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ABSTRACT 

According to both the actual energy context and the 

latest laws meeting EU requirements about energy 

certification schemes for buildings, carrying out an 

energy performance diagnosis is mandatory, notably 

when buying or selling buildings. Indeed, invisible 

defaults could have a detrimental effect on their 

insulating qualities. An in-situ estimation of thermo-

physical properties allowing to locate defaults, the 

present work focuses on testing in simulation, as a 

first approach, a new and effective method based on 

the use of artificial neural networks to characterize 

building materials i.e. to estimate their thermal 

diffusivity using thermograms obtained thanks to a 

non-destructive method.  

INTRODUCTION 

The actual European energy context reveals that the 

building sector is one of the largest sectors of energy 

consumption. In France, about 25% of greenhouse 

gases emissions and 45% of energy consumption are 

due to buildings (ADEME, 2007). Consequently, the 

adopted "Energy Performance of Buildings Directive" 

(Official Journal of the European Communities, 

2002), focusing on energy use in buildings, requires 

all the European Union (EU) members to enhance 

their building regulations and to introduce energy 

certification schemes, with the aim of both reducing 

energy consumption and improving energy 

efficiency. Thus, an advanced energy performance 

diagnostic has to be done, notably when buying or 

selling buildings (Journal Officiel de la République 

Française, 2006). Presence of invisible defaults, like 

non emerging cracks or delaminations, in a wall or a 

ceiling completely spoils insulating qualities of a 

building. A future owner would be pleased to locate 

these defaults. In the same way, during a building 

renovation, if a precise draught does not exit, it 

would be useful to know where are the gas or water 

ducts and electricity cables passages, if an old 

opening has been blocked up, or if a wall or a ceiling 

is crossed by a wooden beam. Unfortunately, these 

defaults are usually hidden. Whatever the situation, 

the challenge is the same: locate invisible things 

under a layer of plaster or similar material, which 

amounts to locate inhomogeneities in homogeneous 

medium. These defaults locally modify global 

thermophysical properties of the medium. Thus, an 

in-situ properties estimation can lead us to locate 

them by making a properties cartography of the 

observed medium. 

In the present work, properties estimation methods, 

alternative to classic ones, are proposed using 

thermograms obtained with a non-destructive 

photothermal method. In the large domain of Non-

Destructive Control (NDC), thermal methods of 

characterization have known a new development 

thanks to infrared measurement tools. They are 

known as photothermal methods. Their principle is as 

follows: the sample to be characterized is excited by 

a light source and its thermal response, called 

thermogram, is recorded. From the obtained 

thermogram, one can estimate several thermo-

physical properties such as the thermal diffusivity 

and effusivity or the thickness of a layer for a 

multilayer material. These methods can be classified 

depending on the time profile of the excitation: 

pulsed method when the excitation is an impulse, 

modulated method when the excitation is periodic. 

But characterization of fragile or ductile material is 

still a problem because of high excitation 

solicitations. So, the idea is to submit the studied 

sample to a weaker thermal excitation. A recent 

solution is to apply an excitation with a random time 

profile. Previous studies have shown all the interest 

of this kind of method. The properties have to be 

estimated from the sample response to the random 

excitation. Two ways of doing are possible: 

rebuilding the impulse response and estimating the 

properties by usual method, or estimating the 

properties directly from the response to random 

excitation. We usually use a correlation analysis 

method to rebuild the impulse response. The main 

objective of the present work is to test some tools 

belonging to the field of artificial intelligence for 

rebuilding the impulse response of a sample or for 

estimating directly the properties from a response to 

a random excitation. Artificial neural networks, a 

useful tool for modelling and controlling non-linear 

systems, are known as universal and parsimonious 

approximators. They present some interesting 

attributes, mostly their learning and generalization 

capabilities, to be used for rebuilding impulse 

responses of building materials (in this case, the 

thermal diffusivity of the concerned materials is 
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thereafter determined by means of inverse methods; 

one could speak of "neuro-inverse" approach) or for 

directly estimating the above-mentioned thermo-

physical property. 

First, we will present the photothermal experiment 

and more particularly the random method. Inverse 

method for parameters estimation will be described 

too. Then, we will be interested in the artificial 

intelligence tool we use i.e. the Elman recurrent 

neural network. Finally, we will present our main 

results: rebuilt impulse responses and properties 

estimations. We will end this paper by a concrete 

application for buildings, our conclusions and actual 

prospects. 

THE PHOTOTHERMAL EXPERIMENT 

Presentation 

 

 
 

Figure 1. The photothermal experiment. White 

arrows: light excitation, black arrows: IR response. 

 

This NDC method consists in submitting the sample 

to be characterized to a light flux. The flux 

absorption products a local temperature elevation. 

The IR emission is recorded (Figure 1). With low 

heating hypothesis, the obtained photothermal signal 

is proportional to the surface sample temperature. It 

depends on the observed sample thermophysical 

properties (thermal effusivity and diffusivity), its 

structure, the eventual presence of defects or 

delaminations, etc… The temporal profile of the 

excitation flux represents one of the photothermal 

experiment characteristics. If the excitation is a pulse 

(as close to a Dirac in time as possible), the 

experiment is called pulsed method, better known as 

"flash method" (Parker W.J. et al., 1961). This 

method is very efficient: all frequencies are in the 

sample response. However, using this technique, a 

high quantity of energy has to be deposited in a very 

short instant. Thus, analysing fragile materials with 

the flash method is not possible. If the excitation is 

periodic (fixed and known frequency, sinusoidal 

profile for example), one speaks of modulated 

method. The sample response is recorded by the way 

of a lock-in amplifier. Energetic stresses are very 

smaller but the permanent regime has to be reached 

to begin measurements. Responses contain only one 

frequency and the experiment has to be repeated to 

obtain a complete study of the samples (Gervaise C., 

1999). The last born of the photothermal methods is 

the random method (Bodnar J.L. and Brahim S., 

2003), a random excitation (a Pseudo Random 

Binary Signal) being used. 

The random method 

This method has been developed by the GRESPI 

Laboratory from the University of Reims Champagne 

Ardennes (France). The random method combines 

elements from both flash and modulated methods. 

Energetic stresses are very low and if the excitation is 

perfectly random, the sample responses contain all 

frequencies. Using correlation analysis techniques, 

the sample impulse response is recalculated from its 

response to PRBS. Material properties are identified 

from the impulse response by well-known techniques 

(Parker W.J. et al., 1961). The major difficulty is to 

create experimentally an excitation as close as 

possible to a real random signal. 

 Using the random method 

After that several excitation types have been tested, 

the Pseudo Binary Random Signal (PRBS) has been 

chosen to excite the samples. The PRBS is a signal 

composed of low (0) and high (1) states, the duration 

of which is practically random (Figure 2.1). 

Construction of pseudo random sequences consists in 

getting the output signal of a shift register with a 

feedback via a modulo-2 addition (Auvray J., 1994). 

Samples can be stressed with a laser diode piloted by 

a PRBS. IR responses are recorded using an InSb or 

HgCdTe infrared detector. In parallel, a response 

model has been developed. Thus, it is possible to 

simulate the experiment. 

 

 
 

Figure 2. Examples: 1. PRBS, 2. Sample response to 

a pulsed stress, 3. Sample response to PRBS. 

 

Up to now, to obtain the impulse response ( ) 

(Figure 2.2) from the sample response to a random 

excitation ( ) (Figure 2.3), the GRESPI uses the 

J. Max’s technique (Max J., 1993) (Equation 1). 
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with 
 
the inverse Fourier transform,  

the Fourier transform of  and  the 

Fourier transform of the excitation. 

The aim of this paper is to show that correlation 

analysis can be efficiently replaced by artificial 

intelligence tools. 

 Identifying sample properties by inverse 

method 

The impulse response can be exploited using Parker’s 

technique (Parker W.J. and al., 1961) or by inverse 

method (Faugeroux O., 2001) to identify 

thermophysical properties. We usually use inverse 

method. The principle of an inverse method is to 

compare a model to experimental measurements. 

The model depends on parameters which are usually 

thermophysical properties combinations. The goal is 

to minimise a criterion by adjusting the parameters 

by an iterative process (Figure 3). Calculation is 

initiated by a priori parameters chosen by the user. 

Thus, having mathematical model very close to the 

used experiment is crucial.  
  

 
 

Figure 3. Estimation by inverse method principle. 

 

Bolt characters represent vectorial quantities or 

matrix. Let, first,  be a 

vector whose components are  experimental 

measurements uniformly spaced in time between  

and  and, secondly,  

be the vector of modelised temperature with 

,  being the parameters to be identified and 

calculated with a model. Finally, let  be an 

objective function, defined as the sum of the least 

square of  and , to be minimised with 

respect to the unknown . It could be written: 
 

 

 
 

We use the Gauss-Newton’s or Box–Kanemasu’s 

iterative method (Beck J.V. and Arnold K., 1977) to 

seek , the best estimate of , from an initial 

estimate . Each iteration requires the inversion of 

the approximation of the Hessian matrix  given by: 

 

 

 

with  the sensitivity matrix whose component  

is given by the time discretisation of the sensitivity 

function related to the parameter . The sensitivity 

function related to  is given by the first derivative 

of the model with respect to .  

 

 

 

This function allows us to calculate the sensitivity 

coefficient, the value of the function at time . At 

iteration , a new estimate vector is calculated, 

knowing the  estimate and a correction to 

the  estimate: 

 

 
 

with  the Box-Kanemasu correction coefficient (h = 

1 for Gauss-Newton method), 

 and . Thus, 

the parameter vector at iteration  is calculated. Let 

us note that the matrix  has to be inversed and, 

consequently, needs to be well-conditioned. So,  

values have to be maximum because small values 

lead to an ill-conditioned matrix and the inverse 

algorithm will not converge. The algorithm is 

stopped if the  function value at this iteration 

reaches a critical value.  

ARTIFICIAL NEURAL NETWORKS  

Recurrent Neural Networks (RNN) 

Feedforward neural networks have been successfully 

used to solve problems that require the computation 

of a static function i.e. a function whose output 

depends only on the current input, and not on any 

previous inputs. In the real world however, one 

encounters many problems which cannot be solved 

by learning a static function because the function 

being computed changes with each input received. It 

should be clear from the architecture of feedforward 

neural networks that past inputs have no way of 

influencing the processing of future inputs. This 

situation can be rectified by the introduction of 

feedback connections in the network (Elman J.L., 

1990). Now network activation produced by past 

inputs can cycle back and affect the processing of 

future inputs. The class of neural networks, which 

contain cycles or feedback connections, is called 

recurrent neural networks. 

Elman Neural Network (ENN) 

The Elman network used for rebuilding impulse 

responses and for estimating the thermal diffusivity 
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of materials is a 2-layer network with feedback from 

the first-layer output to the first layer input (Haykin 

S., 1994). This recurrent connection allows this kind 

of network to both detect and generate time-varying 

patterns. The Elman network has "tansig" neurons 

(i.e. using tan-sigmoid transfer functions) in its 

hidden (recurrent) layer and "purelin" neurons (i.e. 

using linear transfer functions) in its output layer. 

This kind of networks can approximate any function 

(with a finite number of discontinuities) with 

arbitrary accuracy. The only requirement is that its 

hidden layer must have enough neurons. More 

hidden neurons are needed as the function being 

fitted increases in complexity. The Elman network 

differs only from conventional 2-layer networks in 

that the first layer has a recurrent connection. The 

delay in this connection stores values from the 

previous time step, which can be used in the current 

time step. Because the network can store information 

for future reference, it is able to learn temporal 

patterns as well as spatial patterns. The Elman 

network can be trained, using an iterative process, to 

respond to, and to generate, both kinds of patterns 

(Charalambous C., 1992). At each iteration: (i) The 

entire input sequence is presented to the network, and 

its outputs are calculated and compared with the 

target sequence to generate an error sequence; (ii) For 

each time step, the error is backpropagated to find 

gradients of errors for each weight and bias. This 

gradient is actually an approximation since the 

contributions of weights and biases to errors via the 

delayed recurrent connection are ignored; (iii) This 

gradient is then used to update the weights with a 

backpropagation training algorithm like the 

Levenberg-Marquardt algorithm (Demuth H. and 

Beale M., 1992). 

REBUILDING OF IMPULSE RESPONSES 

AND ESTIMATION OF THERMAL 

DIFFUSIVITIES 

Available database 

The used database has been provided by the GRESPI 

Laboratory. It is composed of responses to PRBS, 

impulse responses and thermophysical properties for 

the following seven building materials: glass wool, 

brick, plaster, stainless steel, granite, concrete and 

glass. Responses to PRBS and impulse responses are 

both composed of 255 points (uniformly spaced in 

time, s for responses to PRBS while 

s for impulse responses). 

Rebuilding of impulse responses using an Elman 

network and estimation of thermal diffusivities by 

inverse method (neuro-inverse approach) 

A first Elman neural network has been trained using 

the glass wool, concrete, glass and stainless steel 

responses to PRBS as network inputs and their 

respective impulse responses as targets i.e. as desired 

network outputs. Then, the trained Elman neural 

network has been used for rebuilding the impulse 

responses of brick, plaster and granite using their 

responses to PRBS as new network inputs. It is the 

validation phase (Grieu et al., 2005).  

The network’s hidden layer was composed of 8 

neurons and 35 iterations have been carried out 

during the training phase. The learning rate has been 

set to 0.3. After rebuilding the impulse response, the 

inversion algorithm has been used for estimating the 

thermal diffusivity of the concerned materials (Figure 

4 up). First, the Gauss-Newton’s method has been 

tried but the inverse problem is very ill-conditioned 

so we used the Box-Kanemasu’s method. A self-

made condition has been added, close to the Box-

Kanemasu’s modified method, to be sure that the 

criterion to be minimized decreases during 

calculations. It provided the results presented in 

Table 1. Figures 5 (linear scale) and 6 (log-log scale) 

show the rebuilt impulse responses of brick, plaster 

and granite. Mean relative errors for these rebuilt 

impulse responses are about 0.7% for brick, 0.5% for 

plaster and 0.1% for granite. 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4. Up: neuro-inverse approach. Down: direct 

thermal diffusivity estimation. 
 

Table 1 

Inverse method results 

 

Materials Granite Plaster Brick 

Estimated 

diffusivity 

(m.s
-2

) 

1.11 x 10
-5

 5.06 x 10
-7

 4.63 x 10
-7

 

Real 

diffusivity 

(m.s
-2

) 

1.10 x 10
-5

 6.00 x 10
-7

 5.17 x 10
-7

 

Rel. dif. < 1% 15% 10% 
 

Table 2 

Elman neural network results 

 

Materials Granite Plaster Brick 

Estimated 

diffusivity 

(m.s
-2

) 

1.15 x 10
-5

 5.6 x 10
-7

 4.85 x 10
-7

 

Real 

diffusivity 

(m.s
-2

) 

1.10 x 10
-5

 6.00 x 10
-7

 5.17 x 10
-7

 

Rel. dif. 4.5% 6.7% 6.2% 

Response to 

PRBS 

Impulse response 

Trained Elman 

neural network 

Inverse method 

Thermal diffusivity 

Impulse 

response 

Impulse 

response 

Thermal 

diffusivity 

Response to 

PRBS 

Thermal 

diffusivity 
Trained Elman 

neural network 
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Direct thermal diffusivity estimation using an 

Elman neural network 

A second Elman neural network has been trained 

using, this time, the glass wool, concrete, glass and 

stainless steel responses to PRBS as network inputs 

and their respective thermal diffusivities as targets 

i.e. as desired network outputs. Then, the trained 

Elman neural network has been used for estimating 

the thermal diffusivity of brick, plaster and granite, 

using their responses to PRBS as new network 

inputs. It is the validation phase (Figure 4 down). The 

network hidden (recurrent) layer was now composed 

of 10 neurons and 30 iterations have been carried out 

during the training phase. As previously, the learning 

rate has been set to 0.3. The trained network provided 

the following results (Table 2). 

 

 
 

Figure 5. Rebuilt impulse responses of brick, plaster and granite (linear scale). 
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Figure 6. Rebuilt impulse responses of brick, plaster and granite (log-log scale). 

 

RESULTS AND DISCUSSION 

With the aim of characterizing building materials and 

contributing to the necessary energetic performance 

diagnosis of buildings, the present work focuces 

mainly on being able to differentiate materials by 

estimation of their respective thermal diffusivities. 

So, the first conclusion of the work is that both used 

methods (an Elman recurrent neural network and the 

neuro-inverse approach) are usable for rebuilding 

impulse responses and estimating the thermal 

diffusivity of materials. They provided correct to 

very good, indeed excellent, results and proved to be 

a valid option for characterizing building materials 

after being trained by means of a database composed 

of responses to PRBS, impulse responses and thermal 

diffusivities of various materials. Estimating the 

thermal diffusivity of building materials using only 
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recurrent neural networks (Elman networks) provided 

better results than using the neuro-inverse approach, 

(4.5%, 6.7%, 6.2%) vs. (1%, 15%, 10 %), except for 

granite. Considering the rebuilt impulse responses of 

brick, plaster and granite (let us remember that mean 

relative errors of these rebuilt responses are about 0.7 

% for brick, 0.5% for plaster and 0.1% for granite; 

Figures 5 & 6), one could be surprised when 

analyzing these results but it is well-known that 

inverse methods are less efficient when the 

sensitivity coefficients are weak because ill-

conditioned matrix (close to singular) cannot be well-

inversed. Indeed, both theoretical and rebuilt impulse 

responses contain very few points in the high 

sensitivity area. One can conclude, and this is a very 

interesting result, that artificial neural networks are 

able to provide very good estimations of the thermal 

diffusivity of materials, better than using a more 

classical approach such as inverse method, even if 

sensitivity is weak. Concerning granite, a much more 

diffusive material than brick and plaster, sensitivity 

coefficients are weak in the used identification area, 

but high enough to obtain a very good estimation of 

its thermal diffusivity even from its rebuilt impulse 

response.  

Finally, one can notice, and again this is a very 

interesting and useful result, that whatever the 

relative differences between real values and 

estimated values, the materials stay classed, i.e. the 

lowest diffusivity is actually estimated as the lowest, 

the intermediate one as the intermediate and the 

highest one as the highest. This result is very 

important to find out the diffusivity contrast between 

building materials.  

APPLICATIONS 
 

 

Figure 7. Wall with blocked up door and non-

emerging crack. Analysis line is materialised by 

dotted line. 
 

Let us consider a breeze block wall, covered in 

plaster, in which a door has been blocked up with 

bricks and a crack has been filled in with concrete 

(Figure 7). This wall appears locally as a 2-layer 

body: plaster-breeze block, plaster-brick and plaster-

concrete. The impulse response of a 2-layer body is 

related to the materials constituting the layers. 

During short times , considering the thermal 

diffusivity, the body behaves like the upper layer 

while during long times , it behaves like the 

deeper layer. Intermediate times  characterize 

the interface quality (Figure 8). 
 

 
Figure 8. The impulse response of a 2-layer body. 

 

So, getting the response to a random excitation of 

such a wall and using the presented estimation 

method allow locating the blocked up door and the 

crack by analysing the thermal diffusivity contrast 

(Figure 9), estimated directly or using the  

part of the rebuilt impulse response. 

Door and crack presence clearly appears because of 

the thermal diffusivity difference between breeze 

blocks and bricks or concrete. 

 
Figure 9. Adimentionnal diffusivity along the dotted 

line (Figure 7) 

CONCLUSION 

The objective of the present work was to test in 

simulation some tools belonging to the field of 

artificial intelligence for the characterization of 

building materials. So, recurrent neural networks 

were, first and jointly to inverse methods, used for 

rebuilding impulse responses and estimating the 

thermal diffusivity of materials (neuro-inverse 

approach). Then, a recurrent neural network was used 

for directly estimating the above-mentioned 

thermophysical property.  

The main conclusion of the present work is that all 

the used tools and methodologies are usable for 

rebuilding impulse responses and estimating the 

- 1728 -



thermal diffusivity of materials. They provide very 

good results and prove to be a valid option for 

characterizing building materials. Indeed, the relative 

difference between the real and the estimated thermal 

diffusivity ranges between 1% and 15%. 

The most significant result is the powerful capability 

of recurrent neural networks for estimating 

properties, even if sensitivity related to a property is 

very weak. Recurrent neural networks are able to 

estimate the property with good accuracy (relative 

difference of about 5 %) where inverse method 

hardly reaches 10%.  

Let us note that in case of using inverse methods for 

estimating the thermal diffusivity of building 

materials, using more points in the high sensitivity 

window of the rebuilt impulse responses reduces the 

property estimation uncertainty. So, more detailed 

impulse responses will soon be used for training and 

validating recurrent neural networks. 

Finally, future work will also focus on considering 

not only a PRBS for exciting materials but also 

others kind of random signals like, for example, a 

sweep signal.  
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