) into MPC design. The 
developed MPC is then implemented and tested in 
the Solar Decathlon House test-bed with over 100 
sensor points measuring indoor environmental 
parameters such as temperature, relative humidity, 
CO2, lighting, motion and acoustics, and power 
consumption for electrical plugs, HVAC and lighting 
systems. 
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METHODOLOGY 
 

 
Figure 1 Overview of the methodology in this study 

 
As shown in Figure 1, starting from the sensor 
network inside the house, the raw sensor data are 
inputs to the occupant pattern prediction model. The 
weather forecasting model simultaneously predicts 
outdoor temperature, solar radiation and wind speed 
(Jiang and Dong, 2010) for the next time horizon. 
The resultant weather and occupancy information are 
then inputs to the virtual building model in 
MATLAB/Simulink. The optimal control results 
from the virtual model are then implemented through 
LabVIEW on local HVAC actuators for pumps, 
water heater and fans. Hence, the methodology 
includes the following modules: sensor network, 
building and system model, local weather 
forecasting, parameter estimation, occupancy 
detection, building model, optimal control design and 
experiment set-up.  
 
Sensor network 
The house is equipped with a complex sensor 
network to measure and retrieves as much 
operational information as possible.  Sample sensors 
are shown in Figure 2. There are three independent 
sensor networks.  

 LabVIEW based data acquisition system 
(DAQ), which measures the indoor 
temperature at different heights, RH and 
both indoor and outdoor CO2 levels with a 
sampling of one minute. All sensors are 
connected with DAQ and signals are 
transferred and stored through LabVIEW.  

 A wireless environmental sensor network, 
measures temperature, RH, lighting, 
acoustics and motion with a sampling time 
of one minute.   

 A Campbell Scientific CR1000 data logger 
system, connected with an outdoor local 
weather station (temperature, RH, wind 
speed, pyranometer) measures power 
metering for every electrical consumer such 

as PV, HVAC, lighting and appliances as 
shown in Figure 3, with a sampling time of 
five seconds 

All sensor data are fully integrated into a central 
database. Time synchronization is conducted when 
the data are retrieved from the central database.  

  
CO2 Sensor Temperature Wireless Mote 

Figure 2 Environmental sensors in solar house 

  

CTs inside Power 
Distribution Board 

WattsNode connecting with 
CTs 

Figure 3 Power system measurement 

  

Surface temperature sensors 
of radiant floor system 

Temperature and RH sensors 
for fan coil 

Figure 4 Heating and cooling system sensors 
Figure 4 shows the heating and cooling system 
sensors.  For radiant floor heating system, the supply 
and return pipe surface temperature and water flow to 
each branch are measured. The pipes are well 
insulated so that the surface temperature of the 
copper pipes is assumed to be the same as the water 
temperature. In addition, the floor surface 
temperature is measured to validate the heating 
model. For the cooling system, the supply air 
temperature and RH measured at the outlet of the 
indoor fan coil. The supply air flow rate has three 
constant stages and is measured by a portable flow 
meter before the experiment period to verify the 
actual flow rate. 
Building and System Models 

 
Figure 5 Geometry and sensor placement in the test-

bed 
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The heat transfer through external walls is modelled 
by the standard two capacitance and three resistance 
(2C3R) model (ASHRAE thermal network model) as 
shown in Figure 6.  

  
Figure 6 Thermal network model of one external wall 
 
The heat balance for the outside surface is given by: 

surfo
wall

osurfisurf
osurfambo

osurf
out Q

R
TT

TTAh
dt

dT
C

(1)

The heat balance for the inside surface is given by: 
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The heat balance for the zone air node is given by:  
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The solar radiation on the external and internal 
surfaces is:  
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The thermal resistance and capacity are defined as: 
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The energy balance in the zones shown in Figure 5 
is:  
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The cooling equipment in the solar house is provided 
by a multi-spit fan coil unit. The total amount of 
cooling energy into the space is represented by:  
 

 (8) 
 

The total cool energy consumption is:   

 (9) 

Local Weather forecasting model  
Local weather forecasting is important input 
parameters for building controls. Recently, 
researchers applied different artificial intelligence 
methods to predict temperature and solar radiation.  
Henze, et al. (2004) investigated the impact of 
forecasting accuracy on the predictive optimal 
control of active and passive building thermal storage 
system. The outdoor temperature forecasting models 
include bin, unbiased random walk, and seasonal 
integrated Autoregressive Moving Average (ARMA) 
predictors. Florita and Henze (2009) applied moving 
average and neural network models to predict the 
weather variables such as outdoor air temperature, 
relative humidity and global horizontal solar 
radiation seasonally in several geographical 
locations. In this study, the Hammerstein Wiener 
(HW) model and adaptive Gaussian process (AGP) 
method (Jiang and Dong, 2010) are introduced to 
predict outside dry-bulb temperature, global 
horizontal solar radiation and wind speed in the time 
magnitude of one hour and 15 minutes. Figure 7 
presents an overview of the methods implemented in 
the local weather forecasting.  

 
Figure 7 Overview of implemented weather 

forecasting methods 
The HW model converts the nonlinear inputs into 
piecewise linear function blocks, and then into a 
nonlinear function as outputs. The Adaptive Gaussian 
Process (Jiang and Dong, 2010) is essentially data 
driven, which leverages non-parametric algorithms to 
locate and model relevant sub-sequences of 
observation adaptively. Although the idea of the 
proposed model also depends on learning from past 
samples, unlike the Markov approach of building 
transition probabilities, it considers the past data 
samples together during the prediction. The detailed 
algorithm is described in Jiang and Dong (2010).  
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Parameter Estimation  
Thermal parameters, such as R and C numerical 
values, are not commonly available. Although some 
can be derived from construction drawings, the 
specific assemble of the construction could affect the 
external wall thermal properties.  Hence, a parameter 
estimation approach is taken to identify thermal 
properties based on measured data.  The building 
model presented in this study can be treated as a 
grey-box model. Braun and Chaturvedi (2002) 
developed a similar thermal network for load 
prediction. This inverse grey-box model needs one 
week of data to train with rich zone temperature 
variations or two to three weeks of data to train with 
limited zone temperatures variations. The model 
error can be limited within 2% with simulation data 
and 9% with on-site data. Wang and Xu (2006) 
developed a simplified model of the building thermal 
load on heat transfer of building envelope and 
internal mass. The parameters of building thermal 
network models for building envelope are determined 
by frequency characteristic analysis; the parameters 
of thermal network models for lumped internal mass 
are identified with a generic algorithm. McKinley 
and Aleyne, et al. (2008) presented an alternative 
approach using optimization search process (hill 
climbing algorithm) to identify building thermal 
model parameters and loads based on site 
measurement.    
In this study, considering this problem as a 
constrained nonlinear optimization, the subspace 
trust region solver based on the interior-reflective 
Newton method (Coleman and Li, 1996) is chosen, 
which is available in the MATLAB optimization 
toolbox.  
 
Occupancy detection model  
The occupancy detection model implemented in this 
study is adopted from Dong and Lam (2011).  
Gaussian Mixture Models (GMM) is used to 
categorize the changes of the selected features, which 
yielded the highest information gain in this context, 
according to different numbers of occupants in the 
zones. These categorizations are then used as 
observations for the Hidden Markov Model (HMM) 
to estimate number of occupants.  
To estimate the duration of occupants in the space, a 
Semi Markov Model was developed based on 
patterns of CO2, acoustics, motion and lighting 
changes (Dong, et al. 2009). The patterns are 
comprised by different single sensor events. Each 
single event is denoted with a code and an episode as 
a sequence of codes.  Table 1 shows the code 
assignments. An example of an episode may be 
“agghheeg…”, which presents the activity of “low 
acoustics level CO2 increasing  CO2 decreasing  
motion off-on  CO2 increasing”. All parameter 
values used in the definitions are determined 
empirically for the test-bed environment used in this 

study. Hence, these definitions are specifically for 
this study only and may not be applicable for other 
test-beds.   
Table 1 Definition of important events from sensors 

Sensors State 
Transitions

Code Sensors State Transitions Code 

A
coustics 

1. Low 
acoustic 
level 

a M
otion 

1. Off-on (motion) e 

2. High 
acoustic level 

b 2. On-off (no 
motion) 

f 

Lighting 

1. Off-On c 
C

O
2  

1. Increasing g 

2. On-off d 2. Decreasing h 

Finally, the predicted occupancy schedules derived 
from occupant behaviour patterns together with 
existing known schedules from Outlook calendar are 
taken as dynamic inputs for the integrated control.  
 
Design of non-linear MPC 
In this study, a non-linear model predictive control 
(NMPC) is designed for the Solar House heating and 
cooling system following Magni, et al. (2003) and 
implemented in the test bed. The optimization 
problem becomes: 

(10) 

 (11) 

 (12) 

 (13) 

 (14) 

 (15) 

 (16) 

The specific problem  presented above is a 
discrete time formulation of the general problem for 
HVAC control, which is an infinite time horizon 
control problem. It is converted into a finite time 
control problem with a moving horizon h at each 
time step. At the current time t, the initial conditions 

 are obtained as inputs into the plant model. 
At the same time, the optimization problem defined 
(10)-(16) is solved by dynamic programming. The 
results are the optimal control profile  for 
HVAC systems and corresponding room temperature 
set-point . However, only the first step from t 
to t+1 of calculated  is actually executed, which is 
defined in . Once is known at the next time 
step, the prediction horizon is shifted forward by one 
time step and the problem  is solved again 
to find . The new  is in principle 
different from  because of the additional 
new information available. During the heating 
season, the moving time horizon h is 24 hours 
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because the response time of radiant floor heating 
system is slow. However, during the cooling season, 
the moving horizon h is 3 hours (Coffey, 2008) 
because heat pump cooling is air-based which can 
cool down the space in 15 minutes.  

 
Figure 8 Overview of the NMPC Design 

Figure 8 shows the overall NMPC design. The plant 
model includes building thermal zone and building 
HVAC system models. The disturbances were from 
the real-time outdoor weather condition and indoor 
occupancy activities.  is a vector of initial values. 
The NMPC is constructed from the plant and 
disturbances models and solved by dynamic 
programming. The output control signals are ideally 
implemented through a local PID controller, where 
the control signal is tuned based on disturbances 
received in real-time and track the optimized control 
set-point as close as possible.  In this study, due to 
the lack of PID hardware in the controller, the PID is 
tuned and implemented through LabVIEW to local 
actuators directly on the relays of pumps. 
 
Experiment setup 
The data are continuously collected every one minute 
or one and half minutes (depending on the network 
latency) since April 28, 2009. The experiment is 
setup both for cooling and heating season as follows: 
1) The heating season experiment is setup through 
the first week of February, 2010. The cooling season 
experiment is setup through the week from July 5 to 
July 10, 2010. In this paper, only results from cooling 
season are discussed.  
2) The heating setpoint while occupied is 21 0C at 
day time with 17 0C set-back. The cooling setpoint 
while occupied is 25 0C, with 30 0C set-back. 
3) During the heating season, the time step for 
control is 1 hour, while during cooling season, the 
time step for control is 15 minutes because the heat 
pump system can cool down the space from 29 0C to 
25 0C in 15 minutes. 
4) During the experimental period, the operable 
windows are all closed. Air infiltration happens only 

through unintended openings (e.g. cracks between 
foundation and frame).  
5) Building occupants vary during the daytime and 
include university staffs, the external visitors and 
students of School of Architecture.  
6) All the training data set for occupancy and weather 
prediction is from the previous one month 
continuously collected data.  
 
DISCUSSION AND RESULT ANALYSIS 
Local weather forecasting  

 
Figure 9 Results of 15-minute local outdoor air 

temperature prediction from July 5 to July 10, 2010 

 
Figure10 Results of 15-minute local global 

horizontal solar radiation prediction from July 5 to 
July 10, 2010 

 
Figure 11 Results of 15-minute local wind speed 

prediction from July 5 to July 10, 2010 
Figures 9-11 shows the results of hourly outdoor air 
temperature, global horizontal solar radiation and 
local wind speed prediction from July 5 to July 10, 
2010. The RMSEs are 0.62, 60.02 and 0.37, 
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repectively. The MAPE is 8%, 25% and 12%. The 
maximum temperature difference is 1.5 0C and 
minimum is 0.2 0C.  Bases on those results, it is 
believed that the prediction of disturbances from 
weather are accurate enough for NMPC.  
 
Occupancy patterns 
Occupancy number estimation  

 
Figure 12 Results of occupancy pattern prediction 

from July 5 to July 10, 2010 
The number of occupants during the testing period 
ranges from 0 to 7 in the conference room. When 
integrated with scheduled meetings and classes, the 
accuracy for the week of scenario is 92%, as shown 
in Figure 12.  
 
Occupancy duration prediction  
Duration prediction is to find daily occupancy 
patterns, based on the Hidden Semi Markov model 
and estimation of duration as an Exponential function 
(Duong, et al., 2006). For the testing period, the 
prediction accuracy is 78%±16 minutes. This means 
the method developed in this study can predict 
correctly 78% of the time, with an offset of 16 
minutes.   

 
a) Actual: 110(min); Predicted: 98(min) 

 
b) Actual: 153(min); Predicted: 150(min) 

Figure 13 Markov model of discovered patterns on 
10 minutes maximal window 

Figure 13 shows daily event patterns during the test 
period, discovered in this study. It shows a standard 
Markov model with numbers on the arcs indicating 
the transition probability between states, Transitions 
with relatively low probabilities (less than 15%) are 
not shown. Parentheses indicate number of 

occurrences of the pattern in the training period. As 
an example, state “bef” has a 25% transition 
probability to state “eb” and a 20% probability to 
state “bef”, with “bef” occurring 22 times, “eb” 37 
times and “bef” 15 times during the month. Figure 13 
also shows the results of including duration in the 
model. Each duration distribution is denoted as 
X~(time), where time is the expected duration for the 
exponential model.  For example, “bef” has an 
expected duration of 30 minutes before it transitions 
to state “eb” and 10 minutes before transiting to state 
“bef”. The red-dotted line in Figure 13 a) indicates a 
typical 98 minute meeting scenario where an 
occupant enters the room, triggers the motion sensor 
“e”, triggering sound on “b”, and sits down, 
triggering the motion off “f”. The occupant continues 
to stay in the room, generating acoustics “b” and 
moving around generating motion “e”. Upon leaving, 
the occupant moves towards the door “e” and departs 
“f”. 
In conclustion, the results from occupancy patterns 
provide real-time occupancy information as inputs 
for the NMPC during implementation, which 
eliminates the assumptions from preivous studies.  
  
Energy consumption from NMPC  
The building and system models were validated 
against previous year measured data before NMPC 
implemented. The results show 5% accuracy in terms 
of total building energy consumption. Due to the 
limited space, the validation results are not shown in 
this paper. Figure 14 shows the indoor air 
temperature changes under NMPC control. When the 
space is not occupied, the indoor temperature does 
not maintain the 25 0C set point. Figure 15 shows the 
measured results of energy consumption profile of 
this integrated NMPC. The energy profile from 
scheduled temperature set-point is from simulation 
restuls, while the one from NMPC is real-time 
measured data. The energy saving from the NMPC 
compared to scheduled set point is further illustrated 
in dashed boxes in Figure 15. The energy saving 
mainly comes from the dynamic occupancy 
scheduling, while the scheduled control set-point 
method tries to maintain the set-point regardless of 
whether there is any occupant in the space. 

 
Figure 14 Temperature profile from July 5 to July 

10, 2010 
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Table 2 shows the comparison of total energy 
consumption for the whole week. The NMPC can 
save 17.8% of energy compared with the scheduled 
start.  Furthermore, the NMPC does not meet the 
temperature set-point for 2 hours, compared to 3 
hours from schedule temperature set-point control. 
Although the dynamic occupancy schedule varies 
with cooling set points in the space, the temperature  
of the space changes quickly so that the energy 
saving is only realized over a short duration of about 
an hour (four 15-minute time-steps). 
 
Table 2 Comparison of heating energy consumption 

and set-point not met hours 
Energy Consumption (kWh) Energy Saving (%) 

Scheduled Temperature Set-
points 

96.83 

NMPC Optimization 79.62 17.8 

Temperature Set-point not met 
while occupied (Hrs) 

Improved Set-point 
Met Time (%) 

Scheduled Set-points 3 
NMPC Optimization 2 33% 

Sensitivity Analysis 
To investigate the impact of occupancy changes on 
the cooling energy consumption, a sensitivity 

analysis is conducted. Figures 16 and 17 show the 
cooling energy consumption profiles change with 
high and moderate occupancy level changes, 
respectively. This is because the cooling system is an 
air -based system, which can provide almost instant 
cooling into the space. In addition, the outdoor 
temperature during those two days are similar as 
shown in Figure 14, which eliminates the additional 
impacts from the weather disturbances when 
compared. Such results from this paper are limited to 
the similar type of closed space.  
 

CONCLUSION 
In this study, a nonlinear model predictive control is 
designed and implemented in the Solar Decathlon 
House test bed in a real time framework. This NMPC 
integrates weather forecasting model and occupant 
behaviour pattern models. Both predictions are 
within 80% of accuracy. The results show that the 
cooling energy consumption is saved by 17.8% 
compared with usual daily set-point and night 
setback temperature control strategy. This paper 
approves in experiments that NMPC with real-time 
disturbances information can save more energy than 
the traditional one.  

 
Figure 15 Comparison of energy profile between NMPC and scheduled temperature set-points

Figure 16 Cooling energy profile of high occupancy 
changes on July 6, 2010 

Figure 17 Cooling energy profile of moderate 
occupancy changes on July 8, 2010 
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NOMENCLATURE  

oh
 

surface heat transfer coefficient [W/m2,ºC] 

 A wall or window surface area [m2] 
k  thermal conductivity of surface [W/m, ºC] 

 density of the surface material [kg/m3] 

C heat capacitance  [J/m3·K]

R yhermal resistance [K·m2/W]

isurfT
 

inside surface temperature [ºC] 

osurfT
 

outside surface temperature [ºC] 

zoneT
 

zone air temperature [ºC]; 

SUPT supply air temperature [ºC]; 

supm
 

supply air mass flow rate [kg/s];  

infm  
infiltration mass flow rate [kg/s]; 

intQ
 

convective internal loads[W]; 

surfoQ
 

outside surface absorbed solar radiation [W] 

surfiQ inside surface absorbed solar radiation [W] 

cost function of NMPC
heat transfer functions
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