
DOCUMENTATION OF OPEN-SOURCE SIMULATION -
ADDRESSING MULTIPLE POINTS OF INTEREST

Dr. Jon W Hand1,

1Energy Systems Research Unit, University of Strathclyde, Glasgow, Scotland

ABSTRACT
As with all large software projects, the support
demands of a diverse community of a simulation tool
exceeds the means of supply. Interested parties may
be users (from novices to experts), support staff (e.g.
computing infrastructure technicians, QA
specialists), researchers who wish to use or extend a
feature of the software, other (possibly remotely
located) members of the development team or
validation groups who what to ensure equivalence of
models.
An open source model for simulation software poses
particular challenges. Resources are limited, many
developers may never physically meet, and the user
community includes novices and those who push at
the limits of the virtual physics. Open source
supports the discovery of application details yet it
does not yet seem to have adopted a business model
that is able to amalgamate, preserve and distribute
what gets discovered. Although focused on ESP-r,
many of the issues raised in this paper are generic
and may have a wider applicability.

INTRODUCTION
In June 2002 the Energy Systems Research Unit of
the University of Strathclyde in Glasgow announced
that the simulation suite ESP-r would become an
open source software project under the GNU license.
The butterfly that set this storm in motion was the
author's reading of "rebel code" by Glyn Moody.
This book discussed the benefits and drawbacks of
making software available beyond its original
development community and freeing others to
explore new uses. It argued that one can make a
business plan around open source software. The next
flap of the wings was passing the book to Prof. Joe
Clarke of ESRU who decided to buy into the idea.
The ESP-r development community debated this and
adopted the (at the time) radical idea that the future
of simulation lay in opening it up so that others could
build on it and use it for purposes that no one in the
existing community could imagine.
The decision to open source carried with it a number
of technical and philosophical issues necessitating
changes in how the developer and user community
worked and communicated. Although many
thousands of open source applications exist, few

could be described as million line virtual physics
laboratories. Many of the challenges confronting the
ESRU community since 2002 are unique to the
technical domain while others confront open source
projects in general.
Decisions were required on how to co-ordinate the
contributions of existing and new developers so that
the ESP-r distribution maintained its robustness as
well as becoming a better platform for exploratory
developments in simulation.
The traditional sequence of tasks undertaken by
developers and the archivist in ESRU had evolved
over a decade. The process might have seemed
pedantic to outsiders, but there were few glitches in
the million lines of code. The process relied on at
degree of paranoia as well as the maintenance of a
strict regime within which the actors performed their
tasks.
One of the early tasks, when opening up ESP-r, was
to scale up without becoming a burden on the
archivist:
• Passing code to an archivist in ESRU relied on a

manual regime of enforced by convention - these
needed to be documented and codified

• Detecting errors in coding and changes in
predictions were manual processes. These tests
needed to become part of the work flow as well
as a design issue for new facilities.

• The transfer of files had a limited audit trail and
also required attention to detail.

• User access to the source as a set of compressed
archive files on a file server was inefficient. It
was Linux and Unix platform-centric.

Many of the above issues were rooted in a person-
centred version control system. Clearly what was
required was a software based version control. ESP-
r, as a community, was a late adopter of version
control.
In 2001, 2003 and 2004 source code repositories
were implemented at different development sites.
These made use of CVS (concurrent versioning
system) and were used to co-ordinate group coding
and testing cycles. This diverse testing ran in parallel
with the archivist’s tasks.
In 2005 the repository moved from CVS to a
versioning system named Subversion (svn). This

Eleventh International IBPSA Conference
Glasgow, Scotland

July 27-30, 2009

- 1955 -

allowed for a clearer audit trail, easier manipulation
of files and folders and more options for merging and
testing different development branches. It also
automated the distribution of information about
changes as they happened, provided facilities to view
changes made by others and supported free clients on
most computing platforms. Word spread that
Subversion was an infrastructure that could scale and
was robust enough for community development.
What had been learned in the testing phase was being
written down and demonstrations given within the
community. Make no mistake, there was a lot of
scratching of heads. The act of documenting
procedures exposes complexity. Why must we jump
through all of these hoops? Why can’t you just take
my five line change?
For this paper, one of the core issues is that
documenting procedures requires iteration. Actual
practice evolves in subtle ways that are not part of
the published checklist. The authors of checklists
work from habit rather than reading what they wrote
down six months ago. Lesson to be learned? Those
who write documentation need others to confirm that
the instructions actually work.

Figure 1 actions sequence

Virtual servers
Once the community was more-or-less comfortable
with Subversion, the next step was to move it to an
externally hosted environment with a domain owned
by the community (esp-r.net) in 2006. From a core of
developers who had access to a Sun Solaris box
named sigma to scores of developers and hundreds of
users relying on an anonymous server is quite a
transition.
Another mark of open software is adaptation to the
goals of a community rather than its founding
authors. This stage of 'letting go' is also a useful
proof that procedures are robust and are largely
independent of the individuals. Thus, in parallel with
the move to a global repository, the archivist role

transferred from Joe Clarke in ESRU to Ian
Beausoleil-Morrison initially at Natural Resources
Canada and later at Carlton University in Ottawa.
The development community has expanded to more
than 60 development branches although some of
these branches evidence little activity others support
joint projects and can be subject to a half-dozen
commit/test cycles in a day. The number of commits
will have passed four thousand since the SVN
repository was established.

ENFORCED TESTING
Although the initial regime was supported by
familiarity within a small community, the
introduction of new and unknown talent required the
core developers to re-consider procedures:
• each commit introduces the risk of errors and

there is a considerable benefit in identifying
these as early as possible

• developers who are focused on one facet of ESP-
r may not realise that their work may have
unintended consequences,

• the audit trail built into SVN is a powerful aid to
testing new features

The testing method adopted was multi-faceted. The
code had to pass a syntax check, it had to compile on
multiple platforms, over a hundred example models
had to be installed successfully and the predictions
from simulations on test models had to be within a
specific tolerance.
Each of these facets required that the user community
understand the nature of the tests, how the tests were
judged, how they should be run and how to
contribute new tests as facilities were extended.
What was initially a ritual undertaken by the core
developers needed to be codified so that others could
participate.
In terms of the source code, differences in syntax
with the prior state of the code were flagged as seen
in Figure 2. Initially developers were expected to
undertake the syntax check (and some continue to do
this) prior to committing changes, this task was later
automated and included after commits to the
respository were detected. The archivist has the
option of requiring reported warnings and errors to
be fixed prior to taking the code into the main
development branch.
New entrants to the development process often begin
with the view that code that compiles must be
correct. The archivist has a more specific set of
requirements – it must compile, if the code relates to
an interface the response to users actions must have
been tested, code which reads files should be well
tested and code associated with calculations must not
introduce unexplained changes.
One step in the process was the automatic pre-
processing (e.g. local databases and shading
calculation files) of 175 example models. If a change

- 1956 -

in ESP-r resulted in one of these models failing to
install then the specific facet of the model definition
that failed could be identified and investigated.

Figure 2 reported syntax differences

Figure 3 reported performance differences

Other errors are only detected at run-time. One
automatic test was composed of a set of 143
simulations to be carried out and various reports
generated. Some standard reports were compared for

differences while XML output was tested whether it
was within tolerance and identified specific entities
in the model tested that were associated with
differences in performance data. An example of this
is shown in Figure 3

BLOGS
The audit trail built into SVN become, in effect, a
blog for the community as contributions are
committed to the repository. Each commit included a
message which identified what had changed, what
the impact on users and developers was and how the
change was tested. An example of this is shown in
Figure 4.

Figure 4 notification of change

Each of the branch owners were notified of changes
as they occurred. The notification included links so
that the differences in the code could be viewed.
Once changes were committed to the main
development branch each of the individual branches
would be updated by the owner of the branch.
What this 'blog' did not support was posting of "here
is what I am planning to do". In a large development
community there is a risk that developers who are
focused on one facet of ESP-r may not realise that
others may be working on a related issue until the
'blog' is updated. This level of communication
remains an ad-hoc activity and is a weak point in the
community.

- 1957 -

The above examples are the product of those in the
development community who are already adept at
doing-the-dance. For those who are joining the ESP-r
community there is a need for guidance. Initially this
was done as word-of-mouth and via demonstrations.
Gradually this was captured and added to the source
code repository. Among the documents were:
• Quality Assurance Procedure
• Developers Quality Assurance Checklist
• ESP-r Coding Guide
• An Overview of Subversion for ESP-r Central

Users
Given the core developers geeky history, the
typsetting language troff was used to format these
documents. This is, of course a classic catch-22. The
last thing that new developers want is to learn a
command line syntax to generate the documents via
the troff processor in order to read how the
community works.
The community is currently exploring the use of a
WIKI to hold some types of documentation about
how the process works. A HTML format would fulfil
the need to be an open document format and it might
be attractive to community members who have thus
far avoided contributing documentation.

Code documentation
While the 'blog' has addressed a number of the
documentation and communication issues in our
diverse community, there is also the issue of
documentation within the repository of code and
example models.
Ideally, one would judge code documentation by
whether others are able to understand the purpose of
subroutines, follow procedural logic and understand
looping structures. There is also a need for clarity in
data structures such as common blocks and local
variables as well as the parameters which are passed
into and returned from subroutines and functions.
Clarity is a challenge. Extremes tend not to work e.g.
‘ij’ and ‘loop_for_number_of_boilers_counter’ both
have drawbacks. If a common block is used a dozen
times in one source file does it need to be fully
documented each time?
ESP-r contains much legacy code and some of this
requires passion to digest even if compilers can do it
without complaint. Where the author of the code is
still active they may be able to re-code but some code
the loss of the initial flow diagram presents a
considerable barrier for reverse engineering.
Because of the diverse backgrounds in the
development community there are a number of
'styles' of documentation. Being open source, there is
limited scope to enforce coding styles. There are,
however, guidelines showing acceptable coding
conventions and these tend to be enforced by the
archivist for new contributions. Extracts are shown in
Figure 5.

Figure 5 suggested code styles

Documentation for users
Viewed from the outside, the provision of
documentation for users of ESP-r is of variable
quality. It takes many forms. Before interfaces
offered contextual help, user manuals were the
primary point of reference. The advent of contextual
help provides an alternative to reference manuals but
it also competes for scarce resources to populate the
hundreds of dialogues and scores of menus.
And as was the case with developer interactions with
Subversion, seasoned users of ESP-r tend not to use
the contextual help and they do not often use the
manuals. The former is understandable. The latter
seems perverse until one realizes that developers tend
to document code and forget that there are manuals
which should also be updated.
Within ESRU the traditional approach to skills
acquisition includes workshops, mentoring and email
communications within the user and developer
community. Workshops were either two day
introductory courses or three day workshops with
time included for user projects and further time on
advanced issues such as air flow.
In the context of a two day introductory course the
goal was familiarity with the interface, understanding

- 1958 -

the building blocks of models and experience of
planning and creating models of limited complexity.
• a brief introduction to simulation practice
• a brief history of ESP-r
• a tour of models and simulation issues
• review of translating what is observed in rooms

into simulation models
• browse existing models to explore the interface
• review databases
• review of climate patterns
• planning a simple model based on client

requirements
• step-by-step creation of a model
• QA of model
• planning and run initial simulation
• discovery of performance patterns
• modifying model, re-run assessments and look

for differences in predictions
• adding environmental controls
• understanding control actions
• increasing model resolution
• working practices
• QA techniques
This level of exposure should clarify whether ESP-r
might be of interest to the participant and to
understand the general nature of interactions within
the tool. It would allow a participant to use existing
models but would be unlikely to give them sufficient
skills to create anything but the most rudimentary
models.
In the context of a three day course the goals would
be extended to include experience with a range of
problems, advanced controls, flow networks and their
control as well as data extraction techniques. Several
hours would be reserved for individual projects.
Participants would be expected to be able to plan and
create their own models in consultation with staff.
If this is followed up by periodic explorations then
many would develop a competency that would allow
the deployment of constrained models that could
answer a some design questions but would be much
less efficient than staff with greater experience.
The assumption was that workshops would be
followed up with mentoring with an experienced user
as well as occasional email support and advise.
The presentation materials used in these workshops
would often be PowerPoint presentations. The terse
nature of most slides is compensated for by the
commentary provided by the instructor. On their
own, the PowerPoint presentations have been
observed to be of limited use for non-participants.
The other mode of workshop presentation is via the
live use of ESP-r. Participants would observe the
current interface and example models and the

instructor commentary would complete the story.
Unfortunately, no one thought to video the sessions
so that remote practitioners could benefit.

Capturing Expertise
Workshops were considered a success if everyone’s
first model simulated correctly the first time. And
this tended to happen, even for workshops in other
countries. In contrast, those who attempted to learn
ESP-r in isolation faced a number of frustrations. As
admitted earlier, documentation was of variable
quality. The absence of the instructor commentary
was also a primary difference. In the view of the
author this is a critical gap.
Almost no vendor of simulation software writes
about and focuses on the importance of method and
strategy vis-à-vis simulation. Those who can work
magic with simulation have invested in and evolved
strategies which greatly leverage the power of the
tool they are using. The more general the tool (and
ESP-r is very general) the more working practices
must be constrained by strategy and the design of
models is an art to be tempered by careful planning.
Workshop commentary tended to be rich in strategy.
But workshops do not scale.
The time and attention needed to notice, understand,
explore and eventually deploy useful strategies
cannot be limited to those experiencing workshops.
The author posited that it should be possible to recast
the commentary from the workshops as well as the
support that mentors provide for a wider audience.
The approach taken was to place this information
within The ESP-r Cookbook[Hand 2008]. The first
version was distributed in 2004 as a fifty page
document. Over time it was extended, new figures
added and other updated to about 120 pages. An
accompanying volume of Exercises was added in
2007.
In early 2008, while on secondment to Samsung
Construction in Seoul, the opportunity arose to
significantly update and expand the Cookbook.
Firstly, the secondment involved extended mentoring
of staff with different backgrounds. Secondly, some
topics Samsung wished to explore were not covered
fully in the current text. It made sense to invest in the
Cookbook so as to deliver information beyond the
immediate context.
There was also an interest in working procedures.
One of the definitive books on working practice, The
CIBSE Applications Manual 11 [CIBE 2000] was
approaching a decade since publication. Much of this
was still valid but it seemed better to consider the
topic in the light of more recent observations.
One observation, which seems not to be covered
elsewhere, is that the most successful deployments of
simulation are in teams. And especially where team
members have evolved their interaction skills as well
as an attitude to notice opportunities for delivering
greater value. So the Cookbook contains chapters of

- 1959 -

checklists and defines possible points of interaction
and what each team member might bring to and take
form these interaction points. This was noticed by
the moderator of the BLDG-SIM list and
recommended for users of all tools. While a great
complement, it does point out an area of
commonality with most simulation environments.
Decisions related to the abstraction of physical
designs to virtual designs, decisions about what
boundary conditions to use and strategies for
understanding performance predictions are both
generic and transferable.
One topic which has been recently included in the
Cookbook is a broad ranging discussion of the art
and science of creating and using mass flow
networks. Learning about flow networks was almost
exclusive to workshops and mentoring. And it is also
the case that little is written about the design of flow
networks used in other simulation environments.
By the start of 2009 the Cookbook had expanded to
270 pages and 167 figures. There are currently only
introductions to the topics of computational fluid
dynamics, planning assessments and interpretation of
performance patterns. Given that the latter was the
focus of several seminars at Seoul National
University there will be more than enough evidence
to support an extensive discussion in a later edition.

English as a second language
In presenting workshops on ESP-r in locations where
English is not a first language, it is clear that the
learning curve, already steep for a simulation tool
such as ESP-r, is even worse. This forms a
significant barrier to the deployment of simulation.
Although there are limited resources in an open
source community, the number of people who might
translate a chapter is greater than the number of
developers. It requires a mutual benefit to be
perceived. From the perspective of the development
community, the geographic distribution of users may
result in additional development resources. For
Universities native language training materials may
allow courses to be mounted and local expertise to be
developed.
The first step has been to work with the Department
of Architecture at Seoul National University in Korea
to translate the Cookbook. This work is being
undertaken by a group of Masters and Phd students
with further editing by lecturers and then final
revisions by a nation-wide committee. The Korean
translation should be available in mid-2009.
Currently the Cookbook is also being translated for
use in Italy, France and China. This should greatly
assist those working independently in these locations.
A recent notable addition to ESP-r documentation is
an alternative to the Cookbook by a pair of French
users. In these instances it seems that the business
model of open source may be up to the task of
addressing this aspect of user documentation and,

perhaps influencing the deployment of other
simulation tools.

CONCLUSION
This paper has discussed several aspects of
documentation within the open source ESP-r project.
It has noted the variable quality of support materials
and efforts to address the needs of the ESP-r
community. Some of these have been successful and
some still require much more work. The business
model places considerable constraints on resources
and the clear duplication of information in contextual
help and written documentation has yet to be
addressed.
This paper has also provided background on the
transition of a core developer group from a person-
centric set of procedures to a virtual development
environment with more than 60 source branches and
which has managed to maintain and improve the
quality of the code base while scaling to thousands of
commits.
Lastly the paper has discussed how a largely-oral
tradition of skills acquisition and mentoring has been
re-cast into the form of an ESP-r Cookbook and this
has generated sufficient interest to lead to its
translation into several languages.
Although the paper has been focused on one
simulation tool it is likely that other developers will
recognise many of the challenges and tactics
discussed in the paper. Certainly the traditions
evolved within the ESP-r community will continue to
evolve. We will want to learn from other groups and
it might be that IPBSA can play a future role as a
conduit for good practice ideas. Perhaps a future
IPBSA conference will address this?

ACKNOWLEDGEMENT
This paper would not have been possible without the
willing cooperation of scores of workshop
participants and those who have taken part in
mentoring with the author and the scores of
developers who are part of the ESP-r community.

REFERENCES
Crawley, D., Hand, J., Kummert, M. 2007.

Contrasing the Capabilities of Building Energy
Performance Simulation Programs., Building
and Environment, Elsevier Science Ltd.

Hand, J., Bartholomew D., Irving, S. et. Al. 1988.
Application Manual 11: Building Energy and
Environmental Modelling. Chartered Institution
of Building Services Engineers, London.

Hand, J., 2008. The ESp-r Cookbook. University of
Strathclyde, Glasgow, Scotland.
http://www.esru.strath.ac.uk.

Marcel, C., 2009. Tome 1- esp-r modelisation et
simulation des batiments. Viherio SARL,
Grenoble.

- 1960 -

Svn repository is at https://esp-r.net/espr/esp-
r/branches/development_branch

1

- 1961 -

