
SOLVING DIFFERENTIAL EQUATIONS IN TRNSYS WITHOUT PROGRAMMING

Werner Paul Keilholz1, Peter Riederer1, and Vanessa Ducreux1

1CSTB Sophia Antipolis, France

ABSTRACT

In building simulation tools differential equations are
widely used to model physical phenomena of
components such as walls, air and any kind of system
component in the building. Especially when
simulation is used to study and optimise system
control, the models used are mainly transient models
solving differential equations in order to represent
correctly the transient behaviour of the whole control
loop.
The TRNSYS simulation environment is a powerful
tool allowing the simulation of a large number of
problems. However, developing and/or implementing
new models (called ‘Types’ in TRNSYS
terminology) can be an obstacle for those users who
use TRNSYS as a simulation environment and not a
modelling and simulation environment. In most
simulation studies, there is a need for simple models
considering phenomena that are specifically
important for the actual problem. Simple steady state
models on the one hand can easily be implemented
by the TRNSYS equation type or by calling external
programs such as Excel etc. Dynamic models on the
other hand can only be implemented by writing new
types in a programming language such as C, C++,
Fortran, Visual Basic, etc., or by coupling to other
environments. In order to overcome this barrier, a
new type has been developed allowing implementing
and calculating, without any programming, a
dynamic model.
With this model, it shall be possible to define simple
dynamic models such as sensors, drives, furniture,
specific walls, etc.

APPROACH

To allow for differential equation systems, the
development has been applied to a matrix based
approach. This will allow for the modelling of more
complex systems.

Many heat transfer and storage phenomena can be
modelled by the state space approach:

UBXAX += (1)

UDXCY += (2)

where A and C are i,i matrices, and B and D i,j
matrices, X the state vector, U the input vector and Y
the output or observation vector. In the developed
type, only equation (1) is implemented to date.

Our goal is to compute x for given initial values of X,
the input vector U and the matrices A and B.
Examples for phenomena easily modelled by such an
equation include liquids flowing in ducts, adjacent
volumes of air, volumes of ground in a 2 or 3
dimensional ground model, etc. In terms of TRNSYS
components, we would like to be able to compute the
state vector X from the input vector U, the initial
conditions for the X-values, as well as the matrices A
and B (stored in external files).
In order to be able to model also non-linear systems,
the state space equation has been modified as
follows:

UInBUInBUB
XInAXInAXAX

nncst

nncst

⋅⋅+⋅⋅+⋅+

⋅⋅+⋅⋅+⋅=

var11var

var11var

(3)

with

nncst InAInAAA ⋅+⋅+= var11var (4)

nncst InBInBBB ⋅++⋅+= var11var (5)

As shown in equations (3)-(5), the matrices A and B
are divided into two parts, one with constant values
and one with variable values. This will allow for
example the simulation of a pipe where a changing
flow rate will need the recalculation of the matrices
A and B.
Before integrating the derivative of the state vector,
the “final” matrices A and B will be calculated at
each time step following equations (4) and (5).

IMPLEMENTATION IN TRNSYS

Once the matrices have been calculated, they can be
loaded into the TRNSYS type. In the TRNSYS block
diagram, the type will be shown as in the figure
below:

Eleventh International IBPSA Conference
Glasgow, Scotland

July 27-30, 2009

- 1582 -

The TRNSYS simulation environment provides two
main mechanisms allowing the user / programmer to
solve differential equations:

a) an approximate analytical solution (using
the DIFFERENTIAL_EQN() function,
implemented in the TRNSYS kernel)

b) a numerical solution (using the T and DTDT
arrays passed to all components as an
argument)

While b) is more powerful (as it is able to solve a
wider range of problems, using any form of
differential equation), a) is usually quicker. We chose
to use approach a) in our solution.
The DIFFERENTIAL_EQN() function provided by
the TRNSYS kernel requires the equation to be of the
form :

BBXAAX += (6)

with AAA = (7)
UBBB ⋅= (8)

While the matrix AA is identical to A, the matrix BB
is the product of the matrix B as defined in the
previous section multiplied with the input vector.

The DIFFERENTIAL_EQN() function is only able
to treat one value of X at a time. In order to apply it
to (6), two steps are required: first, the values of the
U vector must be introduced. This can be achieved
by simply multiplying B and U before solving the
differential equation – U is thus ‘included’ in BB.
Second, (6) must be computed for each of the i lines
of X. As the lines are interdependent, this process
must be repeated in an iterative way, until all results
for X are identical to the results obtained during the
previous iteration.

THE ALGORITHM

The Nassi-Schneiderman diagram shows the
algorithm used in the new type. In addition to the
matrices A and B, it uses two vectors, AA and BB,
which allow computing the i differential equations
one by one. AA is initialized with the diagonal of A,
and BB with sum of A(i,j)*X(j) for each line i. All
elements of BB are then multiplied with their

respective u value, to account for the term BU in (1)
which is not in (6).

The type then performs a sub iteration loop until
either convergence is reached (none of the newly
computed X values differs from the ones computed
during the previous sub iteration by more than
epsilon, which is currently set to 1E-6), or the
maximum number of iterations (fixed to 1000 for
now) is reached. The number of iterations used is an
output of the type, so that the user can take action in
case convergence is not reached in too many time
steps.

At each sub iteration step, DIFFERENTIAL_EQN is
called to compute a new X value for the current
equation. During sub iterations, TBAR (the mean
value of the wanted variable over the timestep) is
used, while after conversion we use the TF value
returned by DIFFERENTIAL_EQN, which is the
value at the end of the time step. This method
proofed more precise.

The resolution strategy is shown in the figure below.

PRACTICAL IMPLEMENTATION
The matrices A and B (with their constant and
variable parts respectively) have to be saved in two
files, one for A and for B. The calculation of the cells
can be done by hand or in other programs, for
example Matlab, as in the application example in the
next section. The advantage of this approach is that it
is possible to simulate exactly the same system in
Matlab and in TRNSYS, without a new calculation or
reconfiguration. All transient models in the SIMBAD

- 1583 -

library (an HVAC toolbox for the MATLAB/Simulink used

at CSTB) for example are based on the state space
approach, some of them can thus be easily used in
TRNSYS, just by saving the matrices A and B in
files.

The file has to follow the following structure in the
case of the matrix A:

Acst(1,1) … Acst(1,i) … Acst(1,m)
Acst(2,1) … Acst(2,i) … Acst(2,m)

Acst(m,1) … Acst(m,i) … Acst(m,m)

VAR 1
Avar(1,1) … Avar(1,i) … Avar(1,m)
Avar(2,1) … Avar(2,i) … Avar(2,m)

Avar(m,1) … Avar(m,i) … Avar(m,m)

The file for matrix B has to be defined in the same
way.
In TRNSYS, both files are loaded in the “External
files” menu of the type.

In the “Parameter” menu of the type, the user has to
set the size of the state vector X, the size of the input
vector U, the number of inputs that modify the
matrices A and B as well as the initial values of the
state vector.

Finally, the input menu of the type allows the
connection of the input values to the state space
equation as well as the factors that have to be
multiplied with the matrices.

AN APPLICATION EXAMPLE

A typical phenomenon obeying equation (1) is liquid
flow through a pipe. A liquid, characterized by its
specific heat cp, enters the pipe at a temperature T0.
In order to model the temperature distribution inside
the pipe, we define m equal pipe segments to which
we assign temperatures T1, T2, … Tm.
To illustrate the method we choose m = 2 (2 pipe
segments) for our simple example.
The pipe is placed in an environment at an ambient
temperature Tamb, which causes heat losses between
the pipe and the ambient, with a heat transfer
coefficient h.
We assume the surfaces A of each segment to be
equal, as well as the mass m of fluid inside a
segment. The flow rate passing through each segment
is called m .

The equation for the conservation of energy for the
first segment (the one with temperature T1) in this
configuration yields:

)(**)(**

**

110

1

TTAhTTcpm
dt

dTcm

amb

p

−+−=

(9)

Similarly, the energy balance for the second segment
yields:

- 1584 -

)(**)(**

**

221

2

TTAhTTcpm
dt

dTcm

amb

p

−+−

=

(10)

With respect to equation (1), the temperatures T1 and
T2 represent the state vector X (the variables we seek
to compute). To obtain the matrices A and B, we
have to transform equations (9) and (10) so as to
obtain the form of equation (1):

ambT
cpm
AhT

m
m

T
cpm
Ah

m
m

dt
dT

*
*
*

*)
*
*(

0

1
1

++

−−=

(11)

ambT
cpm
Ah

T
cpm
Ah

m
mT

m
m

dt
dT

*
*

*)
*
(21

2

+

−−+=

(12)

Modelling with constant flow rate

With
dt
dT

= X and T = X this can be written

+

−−

−−
=

ambT
T

cpm
Ah
cpm
Ah

m
m

T
T

cpm
Ah

m
m

m
m

cpm
Ah

m
m

x
x

0

2

1

2

1

*

*
*0

*
*

*

*
*

0
*
*

(13)

Still with respect to (1), we thus find

−−

−−
=

cpm
Ah

m
m

m
m

cpm
Ah

m
m

A

*
*

0
*
*

 and

=

cpm
Ah
cpm
Ah

m
m

B

*
*0

*
*

(14)

This example allows the simulation of the pipe
assuming constant flow rate. However, in many
practical cases the flow rate can change throughout
operation and thus it should also be possible to vary
it during the simulation.

Modelling with variable flow rate

Based on the same equations it is also possible to
consider for a varying flow rate, thus the nonlinear
case of the system.

+

+

−

−
+

−

−

=

ambT
T

mm
m

cpm
Ah
cpm
Ah

T
T

m

mm

m

cpm
Ah

cpm
Ah

x
x

0

2

1

2

1

**
00

0

*
*0

*
*0

**11

01

*
*0

0
*
*

(15)

with the matrices A:

−

−
=

cpm
Ah

cpm
Ah

Acst

*
*0

0
*
*

 and

−

−
=

mm

mA 11

01

var

(16)

and the matrices B:

=

cpm
Ah
cpm
Ah

Bcst

*
*0

*
*0

and

=

00

01
var mB

(17)

- 1585 -

The whole system can also be programmed in other
tools such as Excel, Matlab, Scilab, Python or any
other environment.

NUMERICAL EXAMPLE AND
VALIDATION

In order to compare our pipe model to the existing
TRNSYS TYPE 31, we choose the default
parameters of this component, but with a flow rate of
1000 kg/h, a length of 20 m and a diameter of 0.028
cm. A simple spreadsheet allows us to compute A
and B:

We simply copy-paste the values computed for A and
B into the 2 external files of our type (which are
simple text files), and the model can be used in a
TRNSYS Simulation Studio project.

The figure shows a project designed to compare our
home made type and standard duct/pipe type 31: two
forcing functions provide assumptions for inlet
temperature T0 and ambient temperature Tamb (which
has practically no influence in the default
configuration). Initial pipe temperature is 10°C , the
water inlet temperature is 20°C. After 10 minutes, the
inlet water temperature rises to 40°C (still using the
same flow rate of 1000 l/h).

Type65a
Type858-diffeqn

Ambient-30-50

T0-20-40

Type31

The same values are fed into both types, and the
result is displayed. The resulting curves allow to
clearly distinguish the different approaches used by
the two models: while TYPE 31 uses a more
sophisticated approach of dynamically segmenting
the pipe, our model uses a constant number of
segments (2 in the example, but this number can of
course be easily increased).

10

15

20

25

30

35

40

45

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Tim e [m in]

Te
m

pe
ra

tu
re

s
[°

C
]

T0 [°C]

Diffeqn-Tout [°C]

Type31-Tout [°C]

The result is as expected: the simple two zone model
is less accurate than type 31. The delay in the outlet
temperature following the step is well represented in
type 31 while the simple two zone model is not able
to calculate this delay. The result of the simple model
can be improved by choosing a higher number of
volumes in order to consider this delay and also to
represent the dynamics at the pipe outlet more
realistically.

Increasing the number of segments increases the
accuracy, as expected. The figure below shows
temperature curves for 2, 5, 20 and 100 segment
models. The model has been implemented both in
MATLAB and TRNSYS using the new type, based
on the same equations, time step (1 second) and
initial conditions in both cases:

Temperature in last segment - 1000 kg/h

15

20

25

30

35

40

45

9.53 9.90 10.27 10.63 11.00 11.37 11.73

Time [min]

Te
m

pe
ra

tu
re

 [°
C

]

2 seg. - TRN
5 seg. - TRN
20 seg. - TRN
Type 31 - TRN
2 seg - MAT
5 seg. - MAT
20 seg. - MAT
100 seg. - MAT
100 seg. - TRN
Inlet temp.

This study attracted our attention to slight differences
between the MATLAB and TRNSYS versions of the
model, which become more obvious as the number of
segments increases (while one would expect the
model to become more and more precise).
Further investigation has shown that our model
seems to become inaccurate for systems with low
time constants: we can clearly see the phenomenon
for higher flow rates (such as 5000 kg/h), decreased
duct length and/or duct diameter, etc. and bigger time
steps (we use 1 second). A parametric study varying
the flow rate has been done:

- 1586 -

Temperature in last segment - 100 segments

15

20

25

30

35

40

45

9.90 10.27 10.63 11.00

Time [min]

Te
m

pe
ra

tu
re

 [°
C

] mdot=1000 - MAT
mdot=1000 - TRN
Inlet temp.
mdot=1500 - TRN
mdot=1500 - MAT
mdot=5000 - TRN
mdot=5000 - MAT

This phenomenon may require further study (and
care when using the current version of the model
under the before mentioned conditions).

PERSPECTIVES AND FUTURE WORK

Our simple example was only indented to illustrate
the concept of our approach; we are well aware that
our little model built in the demo application
described above will not replace standard type 31.
The approach can, however, be very interesting to
model simple components such as temperature
sensors, furniture, walls or also more detailed models
such as geothermal boreholes with a three
dimensional approach, etc. In such cases, our type
could serve domain experts to experiment new
mathematical models based on the differential
equation BuAxx += in TRNSYS, without
programming.
The main advantage is that if a model is built in such
a way in any other environment, it can be used
without modification in TRNSYS. Models built in
Matlab or Simulink can now be used in TRNSYS
allowing to combine fast simulation speed of
TRNSYS with easy modelling of Matlab. In addition
to potential gains in simulation speed (which was not
our main motivation in this work), the final user does
not need to have access to the environment originally
used to create the model (unlike the approach using
the current TRNSYS type 155, which executes
MATLAB at each iteration).

To help the user decide if this model could be an
interesting option, we summarize the different
existing approaches, together with their main
characteristics, below:

• Type 155: Allows to easily reuse any
existing MATLAB model. Requires
programming in MATLAB to create a new
component. Requires the final user to install
MATLAB.

• Our new type: Allows to easily reuse
existing MATLAB models based on a
differential equation Ax+BU. Allows to

easily create new components based on this
equation without any programming. Does
not require the final user to install any third-
party software.

Using existing SIMULINK models has drawbacks
even when using type 155, as the model would have
to be called from MATLAB (at each timestep).
Other, more advanced coupling methods are
available for this type of model, as described in our
article “Coupling of TRNSYS with Simulink – a
method to automatically export and use TRNSYS
models within Simulink and vice versa”.

Further validation on models created with our new
component should be done, especially when many
variables are tightly coupled. It would be particularly
interesting to observe the evolution of computation
time in these cases – in our simple example with two
variables, we only need 2 sub-iterations at the worst,
and in our trivial example the new type is about 2
times slower than type 31 when using 20 segments
for both models. It would be interesting to test more
complex scenarios.

The model is currently configured to allow for
200x200 matrices, in order to keep the size of the
input and output vectors reasonable (and manageable
in a graphical environment such as Simulation
Studio). If the concept should proof useful, the
observation equation can be added in order to output
only the variables that are necessary and to limit the
connections in the TRNSYS Simulation Studio.

ACKNOWLEDGEMENT

This article has been elaborated in the frame of the
DYNASIMUL project funded by ANR.

REFERENCES
MATLAB: http://www.mathworks.com/
TRNSYS: http://software.cstb.fr
Bronstein, Semendjajew: Taschenbuch der
Mathematik; Thun, Frankfurt/Main, 1987
Riederer P., Keilholz W., Ducreux V.. Coupling of
TRNSYS with Simulink – a method to automatically
export and use TRNSYS models within Simulink and
vice versa. BS2009, Glasgow, 2009.

- 1587 -

