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ABSTRACT

In building simulation tools differential equations are 
widely  used  to  model  physical  phenomena  of 
components such as walls, air and any kind of system 
component  in  the  building.  Especially  when 
simulation  is  used  to  study  and  optimise  system 
control, the models used are mainly transient models 
solving  differential  equations  in  order  to  represent 
correctly the transient behaviour of the whole control 
loop.
The TRNSYS simulation environment is a powerful 
tool  allowing  the  simulation  of  a  large  number  of 
problems. However, developing and/or implementing 
new  models  (called  ‘Types’  in  TRNSYS 
terminology) can be an obstacle for those users who 
use TRNSYS as a simulation environment and not a 
modelling  and  simulation  environment.  In  most 
simulation studies, there is a need for simple models 
considering  phenomena  that  are  specifically 
important for the actual problem. Simple steady state 
models on the one hand can easily be implemented 
by the TRNSYS equation type or by calling external 
programs such as Excel etc. Dynamic models on the 
other hand can only be implemented by writing new 
types  in  a  programming language  such as  C,  C++, 
Fortran,  Visual  Basic,  etc.,  or by coupling to other 
environments.  In  order  to  overcome  this  barrier,  a 
new type has been developed allowing implementing 
and  calculating,  without  any  programming,  a 
dynamic model.
With this model, it shall be possible to define simple 
dynamic  models  such  as  sensors,  drives,  furniture, 
specific walls, etc.

APPROACH

To  allow  for  differential  equation  systems,  the 
development  has  been  applied  to  a  matrix  based 
approach. This will allow for the modelling of more 
complex systems.

Many heat  transfer  and  storage  phenomena can  be 
modelled by the state space approach: 

UBXAX += (1)

UDXCY += (2)

where  A  and  C  are  i,i  matrices,  and  B  and  D  i,j 
matrices, X the state vector, U the input vector and Y 
the  output  or  observation  vector.  In  the  developed 
type, only equation (1) is implemented to date.

Our goal is to compute x for given initial values of X, 
the input  vector  U  and  the  matrices  A  and  B. 
Examples for phenomena easily modelled by such an 
equation  include  liquids  flowing  in  ducts,  adjacent 
volumes  of  air,  volumes  of  ground  in  a  2  or  3 
dimensional ground model, etc. In terms of TRNSYS 
components, we would like to be able to compute the 
state  vector  X from the  input  vector  U,  the  initial 
conditions for the X-values, as well as the matrices A 
and B (stored in external files). 
In order to be able to model also non-linear systems, 
the  state  space  equation  has  been  modified  as 
follows:
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(3)

with 

nncst InAInAAA ⋅+⋅+= var11var   (4)

nncst InBInBBB ⋅++⋅+= var11var   (5)

As shown in equations (3)-(5), the matrices A and B 
are divided into two parts, one with constant values 
and  one  with  variable  values.  This  will  allow  for 
example the simulation of a pipe where a changing 
flow rate will need the recalculation of the matrices 
A and B.
Before integrating the derivative of the state vector, 
the “final”  matrices  A and B will  be  calculated  at 
each time step following equations (4) and (5).

IMPLEMENTATION IN TRNSYS

Once the matrices have been calculated, they can be 
loaded into the TRNSYS type. In the TRNSYS block 
diagram,  the  type  will  be  shown  as  in  the  figure 
below:
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The TRNSYS simulation environment provides two 
main mechanisms allowing the user / programmer to 
solve differential equations: 

a) an  approximate  analytical  solution  (using 
the  DIFFERENTIAL_EQN()  function, 
implemented in the TRNSYS kernel)

b) a numerical solution (using the T and DTDT 
arrays  passed  to  all  components  as  an 
argument)

While b) is more powerful  (as it  is able to solve a 
wider  range  of  problems,  using  any  form  of 
differential equation), a) is usually quicker. We chose 
to use approach a) in our solution. 
The  DIFFERENTIAL_EQN()  function provided  by 
the TRNSYS kernel requires the equation to be of the 
form :

BBXAAX += (6)

with AAA = (7)
UBBB ⋅= (8)

While the matrix AA is identical to A, the matrix BB 
is  the  product  of  the  matrix  B  as  defined  in  the 
previous section multiplied with the input vector.

The  DIFFERENTIAL_EQN()  function is  only able 
to treat one value of X at a time. In order to apply it 
to (6), two steps are required: first, the values of the 
U vector must be introduced. This can be achieved 
by simply multiplying B and  U before  solving the 
differential  equation  –  U is  thus  ‘included’  in  BB. 
Second, (6) must be computed for each of the i lines 
of  X.  As  the  lines  are  interdependent,  this  process 
must be repeated in an iterative way, until all results 
for X are identical to the results obtained during the 
previous iteration. 

THE ALGORITHM

The  Nassi-Schneiderman  diagram  shows  the 
algorithm used in  the new type.  In  addition to  the 
matrices A and B, it uses two vectors, AA and BB, 
which  allow computing  the  i  differential  equations 
one by one. AA is initialized with the diagonal of A, 
and BB with sum of A(i,j)*X(j) for each line i. All 
elements  of  BB  are  then  multiplied  with  their 

respective u value, to account for the term BU in (1) 
which is not in (6). 

The  type  then  performs  a  sub  iteration  loop  until 
either  convergence  is  reached  (none  of  the  newly 
computed X values differs from the ones computed 
during  the  previous  sub  iteration  by  more  than 
epsilon,  which  is  currently  set  to  1E-6),  or  the 
maximum  number  of  iterations  (fixed  to  1000  for 
now) is reached. The number of iterations used is an 
output of the type, so that the user can take action in 
case  convergence  is  not  reached  in  too many time 
steps. 

At each sub iteration step, DIFFERENTIAL_EQN is 
called  to  compute  a  new  X  value  for  the  current 
equation.  During  sub  iterations,  TBAR  (the  mean 
value  of  the  wanted  variable  over  the  timestep)  is 
used,  while  after  conversion  we  use  the  TF  value 
returned  by  DIFFERENTIAL_EQN,  which  is  the 
value  at  the  end of  the  time  step.  This  method 
proofed more precise. 

The resolution strategy is shown in the figure below.

PRACTICAL IMPLEMENTATION
The  matrices  A  and  B  (with  their  constant  and 
variable parts respectively) have to be saved in two 
files, one for A and for B. The calculation of the cells 
can  be  done  by  hand  or  in  other  programs,  for 
example Matlab, as in the application example in the 
next section. The advantage of this approach is that it 
is  possible  to  simulate  exactly  the  same system in 
Matlab and in TRNSYS, without a new calculation or 
reconfiguration. All transient models in the SIMBAD 
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library (an HVAC toolbox for the MATLAB/Simulink used 

at  CSTB)  for  example are  based  on the state  space 
approach,  some of them can thus be easily used in 
TRNSYS, just  by saving  the  matrices  A and  B in 
files.

The file has to follow the following structure in the 
case of the matrix A:

Acst(1,1)  … Acst(1,i) … Acst(1,m)
Acst(2,1)  … Acst(2,i) … Acst(2,m)

Acst(m,1) … Acst(m,i) … Acst(m,m)

VAR 1
Avar(1,1)  … Avar(1,i) … Avar(1,m)
Avar(2,1)  … Avar(2,i) … Avar(2,m)

Avar(m,1) … Avar(m,i) … Avar(m,m)

The file for matrix B has to be defined in the same 
way.
In TRNSYS, both files are loaded in the “External 
files” menu of the type.

In the “Parameter” menu of the type, the user has to 
set the size of the state vector X, the size of the input 
vector  U,  the  number  of  inputs  that  modify  the 
matrices A and B as well as the initial values of the 
state vector.

Finally,  the  input  menu  of  the  type  allows  the 
connection  of  the  input  values  to  the  state  space 
equation  as  well  as  the  factors  that  have  to  be 
multiplied with the matrices.

AN APPLICATION EXAMPLE

A typical phenomenon obeying equation (1) is liquid 
flow through a  pipe.  A liquid,  characterized  by its 
specific heat  cp, enters the pipe at a temperature T0. 
In order to model the temperature distribution inside 
the pipe, we define m equal pipe segments to which 
we assign temperatures T1, T2, … Tm.
To illustrate  the method we choose m = 2 (2 pipe 
segments) for our simple example. 
The pipe is placed in an environment at an ambient 
temperature Tamb,  which causes heat losses between 
the  pipe  and  the  ambient,  with  a  heat  transfer 
coefficient h. 
We assume the  surfaces  A of  each  segment  to  be 
equal,  as  well  as  the  mass  m  of  fluid  inside  a 
segment. The flow rate passing through each segment 
is called m .

The equation for the conservation of energy for the 
first  segment  (the one with temperature  T1)  in  this 
configuration yields:

)(**)(**

**

110

1

TTAhTTcpm
dt

dTcm

amb

p

−+−= 

(9)

Similarly, the energy balance for the second segment 
yields:
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(10)

With respect to equation (1), the temperatures T1 and 
T2 represent the state vector X (the variables we seek 
to  compute).  To  obtain  the  matrices  A and  B,  we 
have  to  transform equations  (9)  and  (10)  so  as  to 
obtain the form of equation (1):
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Modelling with constant flow rate

With 
dt
dT

= X  and T = X this can be written 
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Still with respect to (1), we thus find 
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This  example  allows  the  simulation  of  the  pipe 
assuming  constant  flow  rate.  However,  in  many 
practical  cases the flow rate can change throughout 
operation and thus it should also be possible to vary 
it during the simulation. 

Modelling with variable flow rate

Based  on the same equations  it  is  also possible  to 
consider for a varying flow rate, thus the nonlinear 
case of the system.
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(15)

with the matrices A:
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(16)

and the matrices B:
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The whole system can also be programmed in other 
tools such as Excel,  Matlab,  Scilab,  Python or any 
other environment.

NUMERICAL EXAMPLE AND 
VALIDATION

In order to compare our pipe model to the existing 
TRNSYS  TYPE  31,  we  choose  the  default 
parameters of this component, but with a flow rate of 
1000 kg/h, a length of 20 m and a diameter of 0.028 
cm. A simple spreadsheet  allows us  to compute A 
and B:

We simply copy-paste the values computed for A and 
B into  the  2  external  files  of  our  type  (which  are 
simple  text  files),  and  the  model  can  be used in  a 
TRNSYS Simulation Studio project. 

The figure shows a project designed to compare our 
home made type and standard duct/pipe type 31: two 
forcing  functions  provide  assumptions  for  inlet 
temperature T0 and ambient temperature Tamb (which 
has  practically  no  influence  in  the  default 
configuration). Initial pipe temperature is 10°C , the 
water inlet temperature is 20°C. After 10 minutes, the 
inlet water temperature rises to 40°C (still using the 
same flow rate of 1000 l/h).

Type65a
Type858-diffeqn

Ambient-30-50

T0-20-40

Type31

The  same  values  are  fed  into  both  types,  and  the 
result  is  displayed.  The  resulting  curves  allow  to 
clearly distinguish the different  approaches used by 
the  two  models:  while  TYPE  31  uses  a  more 
sophisticated  approach  of  dynamically  segmenting 
the  pipe,  our  model  uses  a  constant  number  of 
segments (2 in the example, but this number can of 
course be easily increased). 
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The result is as expected: the simple two zone model 
is less accurate than type 31. The delay in the outlet 
temperature following the step is well represented in 
type 31 while the simple two zone model is not able 
to calculate this delay. The result of the simple model 
can  be  improved  by  choosing  a  higher  number  of 
volumes in order to consider this delay and also to 
represent  the  dynamics  at  the  pipe  outlet  more 
realistically.

Increasing  the  number  of  segments  increases  the 
accuracy,  as  expected.  The  figure  below  shows 
temperature  curves  for  2,  5,  20  and  100  segment 
models.  The  model  has  been  implemented  both  in 
MATLAB and TRNSYS using the new type, based 
on  the  same  equations,  time  step  (1  second)  and 
initial conditions in both cases:
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20 seg. - TRN
Type 31 - TRN
2 seg - MAT
5 seg. - MAT
20 seg. - MAT
100 seg. - MAT
100 seg. - TRN
Inlet temp.

This study attracted our attention to slight differences 
between the MATLAB and TRNSYS versions of the 
model, which become more obvious as the number of 
segments  increases  (while  one  would  expect  the 
model to become more and more precise). 
Further  investigation  has  shown  that  our  model 
seems  to  become  inaccurate  for  systems  with  low 
time constants: we can clearly see the phenomenon 
for higher flow rates (such as 5000 kg/h), decreased 
duct length and/or duct diameter, etc. and bigger time 
steps (we use 1 second). A parametric study varying 
the flow rate has been done:
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Temperature in last segment - 100 segments
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This phenomenon may require further study (and 
care when using the current version of the model 
under the before mentioned conditions). 

PERSPECTIVES AND FUTURE WORK

Our simple example was only indented to illustrate 
the concept of our approach; we are well aware that 
our  little  model  built  in  the  demo  application 
described  above will  not  replace  standard  type  31. 
The  approach  can,  however,  be  very  interesting  to 
model  simple  components  such  as  temperature 
sensors, furniture, walls or also more detailed models 
such  as  geothermal  boreholes  with  a  three 
dimensional  approach,  etc.  In  such  cases,  our  type 
could  serve  domain  experts  to  experiment  new 
mathematical  models  based  on  the  differential 
equation  BuAxx += in  TRNSYS,  without 
programming. 
The main advantage is that if a model is built in such 
a  way  in  any  other  environment,  it  can  be  used 
without  modification  in  TRNSYS.  Models  built  in 
Matlab  or  Simulink  can  now be used  in  TRNSYS 
allowing  to  combine  fast  simulation  speed  of 
TRNSYS with easy modelling of Matlab. In addition 
to potential gains in simulation speed (which was not 
our main motivation in this work), the final user does 
not need to have access to the environment originally 
used to create the model (unlike the approach using 
the  current  TRNSYS  type  155,  which  executes 
MATLAB at each iteration).

To help  the  user  decide  if  this  model  could be an 
interesting  option,  we  summarize  the  different 
existing  approaches,  together  with  their  main 
characteristics, below:

• Type  155:  Allows  to  easily  reuse  any 
existing  MATLAB  model.  Requires 
programming in MATLAB to create a new 
component. Requires the final user to install 
MATLAB.  

• Our  new  type:  Allows  to  easily  reuse 
existing  MATLAB  models  based  on  a 
differential  equation  Ax+BU.  Allows  to 

easily create new components based on this 
equation  without  any  programming.  Does 
not require the final user to install any third-
party software.

Using  existing  SIMULINK  models  has  drawbacks 
even when using type 155, as the model would have 
to  be  called  from  MATLAB  (at  each  timestep). 
Other,  more  advanced  coupling  methods  are 
available for this type of model, as described in our 
article  “Coupling  of  TRNSYS  with  Simulink  –  a 
method  to  automatically  export  and  use  TRNSYS 
models within Simulink and vice versa”. 

Further  validation on models created  with our  new 
component  should  be  done,  especially  when  many 
variables are tightly coupled. It would be particularly 
interesting to observe the evolution of computation 
time in these cases – in our simple example with two 
variables, we only need 2 sub-iterations at the worst, 
and in our trivial  example the new type is  about 2 
times slower than type 31 when using 20 segments 
for both models. It would be interesting to test more 
complex scenarios. 

The  model  is  currently  configured  to  allow  for 
200x200 matrices,  in  order  to  keep the size of the 
input and output vectors reasonable (and manageable 
in  a  graphical  environment  such  as  Simulation 
Studio).  If  the  concept  should  proof  useful,  the 
observation equation can be added in order to output 
only the variables that are necessary and to limit the 
connections in the TRNSYS Simulation Studio.
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