
COUPLING OF TRNSYS WITH SIMULINK – A METHOD TO AUTO MATICALLY
EXPORT AND USE TRNSYS MODELS WITHIN SIMULINK AND VI CE VERSA

P. Riederer, W. Keilholz, V. Ducreux

*Centre Scientifique et Technique du Bâtiment, 290, Route des Lucioles, 06904 Sophia
Antipolis Cedex, France

Corresponding author : peter.riederer@cstb.fr

ABSTRACT

A large variety of simulation environments exists for
building and system simulation. Collaborative work
is sometimes time-consuming since, in the different
steps of building and system conception and
optimization, different tools have to be used, each of
them specifically dedicated to a particular problem:
for example the overall conception of a building can
be done using the TRNSYS simulation environment,
while optimization of control strategies is likely to be
done using the Matlab/Simulink simulation
environment. The same system and building is thus
modelled several times in order to be able to simulate
in the different environments.

This paper describes a methodology to export the
models contained in the TRNSYS model library as
well as non standard models (calles “types” in
TRNSYS terminology) into the Simulink
environment, and to use them in a Simulink model
assembly. Almost any TRNSYS model can be used
in the Simulink environment in this way.

The paper illustrates the methodology for calling
TRNSYS types within Matlab or Simulink and gives
advices for integrating those models into existing
model assemblies. An automatic routine for
exporting TRNSYS types from the TRNSYS
Simulation Studio is presented as well as validation
examples for the coupling..

INTRODUCTION
Most modern simulation environments have a
modular software architecture, in the sense that the
different physical system components (pumps, ducts,
buildings, …) are represented as components
(modules) which are interconnected in order to define
a given, particular system. Components are typically
defined by an interface (Application Programming
Interface, API) and an implementation (algorithm, set
of equations, rules, charts, etc.).

The component interface defines the way the
component will communicate with the rest of the
system: it enumerates the variables used by the
component (component inputs) and the values
computed by the component (component outputs)
which can potentially be passed on to other
components.

The component implementation defines the algorithm
which allows computing output values from input
values.

Both the syntax and the semantics of these
component definitions vary between different
simulation environments. However, different
environments often use the same underlying
operating system technology to implement these
concepts. Under the WINDOWS operating system,
the Dynamic Link Library (DLL) technology is a
commonly used approach for implementing
components.

It is usually possible to convert component models
from one environment to another (using the same
underlying technology) by adapting an existing DLL
for a new simulation environment using a traditional
programming design pattern known as “Adapter”.

In computer programming, the adapter design pattern
(often referred to as the wrapper pattern or simply a
wrapper) translates one interface into a compatible
interface.

Figure 1: the adaptor design pattern (source: Wikipedia)

An adapter allows modules to work together that
normally could not work together because their
interfaces are incompatible, by providing its interface
to clients while using the original interface. The
adapter translates calls to its interface into calls to the

Eleventh International IBPSA Conference
Glasgow, Scotland

July 27-30, 2009

- 1628 -

original interface. The amount of code necessary to
do this is typically small. The adapter is also
responsible for transforming data into appropriate
forms.

This article shows how to “wrap” TRNSYS
component models for use with
MATLAB/SIMULINK and vice versa using
adaptors, as well as how to automate the process.
Indications about the use of such adapted models are
also given.

TRNSYS ARCHITECTURE
The TRNSYS Simulation Studio® is a complete and
extensible simulation environment for the transient
simulation of systems, including multi-zone
buildings. It is composed of a graphical user interface
(Simulation Studio), a simulation kernel and
component models called ‘TYPES’. A simulation
project is defined as a set of component models (solar
collectors, pumps, multi zone building, weather data
reader, …), which are interconnected in order to
define a specific system (solar domestic hot water
system, wind energy plant, building equipped with
different systems, etc.).

A connection between two components represents
information flow – e.g. a fluid temperature computed
as the output of a ‘solar collector’ component which
is connected to a ‘auxiliary heater’ component as an
input.

The simulation kernel will read a project definition
file (called the ‘deck’), analyze it and perform a
transient simulation to compute the outputs requested
by the user. The kernel uses one of its built-in solvers
to compute the results requested by the user, calling
each component used in the project in an iterative
way, until convergence is reached during each time
step. Successive substitution is the most frequently
used solution method. TRNSYS uses a fixed time
step.

A TRNSYS component is defined as function
computing output variables based on inputs
(variables computed by other components) and
parameters (constant values). They are implemented
as WINDOWS DLLs, respecting a well-defined API
(Application Programming Interface). The API
defines, among other things, the component
function’s signature – the number and types of the
arguments used. A TRNSYS component can thus be
implemented using any programming language able
to compile WINDOWS DLLs (e.g. C, C++,
FORTRAN, PASCAL, …). Besides the input
variables and parameters, the function implementing
the TRNSYS component has arguments to provide
control information about the current state of the
simulation (e.g. if convergence has been reached by
all components, the number of iterative calls in the
current time step, and so forth).

TRNSYS components are described by PROFORMA
(*.tmf) files. These files only contain the

component’s variables and graphical representation,
but not the actual algorithm (which resides in the
DLL).

Figure 2: TRNSYS software architecture and component
function (entry point) signature (a part of the TRNSYS API)

The TRNSYS kernel provides a certain number of
auxiliary kernel functions which can be called by the
function implementing a component. Examples
include functions to determine the start and end time
of the simulation (as defined in the currently
executed simulation project), functions to check to
component’s configuration with respect to the user’s
input, mechanisms to store values between time
steps, etc. These functions are implemented, together
with a set of standard components, in a DLL called
TRNDll.dll.

TRNSYS offers the possibility to group a set
component models together to form a new
component, called “Macro” in TRNSYS
terminology.

MATLAB ARCHITECTURE
MATLAB® is a general purpose, high-level
language and interactive environment allowing
performing computationally intensive tasks. It is
widely used in industry and research in a variety of
application domains, ranging from signal and image
processing, communications, control design, test and
measurement, financial modelling / analysis, and
computational biology to thermal system and
building simulation.

- 1629 -

One of the numerous MATLAB extensions,
Simulink®, is an environment for multi domain
simulation and model-based design for dynamic and
embedded systems. It provides an interactive
graphical environment and a customizable set of
component libraries (called block libraries in
MATLAB terminology) that allow to design,
simulate, implement, and test systems.

Connections between SIMULINK components
represent information flow. Contrary to TRNSYS
connections, SIMULINK allows connecting not only
simple variables, but entire vectors or matrices, and
the output variables of a component may not only be
simple values, but also vectors or matrices.

SIMULINK uses one of several solvers built into
MATLAB to compute the results requested by the
user. Depending on the solver chosen by the user,
this may be an iterative process, using discrete or
continuous values. MATLAB can use fixed or
variable time steps.

MATLAB components (blocks) compute a series of
output variables as a function of input variables.
Components can be defined in a variety of ways,
including sets of equations directly entered into the
environment and calling external functions. A very
rich and complete API (Application Programming
Interface), allowing to create new blocks using a
programming language, is provided. Like for
TRNSYS, the program defining the component’s
algorithm can be compiled into a WINDOWS Dll.

SIMULINK offers the possibility to group a set
component models together to form a new
component, called “subsystem” in SIMULINK
terminology.

USING TRNSYS COMPONENTS IN
MATLAB
THE CONCEPT

As both TRNSYS and MATLAB components can
reside in WINDOWS DLLs, it is easy to adapt an
existing TRNSYS component for use with MATLAB
and/or Simulink: we simply need to encapsulate the
TRNSYS component using the MATLAB API,
applying the ‘adaptor’ design pattern. This can be
done using in a Matlab script or in SIMULINK using
the “embedded function”, which will pass its input
values (which are passed through MATLAB data
structures defined in the MATLAB API) to the
TRNSYS component (using TRNSYS data structures
and calling the TRNSYS component’s function),
recover the values computed by the component, and
return them to MATLAB, again using MATLAB
data structures.

In the embedded MATLAB function, the TRNSYS
function’s arguments concerning control information
about the current state of the simulation must be
filled correctly, based on the current state of the
MATLAB simulation.

This first approach will work for very simple
components, which only contain basic computation.
Complications occur if the component to be used
makes use of TRNSYS kernel functions – which is
probably the case for more than 99% of all existing
components. To be able to handle these cases, it is
important that the TRNSYS kernel be initialized
when the TRNSYS DLL is called by MATLAB. In
other words, TRNSYS kernel functions allowing to
query values like simulation start and stop time, etc.,
must return coherent values during this process. The
initialization is done by functions added to the
TRNSYS kernel for this purpose. (They should be
standard functions in TRNSYS 17). They are called
during simulation startup in the StartFcn callback of
the MATLAB embedded function.

The initialization of the TRNSYS kernel also
includes opening so-called ‘external files’, if the
component uses this concept. External files contain
configuration parameters for a given component.
Unfortunately, they are opened by the TRNSYS
kernel, not the component itself. We therefore must
open these files this during the initialization of the
MATLAB simulation.

Figure 3: Calling TRNSYS components from MATLAB

The process of loading and calling the TRNSYS
DLL is as follows:

During initialisation:

- Generate “Typexx.h”

- Generate list of model parameters

- Initialise variables (inputs and outputs) as well
as derivatives

- Attach files

- Load DLL

- Gerenate INFO array before each separate call

- Set TRNSYS Version, Timestep, StartTime,
StopTime

- Initialisation (3 calls as shown in figure)

At each time step:

- Increment number of calls and iterations, create
INFO array

- Call Dll

- Save states and derivatives

- Use outputs

- 1630 -

IMPLEMENTATION - AUTOMATIC
GENERATION FROM SIMULATION STUDIO

The generation of MATLAB subsystems from
TRNSYS components has been implemented into
TRNSYS’ graphical user interface, Simulation
Studio. The user can simply choose a component in a
simulation project and select “File/Export to
Simulink”. This will produce the C header file
needed by MATLAB to execute the component, as
well as a project file containing a subsystem, an input
vector and default output components. The
subsystem contains all necessary code to set up the
TRNSYS kernel (by calling the appropriate
initialization functions), extract necessary
information from MATLAB data structure, call the
TRNSYS component and fill the subsystem’s output
vector with the values returned by the call.

The generated project opens automatically in
SIMULINK and can be executed directly. As the
generated input vector contains the default initial
values and parameters from the original TRNSYS
project, executing the simulation will yield the same
result as if it were executed by TRNSYS.

For this to work, both the DLL containing the
TRNSYS component and the kernel (TrnDll.dll)
must be available for MATLAB/SIMULINK
(included in the search PATH). The source code of
the component is not required.

Simulation Studio also adds a SIMULINK mask to
the generated project. It allows displaying the
component’s variable names (instead of generic
vectors), required units and default values for inputs,
parameters and derivatives (derivatives are a special
TRNSYS concept that is not detailed here).

USING MATLAB COMPONENTS IN
TRNSYS
THE CONCEPT

Another one of the numerous MATLAB extensions,
real time workshop, provides mechanisms to compile
Simulink subsystems into autonomous applications
or DLLs. In Matlab, the Matlab compiler allows to
generate the DLLs. The latter is not implemented yet.
This module can be used to produce a DLL
containing functions able to run the subsystem’s
algorithm.

Figure 6: Using a SIMULINK subsystem in TRNSYS

As the MATLAB API generated by real time
workshop is not compatible with the TRNSYS API,
we must again ‘wrap’ this MATLAB function into a
function respecting the signature for TRNYS
component functions. The role of the wrapper is to
initialize the MATLAB model, receive information
from TRNSYS (variable values and simulation state),
pass it to the function generated by MATLAB real
time workshop, return the results to TRNSYS and
finally to shut down the model at the end of the
simulation.

RTW TEMPLATE FOR THE GENERATION OF
TRNSYS TYPES

The MATLAB real time workshop uses a pearl script
to generate a complete compile project from the
subsystem, including source code and a makefile. In
this process, a template file is used in order to
generate C or C++ code, defining the functions to be
exported, including their names and calling
conventions. This simplifies our task tremendously:
we can simply provide a variant of the standard
template, adding the adaptor. This way, the generated
Dll remains a ‘normal’ MATLAB DLL, containing
just an extra function – the one that makes it
compatible with TRNSYS.

The generated source code uses the usual TRNSYS
control information in order to initialize the
component, execute its algorithm, or shut it down at
the end of the simulation, by simply calling the
appropriate MATLAB functions residing in the same
DLL.

Using the templates we provide,
MATLAB/SIMULINK users can thus simply choose
a new compilation target called “TRNSYS”.
Generating code for a subsystem will now produce a
compile project for Microsoft Visual Studio.
Compilation using the C++ compiler in Microsoft
Visual Studio then yields a TRNSYS compatible
DLL, which can be directly used by TRNSYS.

In order to add the new component to the TRNSYS
component library, the user must edit a component
description, the PROFORMA file (*.tmf). This file
contains the component’s number, descriptions and
variable names.

NUMERICAL CONSIDERATIONS
While TRNSYS uses the successive substitition
method, different solvers can be used in
Matlab/Simulink. To date, validation examples are in
progress to verify the use of TRNSYS DLLs in
Matlab/Simulink. First validation cases showed
correct results, but due to the variety of solvers in
Matlab, the approach has to be validated for all cases.

One phenomenon has however been observed in the
case of coupling several TRNSYS models in
Simulink. The interconnection created an algebraic
loop that stopped simulation in most cases, contrarely
to Simulink models where algebraic loops can, in
many cases, been solved. In order to overcome this

- 1631 -

problem, the algebraic loops have to be broken by
inserting Simulink blocks without direct feed-through
(e.g. the memory block). This approach is valid when
small time steps are used as usually done in Simulink
simulations. If simulations with hourly time steps
shall be carried out this can cause false results.

VALIDATION EXAMPLES
The validation section only shows the export of
TRNSYS types to Simulink environment.

The comparison carried out is divided into several
steps:

- Step 1: Comparison of single components
(controllers etc.)

- Step 2: Comparison of single components with
derivatives (storage tank etc.)

- Step 3: Comparison of single components
importing files (type 56 etc.)

- Step 4: Comparison of model assemblies without
control loops

- Step 5: Comparison of model assemblies
including control loops

For steps 1-3, single TRNSYS components have
been exported to Simulink. The results show
identical numerical results in both environments, the
results are thus not shown here. Simulation time is
however faster in TRNSYS as in Matlab/Simulink
(about factor 10).

In this paper, one validation related to step 4 is
presented. The SDHW example in the TRNSYS
projects has been chosen to validate the coupling.
The model is shown in Figure 7.

The controller acting the pump of the solar loop has
been replaced by a simple forcing function imposing
a flowrate scenario .

Figure 7 : The SDHW example in the TRNSYS environment

Figure 8: The SDHW example in Simulink environment

using TRNSYS DLLs

For the comparison, all components of the TRNSYS
environment have been exported to Simulink and
coupled (Figure 8). All loops have been broken by
memory blocks. The time step has been chosen to
120 seconds.

As already stated in a previous section, the insertion
of memory blocks will result in errors in the
simulation results. These are presented in Figures 9
and 10. The results agree well except for high solar
radiation periods, where differences of about 1-1.5 K
are observed. More detailed results will be presented
in the future in order to quantify simulation errors in
terms of power or energy.

Figure 9: Comparison of collector outlet temperatures in

TRNSYS and Simulink

Figure 10: Comparison of storage tank outlet temperatures

in TRNSYS and Simulink

- 1632 -

FUTURE WORK
HANDLING VECTORS

This first version only handles MATLAB/
SIMULINK models which use real values as inputs
and outputs. Subsystems using vectors and/or
matrices must first be encapsulated in a higher-level
subsystem in order to serialize the vector/matrix data
(using Mux and Demux blocks). This process could
be automated and will be object of future work.

BUILDING DESCRIPTION

The mechanisms described in this article allow to re-
use existing components designed for one simulation
environment in another simulation environment. For
example, MATLAB/SIMULINK users can gain
access to detailed building models, such as TRNSYS
type 56.

In order to execute an existing TRNSYS simulation
project in MATLAB/SIMULINK, however, it is not
sufficient to make the TRNSYS components
(algorithms) accessible. It is also necessary to
translate the project itself (i.e. the way components
are interconnected in a given project).

The NBDM (Neutral Building Data Model) project
proposes a neutral data format in order to represent a
building simulation project in a neutral way.
Translators from and to this format exist for all major
building simulation tools used in France, and also for
TRNSYS. It could be interesting to extend NBDM by
the system description (currently only the building
description is covered).

EXTENSION TO OTHER COMPILERS

Currently, users need to have access to Microsoft
Visual Studio in order to compile MATLAB
subsystems for TRNSYS. It might be useful to adapt
the templates for other compilers, such as the one
built into MATLAB real time workshop, thus
removing one external tool from chain.

CONCLUSION
This article has described how DLL-based
components designed for one simulation environment
can be used in another simulation environment. The
concept has been illustrated by automating the
adaption of TRNSYS components to
MATLAB/SIMULINK and vice versa. The resulting
components can be distributed and used without
access to the source code.

The validation component per component showed
identical results, the coupling is thus valid if only one
component is used in the other environment.
However, if an assembly of models is exporter and
“re-assembled” in the other environment, the validity
has to be verified case by case: in the example of the
solar hot water heater, algebraic loops had to be
broken manually by the memory block in Simulink
environment. The results showed good agreement,
but they were not exactly the same.

ACKNOWLEDGEMENT
The work presented in this paper has been carried out
in the frame of the French Dynasimul project, funded
by the ANR (Agence Nationale de Recherche).

REFERENCES
Keilholz W. 2007. NBDM: A neutral data model to

link building energy performance simulation
tools, www.buildingsmart.fr/documents/stand-
inn-sophia-antipolis/09_nbdm.pdf

Werner Keilholz, 2008: Bernard Ferries, Franck
Andrieux, Jean Noel: A Simple, Neutral
Building Data Model; ECPPM, Sophia
Antipolis, September 13, 2008

SIMBAD, 2004. SIMBAD Building and HVAC
Toolbox, Version 4.0, CSTB, France

Simulink, 2004. Simulink dynamic System
Simulation for Matlab. Version 6.0, Mathworks
Inc., Ma., USA.

Trnsys, 2000. Trnsys: a transient system simulation
program. SEL, University of Wisconsin,
Madison USA.

MATLAB: http://www.mathworks.com/

TRNSYS: http://software.cstb.fr

MSDN: http://msdn.microsoft.com/

Wikipedia : http://www.wikipedia.org

- 1633 -

