Residential Application of an Indoor Carbon Dioxide Metric

Andrew Persily, Brian J. Polidoro

National Institute of Standards and Technology 100 Bureau Drive, MS8600 Gaithersburg, MD 20899 USA *Corresponding author: andyp@nist.gov

ABSTRACT

Indoor carbon dioxide (CO₂) concentrations have been used for decades to evaluate indoor air quality (IAQ) and ventilation. However, many of these applications reflect a lack of understanding of the connection between indoor CO₂, ventilation rates and IAQ. In particular, a concentration of 1800 mg/m³ (1000 ppm_v) has been used as a metric of IAQ and ventilation without an appreciation of its basis or application. After many years of trying to dissuade practitioners and researchers from using CO₂ as a metric of ventilation and IAQ, the first author developed an approach to determine CO₂ levels that can be used as more meaningful indicators. This approach is based on the fact that space types differ in their recommended or required ventilation rates, occupancy and other features that impact indoor CO₂ concentrations. Rather than employ a single CO₂ concentration for all spaces and occupancies, this alternative approach involves the estimation of space-specific CO₂ concentrations. The concept considers the steady-state CO₂ concentration that would be expected in a given space type based on its intended or expected ventilation rate per person, the time to achieve steady-state, the number of occupants as well as the rate at which they generate CO₂, and the occupancy schedule as it pertains to the likelihood that steady-state will be achieved.

This alternative approach was described in a previous AIVC conference paper, with sample calculations presented for several commercial and institutional building spaces. Those calculations yielded potential CO₂ concentration metrics, along with corresponding measurement times after full occupancy. Based on these analyses, it was stressed that reported CO₂ concentrations for comparison to these or other metrics need to be associated with a measurement time relative to the start of occupancy as well as information about the space in question and its occupancy. Since this previous work, an online calculator has been developed to allow users to perform these calculations, and that calculator is described here. In addition, this paper applies the approach to residential buildings, which are more challenging based on their varying configurations and the large fraction of time that occupants spend in bedrooms.

KEYWORDS

Building performance; carbon dioxide; indoor air quality; metrics; residential; ventilation

1 INTRODUCTION

Indoor air quality (IAQ) is characterized by the chemical and physical constituents of air that impact occupant health, comfort and productivity. The number of airborne contaminants in most indoor environments is quite large, and their impacts on building occupants are known for only a very small number of contaminants. The large number of contaminants, and their wide variation among and within buildings and over time, makes it extremely challenging to quantify IAQ, let alone to distinguish between good and bad IAQ based on a single metric. There have been efforts to define IAQ metrics, but none have been shown to capture the health and comfort impacts of IAQ very well or have become accepted in the field (Jackson et al., 2011; Hollick and Sangiovanni, 2000; Moschandreas et al., 2005; Teichman et al., 2015).

The indoor concentration of carbon dioxide (CO₂) has been widely promoted as a metric of IAQ and ventilation, in many cases without a clear explanation of what it is intended to characterize, or a description of its application or its limitations (Persily, 1997). Nevertheless, many practitioners use 1800 mg/m³ (roughly 1000 ppm_{y)} as a metric, often erroneously basing it on ASHRAE Standard 62.1 (ASHRAE, 2016a). However, that standard has not contained an indoor CO₂ limit for almost 30 years (Persily, 2015a). There have been many papers and presentations that have attempted to clarify the meaning of indoor CO₂ concentrations, some advocating that they not be used at all in IAO and ventilation evaluations. However, these calls to stop poorly informed applications of indoor CO₂ are not succeeding. Instead, efforts to educate designers, practitioners and others need to continue, and this paper expands on a previously-described approach to using indoor CO₂ concentrations as a metric of ventilation rate per person that thoroughly considers the parameters that determine indoor CO₂ levels (Persily, 2018). That previous discussion presented the approach and outlined its application to a number of commercial and institutional building spaces. This paper expands the consideration to residential buildings and describes an on-line calculator that allows the estimation of indoor CO₂ concentrations in applying this approach.

2 BACKGROUND

Indoor CO₂ concentrations have been prominent in discussions of ventilation and IAQ since the 18th century (Klauss et al., 1970). Since that time, discussions of CO₂ in relation to IAQ and ventilation have evolved, focusing on the impacts of CO₂ concentrations on building occupants, how these concentrations relate to occupant perception of bioeffluents, the use of indoor CO₂ concentrations to estimate ventilation rates, and the control outdoor air ventilation rates based on indoor CO₂ concentrations (Persily, 2015b; Persily, 1997).

Indoor CO₂ concentrations are directly related to the outdoor air ventilation rates per person specified in standards, guidelines and building regulations (ASHRAE, 2016a; ASHRAE, 2016b; CEN, 2007b; CEN, 2009). These outdoor air requirements reflect research on the amount of ventilation needed to control odor associated with the byproducts of human metabolism, as well as other contaminants emitted by building materials and furnishings (Persily, 2015a). This research has found that about 7.5 L/s to 9 L/s per person of ventilation air dilutes body odor to levels judged to be acceptable by individuals entering a room from clean air, i.e., unadapted visitors. This research also supports 1800 mg/m³ of CO₂ as a reflection of body odor acceptability perceived by unadapted visitors. Of course, there are many other important indoor air contaminants that are not associated with the number of occupants, and CO₂ concentration is not a good indicator of those contaminants.

Indoor CO₂ concentrations are typically well below values of interest based on health concerns (Persily, 2017). Some recent work has shown evidence of impacts on human performance, as well as other health impacts, at levels on the order of 1800 mg/m³ (Azuma et al., 2018; Snow et al., 2019), while other studies have not shown performance impacts at similar concentrations. It is therefore premature to conclusively link CO₂ concentrations in this range with such occupant impacts until more research is done.

While indoor CO₂ concentrations are not meaningful indicators of overall IAQ, a previous paper describes the use of CO₂ as an indicator or metric of outdoor air ventilation rates per person (Persily, 2018). As discussed in that paper, indoor CO₂ concentrations depend primarily on the rate at which the occupants generate CO₂, the outdoor air ventilation rate of the space, the time since occupancy began, and the outdoor CO₂ concentration. For the purposes of these discussions, outdoor air ventilation refers to the total rate at which outdoor air enters the building or space of interest, including mechanical and natural ventilation as well as infiltration.

The cited paper describes the single-zone mass balance theory to calculate indoor CO₂ concentrations from these parameters per the following equation:

$$C(t) = C(0)e^{-\frac{Q}{V}t} + C_{ss}\left(1 - e^{-\frac{Q}{V}t}\right),\tag{1}$$

where C is the CO₂ concentration in the space in mg/m³, C(0) is the indoor concentration at t = 0, t is time in hours, Q is the volumetric flow of air into the space from outdoors and from the space to the outdoors in m³/h, and V is the volume of the space being considered in m³. The steady-state CO₂ concentration C_{ss} is given by:

$$C_{ss} = C_{out} + G/_{O}, \tag{2}$$

where C_{out} is the outdoor CO_2 concentration and G is the CO_2 generation rate in the space in mg/h. Q, C_{out} and G are in general functions of time but are assumed constant in this analysis. Also, air density differences between indoors and out are being ignored by using the same value of Q for the airflow into and out of the space. Finally, this single zone formulation ignores concentration differences within and between building zones and CO_2 transport between zones and assumes there are no other indoor sources of CO_2 other than occupants.

Note that the indoor concentration will only get sufficiently close to steady-state if conditions, specifically Q and G, are constant for a long enough period of time. In particular, a constant value of G requires that the occupancy remain constant, but in many spaces occupancy will be too short or too variable for steady-state to be achieved. A convenient means of assessing whether steady-state is likely to be achieved is by comparing the duration of constant occupancy to the time constant of the space. The time constant is equal to the inverse of Q/V in Equation 1, i.e., the inverse of the air change rate, and the indoor concentration will be about 95 % of steady-state after three time constants. For example, for an air change rate of 1 h⁻¹, steady-state will exist after 3 hours. For an air change rate of 0.5 h⁻¹, it will take 6 hours.

			CO ₂ concentration above outdoors (mg/m ³)				
Space Type	t _{metric} (h)	Time to steady- state (h)*	Steady-state	1 h	t _{metric}		
Classroom (5 to 8 y)	2	1.4	1060	940	1040		
Classroom (>9 y)	2	1.1	1580	1490	1580		
Lecture classroom	1	0.9	1940	1870	1870		
Restaurant	2	0.7	1871	1850	1870		
Conference room	1	1.6	2526	2130	2130		
Hotel/motel bedroom	6	4.5	1080	520	1060		
Office space	2	5.9	985	390	630		
Auditorium	1	0.6	2900	2880	2880		
Lobby	1	0.6	4467	4430	4430		
Retail/Sales	2	2.1	1546	1170	1450		

Table 1: Calculated CO₂ concentrations

In the previous work on this CO_2 metric concept, several space types were selected from the commercial/institutional building space types or "Occupancy Categories" in Table 6.2.2.1 of ASHRAE Standard 62.1 (ASHRAE, 2016a). For these spaces, shown in Table 1, CO_2 concentrations above outdoors were calculated at steady-state, after 1 h of occupancy, and at a time t_{metric} , which was selected as a time over which the particular space type may be expected to be fully occupied. That time is in the first column of Table 1, while the time to reach steady-state is in the second column. The assumed occupant densities, occupant characteristics and CO_2 generation rates are described in Persily (2018).

^{*} Time to achieve 95 % of steady-state CO₂ concentration, i.e., three time constants

Based on the previous work, including the desire for a CO₂ metric to capture ventilation deficiencies and to be less sensitive to the timing of the concentration measurement, Table 2 summarizes potential CO₂ metric values for these spaces along with the corresponding measurement time. Given the transient nature of indoor CO₂ concentrations, it is critical that a concentration CO₂ metric be linked to a measurement time. Therefore, reported CO₂ concentrations relative to these and any other metrics need to include the time that has passed since the space reached full occupancy. Consideration of additional spaces and different input values would possibly yield other conclusions about potential metrics. Such analyses will be facilitated by the online tool described below.

Space Type	CO ₂ concentration metric, above outdoors (mg/m ³)	Corresponding time (h after full occupancy)		
Classroom (5 to 8 y)	1000	2		
Classroom (>9 y)	1500	1		
Lecture classroom	2000	1		
Restaurant dining room	2000	1		
Conference meeting room	2000	1		
Hotel/motel bedroom	1000	6		
Office space	600	2		
Public assembly/Auditorium	3000	1		
Public assembly/Lobby	4500	1		
Retail/Sales	1500	2		

Table 2: Potential CO₂ concentration metrics

3 CO₂-BASED VENTILATION METRIC FOR RESIDENTIAL SPACES

This paper extends the concepts discussed above to residential spaces, which can be challenging given the variations in dwelling and family size and in occupant characteristics, as well as the often unpredictable durations of occupancy relative to some commercial and institutional spaces. However, the many hours associated with sleep provide helpful options for these analyses in bedrooms. The approach taken is again to use Equation (1) to calculate the CO₂ concentrations for a given space based on assumptions about the CO2 generation rates and ventilation rate of the space. In order to explore these dependencies for residential spaces, indoor CO₂ concentrations were calculated for the occupancies listed in Table 3, which describes 3 families: a baseline with 4 members (2 adults and 2 children), a larger family with 2 additional children, and a smaller family with 2 adults and no children. The sex, age, body mass and level of physical activity are described for each family, including the CO₂ generation rate in L/s for each person calculated using the methodology in Persily and de Jonge (2017), as well as the average CO₂ generation rate per person. These generation rates are presented for the whole house during non-sleep hours when occupants are assumed to be more active, and for bedrooms when occupants are sleeping. For occupant characteristics that differ from those considered here, the online tool described below is enables analysis of different occupancies. For each occupancy in Table 3, CO₂ concentrations were calculated for the following ventilation scenarios:

Whole house:

- Ventilation rate requirement from ASHRAE Standard 62.2 (ASHRAE, 2016b)
- Ventilation rate of 0.5 h⁻¹

Bedrooms:

• 62.2/Perfect Distribution: Bedroom ventilation rate is the Standard 62.2 rate divided by the number of house occupants, multiplied by the number of bedroom occupants

- 62.2/Uniform Distribution: Bedroom ventilation rate is the Standard 62.2 rate divided by the whole house floor area, multiplied by the bedroom floor area
- 0.5/Perfect Distribution: Bedroom ventilation rate is 0.5 h⁻¹ times the house volume divided by the number of house occupants and then multiplied by the number of occupants in each bedroom
- 0.5/Uniform Distribution: Bedroom ventilation rate is 0.5 h⁻¹ times the house volume divided by the whole house floor area, and then multiplied by the bedroom floor area
- 10 L/s per person/Perfect Distribution: Bedroom ventilation rate is 10 L/s multiplied by the number of bedroom occupants

Table 3: Occupancy Assumptions for CO₂ concentration calculations

Case	Occupants	CO ₂	Average CO ₂	
	(age, body mass in kg, met level)	generation per person (L/s)	generation per person (L/s)	
Baseline family of 4				
Whole house	1 male (40 y, 85 kg, 1.3 met);	0.0049	0.0043	
	1 female (40 y, 75 kg, 1.3 met);	0.0038		
	1 male (6 y, 23 kg, 2 met);	0.0042		
	1 female (10 y, 40 kg, 1.7 met)	0.0042		
Master Bedroom	1 male (40 y, 85 kg, 1.3 met);	0.0037	0.0033	
	1 female (40 y, 75 kg, 1.3 met);	0.0029		
Child Bedrooms	1 male (6 y, 23 kg, 2 met);	0.0021	0.0023	
	1 female (10 y, 40 kg, 1.7 met)	0.0025		
Additional occupants	in larger family of 6			
Whole house	1 male (8 y, 32 kg, 2 met);	0.0050	0.0042*	
	1 female (4 y, 14 kg, 2 met)	0.0031		
Master Bedroom	No change		0.0033	
Child Bedrooms	1 male (8 y, 23 kg, 2 met);		0.0022*	
	1 female (4 y, 40 kg, 1.7 met)			
Smaller family of 2 (n	o children)		·	
Whole house	Only adults		0.0043	
Master Bedroom	Only adults		0.0033	

^{*} Average CO₂ generation rate accounts for all 6 occupants in whole house and all 4 children in child bedrooms.

The Standard 62.2 whole house ventilation requirement Q_{tot} in L/s is calculated using Equation (4.1b) from the standard, i.e.,

$$Q_{tot} = 0.15A_f + 3.5(N_{br} + 1), (2)$$

where A_f is the floor area in m² and N_{br} is the number of bedrooms. The value of Q_{tot} is used in this analysis without any of the adjustments allowed by Standard 62.2, such as the infiltration credit. The whole house air change rate of 0.5 h⁻¹ is included as it is recommended in several international standards and guidelines (CEN, 2007a; Concannon, 2002).

For the bedroom cases, two idealized air distribution scenarios are applied to the Standard 62.2 and 0.5 h⁻¹ whole house rates. In the first, Perfect Distribution, the whole house rate is divided by the number of occupants in the house. That normalized value is multipled by the number of occupants in each bedroom to determine the ventilation to each bedroom. Perfect Distibution may correspond to a ventilation system that supplies outdoor air directly to each bedroom based on the number of occupants. Under Uniform Distribution, the total ventilation rate is normalized by the floor area of the entire house, and the ventilation rate of each bedroom is that normalized rate multiplied by its floor area. Uniform distribution may correspond to a building ventilated by infiltration only, an exhaust-only ventilation system or a mechanical ventilation system that is integrated into a forced-air distribution system. The last bedroom ventilation rate, 10 L/s per

person/Perfect Distribution, assumes 10 L/s of outdoor air is supplied for each person in each bedroom. That rate is based on recommendations in CEN (2007a) and (2009).

Table 4 presents the dimensions (ceiling heights and floor areas) for the houses considered.

T 11 / II	11	1	•	c		1 1
Table 4: House and	ı nec	iraam	C176C	TOT	cases	considered
Table 4. House and	1 000	1100111	SIZCS	101	Cases	constacted

	Ceiling height (m)	House floor area (m²)	Master bedroom floor area (m²)	Child bedrooms floor area (m ²)
Large House	2.44	250	30	20
Small house	2.74	200	20	15

Table 5 presents ventilation rates and calculated CO₂ concentrations (above outdoors). The second and third columns contain the outdoor air ventilation rate in L/s per person and h⁻¹ for the whole house and bedroom cases. The fourth column is the time to reach a steady-state CO₂ concentration, i.e., three times the inverse of the air change rate. The table does not include t_{metric} , which as described earlier is a time over which a particular space may be expected to be fully occupied. Throughout these analyses, t_{metric} is 2 h for the whole house and 6 h for the bedrooms. The last three columns are the calculated CO₂ concentrations at steady-state, 1 h after occupancy and t_{metric} . The whole house air change rates based on Standard 62.2 are about 0.3 h⁻¹ in all but the small house/baseline family case, in which it is about 0.5 h⁻¹. The bedroom air change rates cover a range of almost 10 to 1 for the different cases in the large house/baseline family and the small house/small family. In both of those occupancies, delivering 0.5 h⁻¹ directly to the bedrooms under Perfect Distribution results in air change rates above 2 h⁻¹ and well over 15 L/s per person. On the other hand, Uniform Distribution to the bedrooms results in less than 5 L/s per person in several cases. These air change rates impact the time required to achieve steady-state, which are 6 h or less for the bedrooms cases other than for 62.2/Uniform. For the whole house, the time to steady-state ranges from 3 h to more than 11 h.

The calculated CO₂ concentrations in Table 5 reflect the differences in ventilation and CO₂ generation for the specific occupancies. It is worth noting that the only steady-state bedroom concentrations greater than 1800 mg/m³ (assuming an outdoor concentration of 700 mg/m³) occur in the master bedroom for all 62.2/Uniform cases and for the small house/small family 0.5/Uniform case. Also, for cases with short time constants, 2 h or less, the three CO₂ concentrations are not very different from each other. Much larger differences are seen for larger time constants. In all whole house cases, the concentrations at tmetric are at least 200 mg/m³ above outdoors, which is above the uncertainty typically associated with field measurements of indoor CO₂ concentrations. The bedroom concentrations at t_{metric} are typically even higher, except in the 0.5 h⁻¹/CBR/Perfect case, for which the steady-state concentration is less than 200 mg/m³. The magnitude of these concentrations relative to typical measurement uncertainties supports the use of such calculated concentrations as a metric, although assuming constant occupancy in a whole house for 2 h could be questionable under some circumstances. It is worth noting that the range of CO_2 concentrations at t_{metric} for each occupancy range by at least 4 to 1 in the small house/baseline family case, to as much as almost 9 to 1 in the large house baseline/family case. These differences demonstrate the importance of considering the target ventilation rate in using calculated CO₂ concentrations as a metric. Also, for the same ventilation case, the differences in calculated CO₂ concentrations at t_{metric} for the different occupancies are not as large as those within the same occupancy for the different ventilation cases. However, they are large enough to be reliably measured and support the need to consider house size and occupancy when using calculated concentrations as a metric.

Table 5: Ventilation rates and calculated CO₂ concentrations for the residential cases

	Outdoor air ventilation		Time to steady-	CO ₂ Concentration above			
			state (h)		ors (mg/r		
Case*	L/s per person	h ⁻¹		Steady- state	1 h	t _{metric}	
Large House/Baseline family							
Whole house -62.2	12.9	0.27	11.1	598	142	250	
Whole house -0.5 h^{-1}	23.8	0.50	6.0	324	127	205	
62.2/ MBR/Perfect	12.9	1.13	2.7	461	312	461	
62.2/ CBR/Perfect	12.9	0.85	3.5	322	184	320	
62.2/MBR/Uniform	3.1	0.27	11.1	1922	456	1543	
62.2/CBR/Uniform	4.1	0.27	11.1	1005	238	807	
0.5 h ⁻¹ /MBR/Perfect	23.8	2.08	1.4	250	219	250	
0.5 h ⁻ CBR/Perfect	23.8	1.56	1.9	174	138	174	
0.5 h ⁻¹ /MBR/Uniform	5.7	0.50	6.0	1041	409	989	
0.5 h ⁻¹ / CBR/Uniform	7.6	0.50	6.0	544	214	517	
10 L/s per person/MBR/Perfect	10.0	0.88	3.4	594	347	591	
10 L/s per person/CBR/Perfect	10.0	0.66	4.6	414	199	406	
Large House/Large family							
Whole house – 62.2	9.8	0.31	9.8	775	205	356	
Whole house – 0.5 h ⁻¹	15.9	0.50	6.0	477	188	301	
62.2/ MBR/Perfect	9.8	0.85	3.5	609	350	606	
62.2/ CBR/Perfect	9.8	0.64	4.7	402	190	393	
62.2/MBR/Uniform	3.5	0.31	9.8	1692	448	1425	
62.2/ CBR/Uniform	4.7	0.31	9.8	837	221	704	
0.5 h ⁻¹ /MBR/Perfect	15.9	1.39	2.2	375	281	375	
0.5 h CBR/Perfect	15.9	1.04	2.9	247	160	246	
0.5 h ⁻¹ /MBR/Uniform	5.7	0.50	6.0	1041	409	989	
0.5 h ⁻¹ / CBR/Uniform	7.6	0.50	6.0	514	202	489	
10 L/s per person/MBR/Perfect	10.0	0.88	3.4	594	347	591	
10 L/s per person/CBR/Perfect	10.0	0.66	4.6	392	189	384	
Small House/Baseline family							
Whole house – 62.2	7.3	0.43	7.0	1061	369	610	
Whole house $-0.5 h^{-1}$	8.5	0.43	6.0	908	357	574	
62.2/ MBR/Perfect	7.3	1.07	2.8	819	538	818	
62.2/ CBR/Perfect	7.3	0.71	4.2	571	291	563	
62.2/MBR/Uniform				2048		1891	
62.2/ CBR/Uniform	2.9	0.43	7.0 7.0	952	713	879	
0.5 h ⁻¹ /MBR/Perfect	8.5	1.25	2.4	701	500	701	
0.5 h CBR/Perfect	8.5	0.83	3.6	489	276	485	
0.5 h ⁻¹ /MBR/Uniform 0.5 h ⁻¹ / CBR/Uniform	3.4 5.1	0.50	6.0 6.0	1753 814	690 320	1666 774	
		0.50		594	458	594	
10 L/s per person/MBR/Perfect 10 L/s per person/CBR/Perfect	10.0 10.0	1.48 0.98	2.0 3.1	414	259	413	
Small House/Small family	11.0	0.22	0.2	700	104	224	
Whole house – 62.2	11.0	0.32	9.2	700	194	334	
Whole house -0.5 h^{-1}	16.9	0.50	6.0	454	179	287	
62.2/ MBR/Perfect	11.0	1.62	1.8	540	433	540	
62.2/MBR/Uniform	2.2	0.32	9.2	2700	748	2315	
0.5 h ⁻¹ /MBR/Perfect	16.9	2.50	1.2	351	322	351	
0.5 h ⁻¹ /MBR/Uniform 10 L/s per person/MBR/Perfect	3.4	0.50	6.0 2.0	1753 594	690 458	1666 594	
* MBR and CBR stand for master					400	J7 4	

^{*} MBR and CBR stand for master bedroom and child bedroom, respectively.

Table 6: Calculated ${\rm CO_2}$ concentrations for the residential cases with 25 % ventilation rate reduction

Outdoor air ventilation		Time to steady-	CO ₂ Concentration above			
		state (h)		outdoors (mg/m³)		
-	n ·		•	1 N	t _{metric}	
10.5	0.22	13.6	731	145	261	
17.8	0.38	8.0	431	135	228	
10.5	0.92	3.3	564	340	562	
10.5	0.69	4.3	393	196	387	
2.5	0.22	13.6	2350	467	1728	
3.4	0.22	13.6	1228	244	903	
17.8	1.56	1.9	333	263	333	
17.8	1.17	2.6	232	160	232	
4.3	0.38	8.0	1387	434	1241	
5.7	0.38	8.0	725	227	649	
7.5	0.66	4.6	792	381	777	
7.5	0.49	6.1	552	215	523	
8.2	0.26	11.6	923	210	372	
					335	
					716	
					459	
					1587	
					785	
					499	
					326	
					1241	
					614	
					777	
7.5	0.49	.1	522	203	495	
6.3	0.37	8.1	1219	379	640	
					639	
					937	
					640	
					2101	
					976	
					931	
					636	
					2091	
					971	
					791	
7.5	0.74	4.1	552	288	545	
9.1	0.27	11 1	843	100	351	
					319	
					651	
					2608	
					467	
					2091	
ı ∠.J	0.50	2.7	792	530	791	
	17.8 10.5 10.5 2.5 3.4 17.8 17.8 17.8 4.3 5.7 7.5 7.5 7.5 7.5 7.5 8.2 11.9 8.2 8.2 2.9 3.9 11.9 11.9 4.3 5.7 7.5 7.5 7.5 7.5 7.5 7.5 3.8 6.4 6.3 6.3 2.5 3.8 6.4 6.4 2.5 3.8 7.5	person 10.5 0.22 17.8 0.38 10.5 0.92 10.5 0.69 2.5 0.22 3.4 0.22 17.8 1.56 17.8 1.17 4.3 0.38 5.7 0.38 7.5 0.66 7.5 0.49 8.2 0.26 11.9 0.38 8.2 0.72 8.2 0.54 2.9 0.26 11.9 1.04 11.9 0.78 4.3 0.38 5.7 0.38 7.5 0.66 7.5 0.49 6.3 0.37 6.4 0.38 6.3 0.93 6.3 0.93 6.3 0.93 6.4 0.63 2.5 0.38 3.8 0.38 7.5 1.11	10.5 0.22 13.6 17.8 0.38 8.0 10.5 0.92 3.3 10.5 0.69 4.3 2.5 0.22 13.6 17.8 1.56 1.9 17.8 1.17 2.6 4.3 0.38 8.0 5.7 0.38 8.0 7.5 0.66 4.6 7.5 0.49 6.1 8.2 0.26 11.6 11.9 0.38 8.0 8.2 0.72 4.2 8.2 0.54 5.6 2.9 0.26 11.6 11.9 1.04 2.9 11.9 0.78 3.8 4.3 0.38 8.0 5.7 0.38 8.0 8.2 0.54 5.6 2.9 0.26 11.6 11.9 1.04 2.9 11.9 0.78 3.8 4.3 0.38 8.0 5.7 0.38 8.0 5.7 0.38 8.0 5.7 0.38 8.0 6.3 0.37 8.1 6.4 0.38 8.0 6.3 0.93 3.2 6.3 0.62 4.8 2.5 0.37 8.1 6.4 0.94 3.2 6.4 0.63 4.8 2.5 0.38 8.0 3.8 0.37 8.1 6.4 0.94 3.2 6.4 0.63 4.8 2.5 0.38 8.0 3.8 0.37 8.1 5.7 0.38 8.0 5.7 0.38 8.0 6.3 0.93 3.2 6.3 0.62 4.8 2.5 0.37 8.1 3.8 0.37 8.1 5.1 0.27 11.1 12.7 0.38 8.0 9.1 1.35 2.2 1.8 0.27 11.1 12.7 1.88 1.6	L/s per person	L/s per person	

^{*} MBR and CBR stand for master bedroom and child bedroom, respectively.

To the evaluate the usefulness of calculated CO₂ concentrations as ventilation metrics, the calculations presented in Table 5 were redone with the assumed ventilation rates reduced by 25 %. As in the commercial and institutional occupancies discussed in Persily (2018), these additional calculations were performed to assess how much the concentrations change at lower ventilation rates since a useful metric should capture such changes. The CO₂ concentrations for the reduced ventilation rates are shown in Table 6, as well as the outdoor ventilation rates for each case in L/s per person and h⁻¹ and the times to reach steady-state. Values that increase by 100 mg/m³ or more relative to the corresponding values in Table 5 are noted in bold font. The whole-house, reduced-ventilation concentrations at t_{metric} in Table 6 increase very little relative to the corresponding values in Table 5, often by 30 mg/m³ or less, which is comparable with the measurement accuracy of many field measurements of CO2 concentrations. This lack of increase is partly due to the long time constants of the whole-house cases, which allow little time for the concentration to increase after only 2 h. The increases in the bedroom concentrations are more significant, typically at least 100 mg/m³ and often several hundred mg/m³ higher for the reduced ventilation cases for a t_{metric} of 6 h. These larger increases for the bedroom support the use of a 6 h value of t_{metric} to capture ventilation deficiencies in bedrooms.

In contrast to the commercial and institutional occupancies discussed by (Persily, 2018), these residential cases are less constrained by space size, occupancy and ventilation, making it difficult to generalize these results to develop CO₂ metrics for residential buildings. Instead, the house, occupancy and air distribution approach need to be accounted for in developing a metric or reference point for evaluating the adequacy of the ventilation rate relative to a target value. The online tool discussed in the next section was developed to implement these concepts.

4 ON-LINE CO₂ METRIC CALCULATOR

In order to support application of the proposed CO₂ concentration metric, an online tool (available at https://pages.nist.gov/CONTAM-apps/webapps/CO2Tool/#/) has been developed. This tool allows the user to estimate indoor CO₂ concentrations in a ventilated space at steady-state, 1 hafter occupancy and at a selected value of *t_{metric}*. These calculated concentrations can then be compared with measured concentrations in a building to evaluate whether the intended or required ventilation rate is actually being achieved. Such a building-specific metric or reference value is far better than using a single value such as 1800 mg/m³.

Figure 1 shows the first screen encountered when using the tool, where one first selects to analyze a commercial/institutional building or a residential building. Depending on that selection, the user then enters the required inputs. For commercial/institutional buildings, the tool allows one to select from several of the commercial and institutional space types listed in ASHRAE Standard 62.1-2016, and to use the default values in that standard for outdoor ventilation requirements and occupant density, i.e., number of occupants per 100 m² of floor area. The tool makes assumptions about the occupants in each space, i.e., sex, body mass, age and activity level in met, needed to calculate the CO₂ generation rate in the space based on Persily and de Jonge (2017). However, these assumptions can be modified by selecting User-Defined Model Type, which brings up an alternative input screen.

The residential building inputs are shown in Figure 2. In this case, the user selects whether they are performing a whole building or bedroom analysis. If whole building is selected, the user can select the ventilation requirement based on Standard 62.2-2016 or enter a whole building air change rate in h⁻¹. If instead they chose to perform a bedroom analysis, they need to select the ventilation requirement from Standard 62.2 or enter a L/s per person ventilation rate. In either case, they also need to define the air distribution as Perfect or Uniform as described above. Under Perfect Distribution, they have the option of having some of the ventilation air

bypass the bedrooms entirely, to account for supply vents in other portions of the house. If desired, an Alternate Ventilation per Person input can be input to enable comparison of the results to those obtained with the Primary ventilation rate.

CO2 Metric Analysis Tool

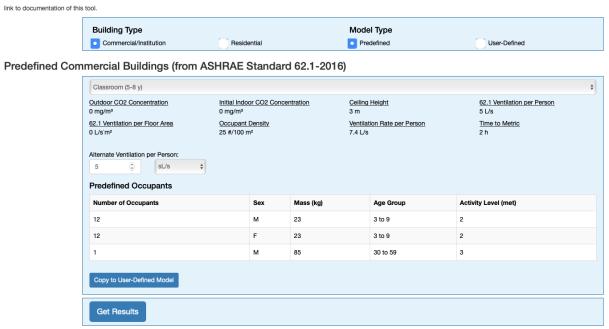


Figure 1: CO₂ Metric Calculator Default Inputs Screen

Once the user has completed the inputs, they click Get Results on the bottom of the Inputs page. This action brings up the Results screen shown in Figure 3, which summarizes the inputs and displays a plot of the indoor CO_2 concentration versus time, along with concentration values at steady-state, t_{metric} and 1 h after occupancy for both the Primary and Alternate ventilation rates.

The tool is applied by comparing the calculated CO_2 concentrations to measured values, with a measured value that is higher serving as an indication that the actual ventilation rate is below the assumed or desired ventilation rate. For comparisons with a calculated whole house value, the measured CO_2 concentration should be a volume-weighted, whole house average based on the concentrations measured in each room. Since the calculation assumes constant occupancy, the measurement needs to occur while occupancy is constant, which can be limited in duration. Ideally, a constant occupancy period that lasts for t_{metric} occurs for the whole house, and the calculated value at that time are then used for the comparison. If constant occupancy does not last that long (default value of 2 h), the t_{metric} value in the calculator can be modified.

CO2 Metric Analysis Tool

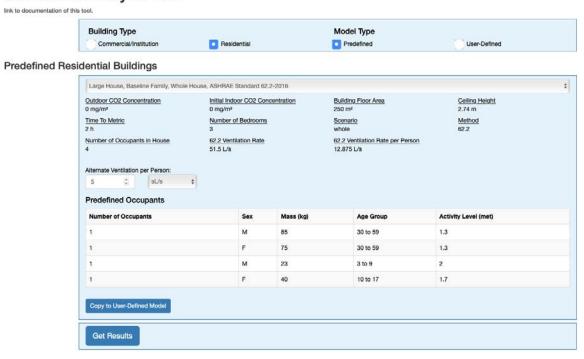



Figure 2: CO₂ Metric Calculator Residential Input Screen

CO2 Metric Analysis Tool

nk to documentation of this too

Inputs & Space Description

Results

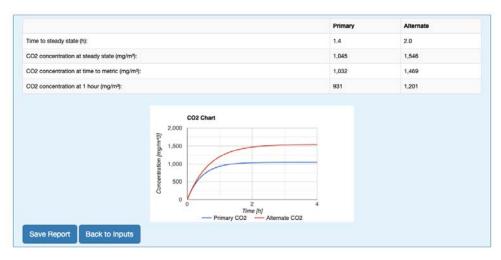


Figure 3: CO₂ Metric Calculator Results Screen

In the case of bedrooms, the calculated CO₂ concentrations can again be compared to measured values in the bedroom. Given the fairly stable bedroom occupancy during sleeping, that comparison should occur several hours after the bedroom is occupied for sleeping. The tool has a default value of t_{metric} for bedrooms of 6 h, which should work well for making the concentration comparisons. On making that comparison, a measured value that is higher serves as an indication that the actual ventilation rate is below the assumed or desired ventilation rate. Note that this comparison neglects the impact of interzone transport on the bedroom CO₂ concentration. Also, the calculation assumes that the CO₂ concentration starts at the outdoor level. However, the initial concentration in the bedroom may be higher than outdoors due to previous occupancy of the house, in which case the calculated concentration will be lower than it would if the actual initial concentration were considered. This situation would result in the calculated metric value being conservative, meaning it would lead to a conclusion that the ventilation rate is lower than it may actually be.

5 SUMMARY AND CONCLUSIONS

This paper expands on a previously-described approach to using indoor CO₂ concentration measurements as a metric for ventilation rates per person, which accounts for the ventilation requirements and occupancies of specific spaces. Calculations of CO₂ concentrations at steady state and other times, are presented for selected residential occupancies based on space-specific inputs of ventilation rate, space geometry and occupancy. Application of this CO₂ metric approach to residences requires one to report, at a minimum, the following: house or bedroom geometry (e.g. floor area and ceiling height), occupant characteristics, time at which full occupancy starts, time of CO₂ concentration measurement, and measured indoor and outdoor CO₂ concentrations. These measurements can then be compared with the values calculated with the online tool as an indication of whether the ventilation rate complies with the value in Standard 62.2 or other ventilation requirement of interest. As additional analyses are performed and the concept discussed with practitioners and researchers, it is anticipated that the approach will become more well-defined and more useful.

Note that all of the input values used in these calculations can be revised to examine the impact of other values on the resulting CO₂ concentrations. An online calculator has been developed to allow users to perform these additional calculations. Based on user feedback, the calculator will be revised in the future. One specific addition being considered is to enable Monte Carlo analyses to quantify the impact of uncertainties in the input values on the calculated CO₂ concentrations, as well as to identify the most important input values, using the methodology described in Jones et al. (2015).

6 ACKNOWLEDGEMENTS

The authors express their appreciation to Steven J. Emmerich and W. Stuart Dols of NIST and Benjamin Jones of the University of Nottingham for their helpful review comments.

7 REFERENCES

ASHRAE. 2016a. ANSI/ASHRAE Standard 62.1-2016 Ventilation for Acceptable Indoor Air Quality, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA.

ASHRAE. 2016b. ANSI/ASHRAE Standard 62.2-2016 Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA.

- Azuma, K., Kagi, N., Yanagi, U. and Osawa, H. 2018. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. *Environ Int*, 121, 51-56.
- CEN. 2007a. Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics, Brussels, European Committee for Standardization.
- CEN. 2007b. Ventilation for buildings Energy performance of buildings Guidelines for inspection of ventilation systems, Brussels, European Committee for Standardization.
- CEN. 2009. Ventilation for buildings Determining performance criteria for residential ventilation systems, Brussels, European Committee for Standardization.
- Concannon, P. 2002. *Residential Ventilation*, Air Infiltration and Ventilation Centre, Coventry, Great Britain., Technical Note AIVC 57.
- Hollick, H.H. and Sangiovanni, J.J. (2000) A Proposed Indoor Air Quality Metric for Estimation of the Combined Effects of Gaseous Contaminants on Human Health and Comfort, In: Nagda, N. L. (ed) *Air Quality and Comfort in Airliner Cabins, ASTM STP 1393*, West Conshohocken, PA, American Society for Testing and Materials, 76-98.
- Jackson, M.C., Penn, R.L., Aldred, J.R., Zeliger, H.I., Cude, G.E., Neace, L.M., Kuhs, J.F. and Corsi, R.L. (2011) Comparison Of Metrics For Characterizing The Quality Of Indoor Air, 12th International Conference on Indoor Air Quality and Climate, Austin, Texas.
- Jones, B., Das, P., Chalabi, Z., Davies, M., Hamilton, I., Lowe, R., Mavrogianni, A., Robinson, D. and Taylor, J. 2015. Assessing uncertainty in housing stock infiltration rates and associated heat loss: English and UK case studies. *Building and Environment*, 92, 644-656.
- Klauss, A.K., Tull, R.H., Roots, L.M. and Pfafflin, J.R. 1970. History of the Changing Concepts in Ventilation Requirements. *ASHRAE Journal*, 12, 51-55.
- Moschandreas, D., Yoon, S. and Demirev, D. 2005. Validation of the Indoor Environmental Index and Its Ability to Assess In-Office Air Quality. *Indoor Air*, 15 (11), 874-877.
- Persily, A. 2015a. Challenges in developing ventilation and indoor air quality standards: The story of ASHRAE Standard 62. *Building and Environment*, 91, 61-69.
- Persily, A. (2017) Indoor Carbon Dioxide as Metric of Ventilation and iAQ: Yes or No or Maybe?, *AIVC 2017 Workshop on IAQ Metrics*, Brussels, Air Infiltration and Ventilation Centre.
- Persily, A. (2018) Development of an Indoor Carbon Dioxide Metric, *39th AIVC Conference*, Antibes Juan-les-Pins, France, 791-800.
- Persily, A.K. 1997. Evaluating Building IAQ and Ventilation with Indoor Carbon Dioxide. *ASHRAE Transactions*, 103 (2), 193-204.
- Persily, A.K. (2015b) Indoor Carbon Dioxide Concentrations in Ventilation and Indoor Air Quality Standards, *36th AIVC Conference Effective Ventilation in High Performance Buildings*, Madrid, Spain, Air Infiltration and Ventilation Centre, 810-819.
- Persily, A.K. and de Jonge, L. 2017. Carbon Dioxide Generation Rates of Building Occupants. *Indoor Air*, 27, 868-879.
- Snow, S., Boyson, A.S., Paas, K.H.W., Gough, H., King, M.-F., Barlow, J., Noakes, C.J. and schraefel, m.c. 2019. Exploring the physiological, neurophysiological and cognitive performance effects of elevated carbon dioxide concentrations indoors. *Building and Environment*, 156, 243-252.
- Teichman, K., Howard-Reed, C., Persily, A. and Emmerich, S. 2015. *Characterizing Indoor Air Quality Performance Using a Graphical Approach*, National Institute of Standards and Technology.