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ABSTRACT 
Based on the authors’ previous works, this paper 
describes a new methodology that uses a bottom-up 
approach for accurately calculating the time series 
utility loads (e.g., energy, power, city water, hot 
water, etc.) for multi-dwelling systems, including 
residential buildings, residential block areas, and 
even the entire city. This calculation considers the 
behavioral variations of the inhabitants of the 
dwellings. The proposed method constitutes a 
procedure for calculating cooling/ heating loads 
based on a series of Monte Carlo simulations where 
the HVAC on/off state and the indoor heat generation 
schedules are varied at a time interval. A data set of 
time-varying inhabitant behavior schedules with a 
15-minute time resolution was integrated into the 
model. The established model, which is called the 
Total Utility Demand Prediction System (TUD-PS), 
was integrated to estimate a multi-dwelling system, 
where we can accurately predict various peak 
demands and seasonal or annual demands. By 
applying this method to a typical residential building, 
we highlighted several advantages of TUD-PS.  
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Probabilistic HVAC turning on/off events, 
Multi-dwelling residential building 
 
1. INTRODUCTION 
The cogeneration system (CGS) is widely accepted as 
one of the most effective provisions in achieving high 
efficiency in building energy conservation, leading to 
reduced CO2 emissions. Recent developments in 
compact CGSs such as fuel cell and gas engine 
systems have encouraged rapid dissemination in the 
residential building market. We call such compact 
CGSs as home cogeneration systems. To achieve a 
greater prevalence, a high time resolution prediction 
is required for both power and thermal demands to 
derive the most efficient operation and the most 
effective designs because CGSs provide power and 
hot water simultaneously. 
The authors have developed Total Utility Demand 
Prediction System (TUD-PS) as a novel framework 
for predicting high time resolution utility demands in 
a dwelling, considering various stochastic processes 
such as the inhabitants’ behavior schedule and 

meteorology. As reported in previous BS**  
(Tanimoto et al. (20081,b,c), Tanimoto & Hagishima 
(2005, 2010, 2011)), TUD-PS can examine the 
building thermal system model and the stochastic 
inhabitant behavior schedule model simultaneously in 
the form of a dynamic numerical prediction system 
for utility loads such as thermal load, power, gas, 
water, and hot water demand with a 15-minute time 
resolution. By comparing field measurement data sets 
obtained from a couple of residential buildings, we 
have already validated how appropriately TUD-PS 
can reproduce the bottom-up demands. (Tanimoto et 
al. (20081,b,c)).  
In general, a residential space has a greater hot water 
demand than an office space. But actual demand 
varies substantially among different dwellings 
because it is affected by the daily schedules of its 
inhabitants, showing typical stochastic features. 
Hence, simply multiplying the predictions for a set of 
dwellings such as a residential building, a residential 
block, or even a city area by assuming a “standard 
dwelling” and a “standard schedule” seems 
inappropriate. Such a procedure leads to unrealistic 
and over estimated peak values. Using TUD-PS, one 
can predict the utility demands of any residential 
building or area accurately with a high time 
resolution by superposing the respective dwellings 
through Monte Carlo simulation.  
There have been several precursors on the point of 
the bottom-up approach. Capasso et al. (1994) and 
Patero & Lund (2006) established bottom-up methods 
for predicting the daily electric power demand profile 
for a given dwelling, both of which were validated by 
field data measurement. Armstrong et al. (2009) 
demonstrated another bottom-up approach to 
correctly predict Canadian household electric power 
demand profiles. Unlike TUD-PS, those works does 
not consider the stochastic likelihood of whether 
HVAC in each room is turning on or off according to 
the indoor and outdoor environment, which might in 
turn affect how frequently the occupants want to use 
HVAC. 
This paper reports the effectiveness of TUD-PS when 
applied to an entire residential building consisting of 
100 independent dwellings and where only the 
HVAC heat pump system is presumed to function for 
space heating and cooling; specifically, it focused on 
the maximum demands of the entire building. The 
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study shows that the central supplying system for 
electric power and hot water can remarkably reduce 
the maximum demands as a whole and that stochastic 
prediction is necessary and important when 
considering varying occupants’ behavior schedules.  
 
2. TUD-PS 
Since most of the framework of 
TUD-PS was summarized in our 
previous paper (Tanimoto & Hagishima 
(2010)), we will begin by simply 
providing an overview of the features 
and newly updated functions of TUD-PS. 
First, TUD-PS reproduces a raw daily 
behavior schedule of each inhabitant 
classified by his/her attributes (e.g., age, 
sex, profession) with a 15-minute time 
resolution. The daily personal schedule, 
which is different from a day-to-day 
schedule because of its stochastic 
substance, determines when an 
individual stays in the dwelling, 
in which room she/he is, and 
how much electric power and 
city water she/he uses, because 
the individual’s activity every 
15 minutes can be assumed to 
consume unit power of the 
utilities used. By accumulating 
data for all family members in 
each room and dwelling, daily 
time series of power demands 
for lighting, electric household 
appliances other than HVAC, 
domestic hot water, and city 
water are predicted. 
Concerning electric power 
demand for HVAC, TUD-PS 
predicts thermal cooling or 
heating load for each room 
based on the dynamic 
calculation with a 15-minute 
time resolution. For example, 
in a calculation procedure for a 
typical dwelling having 3LDK 
(two bedrooms, one Japanese 
Tatami room, and a living and 
dining room with kitchen 
(LDK)), TUD-PS solves a set 
of simultaneous heat balance 
equations with 159 unknown 
variables. In the process, 
indoor anthropogenic heat gain 
derived from both electric 
appliances and human bodies is 
considered. Regarding how the 
HVAC turns on and off, a 
stochastic model with Markov 
chain (Tanimoto & Haghisma 
(2005)) is applied to both 

heating and cooling, where two transition states, 
HVAC off-to-on and on-to-off, function depending 
on the indoor global temperature and outdoor air 
temperature to determine whether the next state is on 
or off, although we have a newly developed and more 

Table 1.  COP characteristics assumed for the present study. 
 

. 

i) Partial load factor 
 Max   if  

  1   if  

  Max  if . 

ii) Outdoor temperature factor 
 when heating 

     
 0.65 0.82 1.00 1.18 

  0.82 1.00 1.18 

 0.70 0.82 1.00 1.18 
   1.00  

 0.89 0.96 1.00 1.04 
 when cooling 

    

 1.00 1.16 1.30 
 1.00 1.16 1.30 

 1.00 1.16 1.30 

 
1.00   

 1.00 1.04 1.07 
: Maximum capability [kW], : Rating capability [kW], : Medial capability [kW], 

: Demanded load [kW], : Rating COP, : Partial load factor, : Outdoor 

temperature factor, : Outdoor temperature [oC] 

 
Fundamental capabilities of air conditioners assumed in the study 

Cooling Heating  
Recommended 
upper floor area 

Rating 
output 
[kW] 

Maximum 
output 
[kW] 

Rating 
COP 

Rating 
output 
[kW] 

Maximum 
output 
[kW] 

Rating 
COP 

6-jou (9.9 m2) 2.2 3.3 5.5 2.5 6.1 6.25 
8-jou (13.2 m2) 2.5 3.5 5.1 3.5 6.2 5.95 
12-jou (26.4 m2) 5.5 5.8 3.52 6.0 9.5 4.76 
 
 

 
 

 Figure 1. Holistic framework of 
TUD-PS 
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accurate stochastic model for cooling, 
which is based on multi-layer neural 
network (Tanimoto & Hagishima (2011)). 
In this study, we assume a series of heat 
pump systems powered by electricity, 
where three sizes of capacity, 6-, 8-, and 
10-Jou classes, are available (a Jou is a unit 
of area in a Japanese Tatami room; 1 Jou = 
1.65 m2). The COP characteristic of the 
heat pumps for both cooling and heating is 
defined in Table 1, which is a modified 
version of Tanaka & Hosoi (2006)’s model. 
Here partial load factor and outdoor air 
temperature affect COPs of cooling and 
heating.  
HVAC temperatures for cooling and 
heating are 26°C and 20°C, respectively. 
Irrespective of the inhabitants’ activities, 
HVAC is compulsorily terminated 
immediately after over-heating/cooling, 
which implies that more heating/cooling 
load is required when reaching a temperature 
higher/lower than 20°C/26°C. 
Figure 1 shows a schematic concept of TUD-PS for a 
multi-dwelling. 
 
 
 
 
 

 
Table 2.  Fourteen family types considered for the study. 

Family 
type # 

Number 
of 

family 
members 

Members 

1 3 Working male, Housewife, Child#1 
2 3 Housewife, Child#1, Child#2 
3 3 Working male, Housewife, Child#2 
4 4 Working male, Housewife, Child#1, Child#1 
5 3 Working male, Working female, Child#1 
6 4 Working male, Housewife, Child#1, Child#2 
7 5 Working male, Housewife, Child#1, Child#1, Child#1 
8 6 Working male, Housewife, Child#1, Child#1, 

Child#1, Senior female 
9 2 Working male, Working female 
10 2 Senior male, Senior female 
11 3 Working male, Working female, Child#3 
12 3 Working male, Housewife, Child#3 
13 1 Working male 
14 1 Working female 
Child#1: elementary school age, Child#2: secondary school age, Child#3: 
high school age. 

(A)                (B) 

 
Figure 2. Assignment of family type in each dwelling in 

the building (A), and frequency (B). 

 

 Figure 3. Detailed time series output of three consecutive days of winter and summer at the west-side dwelling of 
the top floor occupied by family type #8. See the text for details about each panel. 
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3. SIMULATION SETTING 
As in our previous study (Tanimoto & Hagishima 
(2010)), the residential building is located in Tokyo 
and equipped with external insulation of 50 mm,  
and an LDK faced south. Weather data collected 
between 1981 and 1995 is provided by Expanded 
AMeDAS (Akasaka et al. (2000)). There are three 
types of dwellings in terms of floor size: west side 
(4LDK, total floor area 95.8 m2), central (3LDK, 80.4 
m2), and east side (4LDK, 101.0 m2). The building 
has 10 stories, which implies that there are 10 
dwellings on each floor since we considered 100 
independent dwellings. We used 14 family types as 
shown in Table 2, and assigned one of these types to 
each dwelling in the building, as illustrated in Figure 
2. Average and standard deviation numbers of family 
members per dwelling are 3.5 and 1.16, respectively. 
 

 
 
4. RESULTS AND DISCUSSION 
4-1 Insight into a specific dwelling on representative 
days 
Figure 3 shows a detailed time series of the outdoor 
air temperature, room air temperature, total thermal 
requirement (sum of sensitive and latent loads), COP 
of LDK (upper panel), and the accumulated electric 
power demand of all dwellings (bold line) and its 
breakdown. It also shows HVAC, electric household 
appliances, lighting and standby loads (middle panel), 
and domestic hot water (bold line) and city water 
demands (lower panel) of the west-side dwelling on 
the 10th floor where a type #8 family lives. As 
representative days, consecutive three days of winter 
(A) and summer (B) are shown.  
Interestingly, on/off operation for cooling leads to 

 Figure 4. Sorted total electric power demand of the entire building (A) with occurring time (B) and date (C), 
hot water demand (D), heating COP (E), and heating electric power (F). 
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relatively higher COP compared with heating because, 
unlike the continuous operation for heating, there is 
higher partial load factor for cooling. This is because, 
during lower outdoor temperature, inhabitants barely 
switch off heating. Heating was found to be turned 
off at noon on February 8 and February 9 because of 
a higher outdoor temperature with ample solar energy 
(not shown) that causes over-heating during the 
daytime. 

4-2 Characteristics of peak demand for the entire 
building 
Figure 4 shows orderly sorted maximum accumulated 
electric power demands integrated the entire building 
(nominally shown in the average value per dwelling). 
The vertical line of 1% indicates the top 1% 
maximum among 15 years data sets, which means 
5285th place (= 0.01 × (365 × (15 − 3) + 366 × 3) × 
24 × 4). Panel A shows the total electric power 

 Figure 6.  Relationship between maximum peak and annual loads for Base Case, LessCapa Case, and 
Aged and Single Case with its sub-classes (see text). Total electric demand (A), hot water demand (B), 

cooling (C) and heating (D) electric power demands. 

 Figure 5. Sorted hot water demand of the entire building (A) with occurring time (B) and date (C), 
and total electric power demand (D). 
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demand by date (B) and time (C) of the event; panels 
D–F show hot water demand, heating COP, and 
power demand from the heating HVAC, respectively. 
The black line and plot indicate an average value of 
100 dwellings, while the gray line and plot indicate 
the average ± standard deviations. The decreasing 
tendency of total electric power is certainly consistent 
with that of heating power demand, which implies 
that maximum total power demand is dominated by 
the heating requirement. The top-most maximum 
demands occur in the early 
mornings and late nights of 
winter. Heating COP is 
approximately 2, which is higher 
than the annual average (shown 
in Table 3) because of a larger 
partial load factor. There is no 
correlation between total electric 
demand and hot water demand. 
Interestingly, the slope of 
decreasing tendency from the 
maximum total electric power 
demand is less steep than that 
derived from only two specific 
dwellings (shown in Fig.6, 
discussed later). This is because 
the 100 dwelling accumulation 
compensates for irregular 
demand at each dwelling, which 
causes the various peaks of each 
dwelling to disappear as a whole. 
Hereafter, we call this the peak 
shift effect. 
Figure 5 shows sorted hot water 
demand (panel A) with the date 
and time and total electric power 
demand (panels B–D) in the 
same manner as Fig. 4. The hot 
water peak appears during night 
in the winter, thus indicating that 
the peak is dominated by bathing 

and dishwashing after dinner. Note that the standard 
deviation of hot water demand is much larger than 
that of the total electric demand (panel A, Fig. 4), 
which implies that the peak shift effect for hot water 
demand is more phenomenal than that observed for 
electric power demand. This is expected because the 
use of hot water varies from one family to another.  
Instead of accumulating all 100 dwellings, we show 
in Figure 6 the sorted total electric power (A) and hot 
water (B) use of two dwellings, dwellings #28 

 
Table 3.  Statistical summary of simulation results; annual summation of total 

electric power, hot water, city water, standby load, lighting, household 
appliances, cooling and heating electric power, annual averaged COP for 

heating and cooling (shown in average ±  standard deviation in 15 
years). The last two rows are number of events and its event frequency 

when cooling load overly requires cooling capacity, and its average room 
temperature when violating the capacity. 

Annual summation/ave Base 2-Dwelling LessCapa Const 
Total Electric Demand 
 [kWh/dwelling] 

4939 254 5446 293 3907 114 7095 135 

Hot Water Demand  
[MJ/dwelling] 

14261 51 13898 259 14261 51 17469 175 

City Water Demand 
 [m3/dwelling] 

236 0.8 230 3.7 236 0.8 344 2.4 

Average COP  
for Heating 

1.22 0.05 1.05 0.05 3.08 0.09 0.89 0.05 

Average COP  
for Cooling 

2.20 0.12 2.42 0.11 3.91 0.14 1.27 0.12 

Standby Electric Load 
 [kWh/dwelling] 

1744 2 1546 2 1744 2 1740 3 

Lighting Load 
 [kWh/dwelling] 

87 0.2 99 0.5 87 0.2 97 0.2 

Electric Household 
 Appliance Load 

[kWh/dwelling] 

1363 7 1719 13 1363 7 2481 7 

HVAC Load Cooling 
 [kWh/dwelling] 

183 41 171 47 109 25 882 86 

HVAC Load heating 
 [kWh/dwelling] 

1562 250 1912 287 603 108 1896 157 

Probability of failing to 
attain set room air temp. 
due to less capacity (total 
events during 15 years) 

2 × 10−6 

(3) 
0 3.7 × 10−5 

(59) 
0 

Average room air temp. 
when failing attain the set 
temp. [°C] 

26.6 - 27.1 - 

 

(A)   (B)   (C)  (D) 

 

 

(A)   (B)   (C)  (D) 

Figure 7.  Influence of sample size on peak loads; total electric demand (A), hot water demand (B), 
cooling (C) and heating (D) electric power. 

Figure 8.  Influence of sample size on peak loads in case of Const Case; total electric demand (A), hot 
water demand (B), cooling (C) and heating (D) electric power. 
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(family type #3) and #15 (family type #6), with an 
average number of family member 3.5, matched 
against that of the entire building’s average. Notably, 
both extreme peak maximum demands of total 
electric power and hot water based on the two 
dwellings are much larger than those of the entire 
building. This is because an aggregation of only two 
dwellings, especially those featured with analogous 
family types, shows a negligible peak shift effect. 
Let us consider the influence of number of dwellings 
on the accumulation of the peak shift effects. Figure 7 
shows the relationship between respective peak 
demands and statistical sample size to draw 
respective peak loads. Data for dwellings #28 (family 
type #3) and #15 (family type #6) were plotted as 
representative sample size for a single dwelling. The 
data where the sample size is two is derived from the 
accumulation of those two dwellings. The data where 
the sample size is 14 is based on the accumulation of 
14 dwellings selected from each family type as its 
representative. The data on 100 dwellings is for the 
accumulation of the entire building. The influence of 
number of dwellings on accumulation of peak shift 
effect seems remarkable, especially in case of hot 
water demand. This is because a residential site 
consisting of a large number of dwellings, where 
different demand schedules occur, can de-peak more 
from the superposing peaks compared to a residential 
site with small number of dwellings. In short, the 
peak shift effect can be greater if a larger number of 
dwellings are accumulated. This tendency is more 
significant for hot water demand than electric power 
demand, since the deviation in the time series for the 
dwellings’ demand for hot water is more significant 
than that for electric power.  
The results so far are based on all inhabitants’ 
stochastic schedules, and therefore are deviated from 
each other even with the same family type. Figure 8 
shows the same data as Fig. 7 derived from another 
setting, the Const Case, which implies that the results 
based on each dwelling from all 100 dwellings shares 
the same behavior schedule if it has the same family 
type assigned. For each family type, there are only 
three schedules: weekday, Saturday, and holiday 
because, for instance, the same daily schedule is 
repeated when weekdays are continued. Thus, in the 
Const Case, all inhabitants’ default behavior 
schedules are presumed as deterministic instead of 
stochastic. Comparing Figs. 7 and 8, we note that the 
decreasing tendency of peak loads from 10 to 100 
dwellings observed in Fig. 7 is not seen in Fig. 8. 
This fact proves that a peak shift effect depending on 
the number of accumulated dwellings can be 
reproduced only by a stochastic methodology like 
TUD-PS, rather than a deterministic way. 
In summary, a prediction methodology such as 
TUD-PS that considers stochastic deviation in each 
inhabitant’s behavior is necessary for the accurate 
prediction of a detailed time series for utility demand 
and peak evaluation. 

4-3 Influences on peak brought by HVAC max 
capacity 
As mentioned earlier, it is assumed that each room 
has the necessary class of heat pump (HP) in terms of 
its capacity installed, which means that a 10-Jou class 
HP is assigned to a room that is 9-Jou (1.65 m2 × 9 = 
14.85 m2) in size. This setting will be called the Base 
Case. The installation of an HP that is one size 
smaller than necessary, e.g., an 8-Jou class instead of 
10-Jou class in a 9-Jou room, will be called a 
LessCapa Case. The results are summarized in Table 
3. Values accumulated only from dwellings #28 and 
#15 are indicated by 2-Dwelling Case. Every load 
shown in Table 3 is an annual accumulation, 
expressed as an average for 15 years with standard 
deviation. The last two rows of Table 3 give events 
frequency with occurring probability when the room 
temperature cannot be maintained at a set 
temperature of 26°C (that is the temperature is over 
26°C even under cooling operation) for 15 years, and 
its average room air temperature during the 
deficiency period. 
Remarkably, the LessCapa Case shows that the 
annual accumulated total electric power demand is 
far less than that of the Base Case. This is because 
the annual accumulated cooling and heating powers 
reduce due to much higher cooling and heating COP 
than in Base Case. Installing a smaller HP than 
required increases the deficiency probability for 
cooling (with no event in which the temperature does 
not meet the set temperature of 20°C for heating, 
even if LessCapa Case is presumed). The likelihood 
remains small, because it is less than 25 hours (59 × 
15 minutes) during the 15 years. The average 
temperature during the deficiency period is 27.1°C, 
which is comfortable temperature. These observed 
facts suggest that to improve higher COP, there is an 
alternative energy conservation provision other than 
research and development activities employed in 
industrial sectors that produce various types of heat 
pump systems. That is, installing a smaller HP than 
recommended is effective and costs less, therefore it 
is very feasible. 
 
5. CONCLUSIONS 
We have established a Total Utility Demand 
Prediction System (TUD-PS) to predict the utility 
demands with a high time resolution for a residential 
sector by superposing respective dwellings using the 
Monte Carlo simulation. We applied the developed 
TUD-PS to a residential building with 100 
independent dwellings inhabited by various types of 
families. Using simulation study, we obtained the 
following results: 
(1) It is necessary to consider the diversity of 

inhabitants’ behavior schedule through a 
properly established stochastic framework such 
as TUD-PS. One cannot predict utility demands 
such as electric power and hot water 
accumulated over the entire building, a particular 
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residential area, or even a city—especially at a 
peak time—without such a framework. 

(2) The peak shift effect, which can reduce 
maximum peak load by spatially accumulating 
dwellings, is confirmed considerable even in a 
building of 100 dwellings. The peak shift effect 
tends to be phenomenal for domestic hot water 
demand, which deviates substantially between 
dwellings. 

(3) As a bottom-up approach to realize significant 
energy conservation, installment of heat pump or 
air-conditioner of size smaller than 
recommended size is quite phenomenal. This is 
because higher COP than that by usual 
installment can be realized throughout seasons. 
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