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ABSTRACT 
A recently completed extension to IEA BESTEST 
includes further work on tests suitable for the 
validation of ground coupled heat transfer modules 
within building energy simulation software. The 
model described here forms part of this work. A 
finite difference model was prepared and applied to 
ground coupled heat transfer in the environs of a 
building for a range of geometries and boundary 
conditions. The model was verified by demonstrating 
close agreement with an analytical solution and with 
two independent models; it is therefore fit for 
purpose. A fundamental modelling limitation, 
applying to ground coupled heat transfer, emerged 
from the work. 

INTRODUCTION 
Recently, successive reductions in building fabric 
and infiltration heat losses have increased the relative 
importance of heat loss to ground. Its magnitude 
depends on a wide variety of parameters, including 
climate, presence of slab and/or perimeter insulation 
and the ground heat transfer model used for the 
calculation. A well-built house is so energy efficient 
above ground that the ground-coupled heat losses can 
account for 30%–50% of the total heat loss (Deru, 
2003). A recent review of simulations carried out for 
houses located in Colorado, including both 
uninsulated and insulated slab-on-grade test cases, 
indicates 25%–45% of the heating load is caused by 
heat transfer through the floor (Neymark et al., 
2008). In order to estimate the desired precision for a 
floor heat loss calculation, one might take a figure of 
25% for the heat loss through an insulated floor and a 
further 10%–25% each for the losses through the 
external walls, the windows, the roof and infiltration. 
Assuming each is estimated with an uncertainty of 
±10%, the propagated error in the total heat loss 
would be ±4.6%. This is calculated using Equation 1 
in which aδ  is the uncertainty in the quantity a. 
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Repeating this calculation with an uninsulated floor 
heat loss of 50% and a loss of 5%–20% through each 

of the other four elements would lead to a propagated 
error of ±5.7%. If a 5%–6% error in total heat loss is 
considered acceptable, then a tolerance of ±10% is 
called for in each of the component calculations. 
Because of the complexity of the problem, model 
predictions for uninsulated slab-on-grade heat 
transfer, for example, can differ by between 25% and 
60% depending on the type of ground heat transfer 
model used. This discrepancy has motivated further 
validation efforts in an extension to IEA BESTEST 
(Neymark et al., 2008) of which the work described 
here forms part. The novel validation methodology 
prescribed in the extended BESTEST calls for 
putative reference models/programs to be gauged 
first against a known exact solution to a ground 
coupled heat transfer problem, and then to agree 
closely with the predictions of other proposed 
reference models when all are applied to 
progressively more complex and realistic test 
problems for which analytical solutions do not exist. 
The closely agreeing reference solutions produced in 
this manner can then be used to test the performance 
of more general whole-building models in this 
demanding aspect. Empirical validation is rarely 
considered in this context chiefly because of the 
lengthy thermal time constants associated with large 
volumes of soil. However, the Heat Diffusion 
Equation, used in the present model, is known to 
produce accurate results for a homogeneous solid. 

Test Problems 
Seventeen test cases (GC10a to GC80c) were 
formulated, the details of which are to be found in 
Neymark et al., 2008. Geometrical aspects of a 
typical case are set out in Figure 1. A slab-in-grade 
exchanges heat with soil and with a space which is 
otherwise bounded by adiabatic surfaces. Vertical 
soil boundary conditions are typically considered to 
be adiabatic and the deep ground horizontal soil 
boundary to be isothermal. Soil and slab top surfaces 
are driven by a variety of boundary conditions 
including isothermal, convective and periodic. 
Radiant heat is not considered. Parametric variations 
include dimensions of soil volume considered, floor 
slab area and aspect ratio, slab and soil thermal 
conductivities, interior and exterior surface heat 
transfer coefficients. The analytical case, GC10a, is 
exceptional in that it was originally derived for a 
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semi-infinite solid, that is, for infinite E and F in 
Figure 1. 
Model performance was gauge mainly on floor heat 
loss, either cumulative or instantaneous. The hour of 
occurance of peak heat loss was used to check for 
phase differences between model outputs. Some 
surface temperatures were also requested. 

Software 
The software package used for this work was 
MATLAB 7.0.4.365 (R14) SP2. It is a general 
purpose mathematical package and is independent of 
building energy simulation. A series of ground 
coupled heat transfer programs was prepared 
specifically for this task using the high-level 
language within MATLAB which includes an 
extensive catalog of built-in functions. Functions for 
interpolation and the solution of linear algebraic 
equations (LAE) and ordinary differential equations 
(ODE) were of most use for the present work. A 
large part of the work of these functions is matrix 
processing and MATLAB is considered ‘state-of-the-
art’ for matrix computation – incorporating, as it 
does, the LAPACK and BLAS libraries (The 
MathWorks, Inc., 2007). 
Each of MATLAB’s built-in ODE solvers forms an 
estimate of the error for the proposed time step and, 
if necessary, varies the length of the step to keep the 
error close to the specified tolerance. At each step, 
the error e in each nodal temperature T satisfies 

( )AbsTol,RelTolmax Te ×≤ . A relative tolerance 
(RelTol) of 10-5 and an absolute tolerance (AbsTol) 
of 10-8 were used here. Fixed time steps, if large, can 
lead to excessive error where the solution changes 
rapidly and, if small, can be unnecessarily accurate 
(slow) for a large part of the interval of integration. 
MATLAB does not offer fixed step size as an option. 
MATLAB includes a range of direct and iterative 
solvers for linear algebraic equations. Direct methods 
were used exclusively here because they are 
generally more accurate and more reliable than 
iterative solvers (Heath, 2002). Direct solvers – all 
based on Gaussian elimination – produce exact 
solutions in the absence of rounding error. Since 
MATLAB calculates in double precision, results can 
therefore be expected to be many orders of 
magnitude more accurate than the specified precision 
for this project unless the matrix of coefficients is ill-
conditioned. MATLAB tests for this circumstance 
and issues a warning if necessary. All of the 
foregoing concerns rounding error. Truncation error 
is, of course, separately present and is reduced by 
decreasing the space increment. 
The test problems are very large – approaching 106 
nodes/equations for the required precision – and this 
would usually necessitate the use of iterative methods 
on the PC available for the work (HP Compaq D330; 
Pentium 4, 2.8 GHz; 512 MB RAM). In order to use 
direct solution methods operating entirely within fast 

memory (RAM), two steps were taken. Memory was 
increased to 4 GB, of which 1 GB was reserved for 
the operating system. Also, the problems were 
programmed taking maximum advantage of 
symmetry. Three geometric symmetries are present 
in most of the problems and consequently only one-
eighth of the problem domain need be considered. 
The system matrix is not fully symmetric and so no 
further efficiencies of this type are available. The 
matrix is, however, very sparse and this allowed two 
further efficiencies: (i) MATLAB can be 
programmed to store just the nonzero elements of a 
matrix, thus freeing up RAM for other uses and (ii) 
MATLAB’s direct solvers take advantage of sparsity 
in that they do minimal wasteful processing of zero 
valued matrix elements – as well as minimizing ‘fill-
in’ during the elimination stage. 

SIMULATION 

Modelling Assumptions 
The modelling assumptions and inputs used were 
generally as described in the Test Specification 
(Neymark et al., 2008) and summerised in the 
Introduction above with the following exceptions. 
Discrete hourly ambient temperature data was 
provided as part of a weather file for the harmonic 
test cases, that is, for those cases driven by a 
periodically varying outdoor temperature – a daily 
cosine modulating a yearly cosine in this case. These 
data are normally interpolated within building energy 
models that produce output at less than hourly 
intervals. Some building energy models use linear 
interpolation, others use smoother functions. The 
programs prepared here calculated ambient 
temperature as a smooth function of time down to the 
limits of double precision accuracy (approx. 10-15 
seconds). This is close to perfect interpolation and 
may be considered the ideal to be aspired to in 
building energy models. Including a simpler 
interpolation method (or none) may bias the test 
toward those using that specific, less than perfect, 
method. As a check, hourly integrated floor heat flow 
calculations were carried out for a small sample of 
ambient temperatures from the weather file (1 June, 
hours 1-24) using (i) the hourly temperatures as 
provided, i.e. no interpolation and (ii) the smooth 
cosine/cosine function, i.e. perfect interpolation. The 
maximum difference was 0.8%, occurring at hour 4. 
The inclusion of even a simple interpolation routine 
would be expected to reduce this difference. 
The Test Specification assumes that dynamic models 
(DM) will be used for the steady state cases and that 
these models will be run to steady state to obtain the 
desired results. Since the boundary conditions do not 
change over time, these cases are more appropriately 
modelled using algebraic equations, i.e. steady state 
models (SSM), which require just one application of 
an appropriate solver. SSMs are much quicker than 
DMs, in this case many orders of magnitude quicker, 
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because the test cases are large (many nodes), 
moderately stiff and require exceptionally long 
integration intervals. A stiff system is one with a 
great range of characteristic time scales – thermal 
time constants in this context. 

Modelling Approach 
The models prepared here are three-dimensional 
finite difference approximations to the Heat 
Diffusion Equation. 
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The SSMs include a second-order centered difference 
approximation to the space derivatives and the DMs 
include, in addition, a third-order forward difference 
representation of the time derivative. As such, they 
are all capable of converging (Fletcher, 1991) onto 
their respective exact solutions provided the issues of 
stiffness, stability, matrix condition – and even the 
accumulation of the minute rounding error over some 
of the lengthy integration intervals to be discussed 
below –  are dealt with correctly; and, of course, 
assuming sufficient computing power is available. 
The specific solvers employed were as follows: (i) a 
sparse LU decomposition method of the 
analyse/factorise/solve variety (Davis, 2004) was 
applied to the LAEs arising in the SSMs, (ii) an 
explicit numerical method (Bogacki and Shampine, 
1989) was used to solve the ODEs presented in the 
DMs; the problems were not stiff enough to justify 
the costly matrix processing associated with implicit 
methods. 
All the programs used here include mesh spacings 
that are independently variable in the x-direction 
(which, due to symmetry, includes the y-direction for 
problems with square perimeter boundary walls) and 
the z-direction. The spacings are denser near to the 
boundaries and a different spacing factor is used 
inside (fxL0) and outside (fxF0) the perimeter, and a 
third spacing factor (fz0) for the z-direction. Grid 
spacings increase by approximately these factors as 
the distance from the perimeter boundary increases; 
the program adjusts the factors slightly so that a 
whole number of grid spacings fits within the 
available dimension (L, F or E). The initial grid 
spacings in the vicinity of the perimeter are dx0 in 
the x- (and y-) directions and dz0 in the z-direction. 
Two of the test cases (GC45b and GC45c) have 
rectangular rather than square perimeter boundaries 
and so further grid spacing parameters are required 
for the y-direction. The number of space increments 
within the boundary wall dimension (W) is the same 
in both directions for these latter cases (Figure 2). 
In broad terms, the values of these parameters, 
together with E and F defining the extent of the 
modelled soil volume, were varied to minimize the 

error for Case GC10a within the constraints of the 
available computing power. The final steady state 
heat loss through the floor slab was noted and 
compared with the analytical solution (Delsante and 
Stokes, 1983). They differed by 0.032%. Most 
subsequent models, both SSMs and DMs, shared this 
same mesh density defined by dx0, dz0, fxL0, fxF0 
and fz0; the exceptions being GC45b and GC45c 
discussed above and the very large slab case, GC50b. 
DMs were evolved from SSMs by including mass 
and replacing the LAE solver with an ODE solver. 
DMs were initially tested by running them to quasi-
steady state and comparing the averaged outcome 
with that of a SSM for the same problem. The 
problems were designed so that these two results 
should be identical. They were found to differ 
typically by 0.005% or less. Further tests of SSMs 
and DMs are detailed in the sub-section describing 
confirmatory test runs below. 
Aditionally, the output of the several participating 
models were compared for each of the cases. A 
number of modelling and programming errors were 
thus highlighted and eliminated. The final range of 
disagreement among simulation results was 24% for 
the whole group and 4.2% for the sub-set described 
as reference models (TRNSYS, FLUENT and 
MATLAB). 

Modelling options 
Since bespoke programs were prepared specifically 
for this task, the question of options does not arise. 
All aspects were modelled as specified insofar as the 
finite difference domain allows. The three types of 
boundary condition (isothermal, adiabatic and 
convective), for example, were explicitly and 
separately modelled. Convective surface coefficients 
behaved well, even at large values. Radiation and 
moisture were excluded from the Test Specification 
as an idealization to simplify diagnostics, and 
consequently were not included in the MATLAB 
model. 

Modelling difficulties 
No difficulties were experienced with the use of the 
Test Specification or the values specified therein. 
The major modelling difficulty arose out of the 
nature of the test problems themselves. Following the 
construction of the first DM, a first principles method 
(Crowley and Hashmi, 2000) was used to establish 
the pre-conditioning period for the system. The pre-
conditioning period is the simulation time required to 
allow the temperatures of all nodes to converge to 
values which are no longer affected by their 
arbitrarily chosen initial values. This is identical to (i) 
the longest thermal time constant for the system and 
(ii) the time necessary to reach a quasi-steady state. It 
was needed to determine the required interval of 
integration. It was estimated by calculating the time 
taken for the slowest transient solution of the nodal 
equation set to decay to 0.1% of its initial value. The 

- 1524 -



period found was 28.25 years – an exceptionally long 
one in the context of building energy simulation. 
Scaled runs were next carried out to estimate the real 
time required for a 30-40 year interval of integration 
and it was found to be 1-2 months on the available 
PC described above. Because of the number of test 
runs and confirming runs required, this would have 
taken the work well beyond the time scale for the 
project. Initially it was decided to increase the grid 
spacings in the DMs by a factor of five so that 40 
years of simulated time could be processed 
overnight. However, this led to a 2% discrepancy 
between the averaged output of the DM, GC40a, and 
the result for its steady state counterpart, GC30a. 
This was greater than the difference for TRNSYS 
and FLUENT (< 0.6% variation) so, instead, four 
more PCs of similar specification were equipped to 
work on the project and a 10-year integration interval 
was investigated (using the original high mesh 
density). It was found that the results for 10 year runs 
were well within the principal error tolerance 
specified, that is, that there be at most 0.1% variation 
in floor heat loss between the last hour of each of the 
final two simulated years. This finding does not 
appear probable in the light of the very long pre-
conditioning period but the apparent contradiction 
can be understood as follows: (i) performance is 
judged on floor heat flow rate which involves just a 
small fraction of the total number of nodal 
temperatures solved for in each simulation run and 
(ii) the initial conditions used here for each dynamic 
test run were just the solution temperatures for the 
corresponding steady state run. Since the average of 
the harmonically varying ambient temperature used 
in the DMs is the same as the outdoor temperature 
used in the SSMs, this meant that the nodes furthest 
from the surface – and therefore slowest to respond – 
were already close to their quasi-steady temperatures. 
Ten-year integration intervals were thus adopted for 
the DMs and, as expected, most cases required 1-2 
weeks processing time, with some taking as long as 
12 weeks to complete. The SSMs, on the other hand, 
ran for 45-70 seconds typically for the same number 
of equations – upwards of 112,000. There are two 
reasons for the great difference in run times: (i) the 
DMs require more computation because of the long 
integration intervals and the stiffness of the equation 
system, and (ii) within MATLAB, LAE solvers are 
compiled whereas ODE solvers are interpreted. One 
of the DMs was subsequently written in FORTRAN 
and this, together with other improvements, led to a 
speed-up factor of approximately 750. 

Confirmatory test runs 
The Test Specification calls for supplementary test 
runs to confirm that the principal result for each of 
the cases is close to exact. This is demonstrated by 
varying problem parameters and confirming minimal 
sensitivity of results to these changes. The prescribed 
changes are as follows: 

  
(i) Reduce the integration interval by 

one year (does not apply to SSMs). 
(ii) Reduce the volume of soil 

modelled (applies to case GC10a 
only). 

(iii) Reduce the mesh density (i.e. 
reduce the number of nodes used). 

(iv) Increase the error tolerance or 
convergence tolerance used in the 
solver (does not apply to LAE 
solver used in SSMs here). 

 
The specified maximum allowable variation in floor 
slab heat loss is 0.1% for any of these changes. A 5% 
change in the above parameters was, where possible, 
used in the confirmatory runs here, i.e. 50 times the 
permitted change in floor heat loss. For (ii) and (iii) 
the number of nodes was reduced by 5% – by 
reducing E and F simultaneously in the case of (ii). 
For (iv) the tolerance variables RelTol and AbsTol 
were each increased by 5%. Because the dynamic 
runs took so long, sensitivity tests (iii) and (iv) were 
usually carried out together. For the same reason, not 
all of the cases were tested in this way; the chosen 
cases are representative problem types. 
The test results are presented in Table 1. The optimal 
runs are identified and the parameters varied in each 
of the confirmatory runs are highlighted. In every 
case, the change in floor slab heat loss was much less 
than the permitted 0.1%. 

Modelling errors/improvements 
During the project a number of error/improvements 
were identified by comparing output with the other 
two reference models. A programming error became 
apparent when convective boundary conditions were 
first introduced. MATLAB’s floor heat loss 
predictions for several cases were initially 3% to 5% 
higher than those of TRNSYS and FLUENT. An 
error in the modelling of convection within the edge 
loss routine was quickly located and corrected; the 
edge loss subprogram models floor heat loss just 
inside the perimeter boundary. A further minor 
interpolation improvement was later included in this 
same edge loss routine. A three-dimensional 
interpolation function was initially used to produce a 
set of sub-surface temperatures requested in the Test 
Specification. The results disagreed with TRNSYS 
and FLUENT. Use of a one-dimensional 
interpolation function – the required interpolation 
points being collinear with the sub-surface nodes – 
resulted in better agreement. The nature of the 
problem was not established with certainty. 
MATLAB’s three-dimensional function interpolates 
using 64 neighboring points. It may be utilizing 
unrepresentative nodal temperatures considering the 
small scale of the perimeter boundary and the large 
temperature gradients in its vicinity. 
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RESULTS 
The results produced by MATLAB are in good 
agreement with those of TRNSYS and FLUENT. 
The final range of disagreement among simulation 
results for these three models is 4.2%. All three 
programs are within 0.3% of the known exact 
solution for case GC10a. Each of them under-
predicts the floor heat loss for this case, with 
MATLAB producing the highest heat flow of the 
three. For most other cases MATLAB predicts 
slightly higher heat flow rates also – typically about 
2% higher. This may be attributable to the denser 
mesh used in MATLAB but this has not been 
confirmed. 

CONCLUSION & RECOMMENDATIONS 
It can therefore be concluded that the model 
presented here is fit for purpose. 
All of the test cases included here are concerned with 
steady or quasi-steady state solutions – even for the 
dynamic problems. Dynamic performance is not 
severely tested, for example, by step changes in the 
load. To do this one needs analytical solutions for 
dynamic cases but these are generally not available. 
Almost as useful are what can be termed ‘converged 
solutions’ (Crowley, 2006). These can be generated 
to arbitrary accuracy for dynamic problems of 
realistic scale and complexity. 
The very lengthy thermal time constants discussed 
above for ground coupled heat transfer problems 
such as slab in/on grade – also applying to 
basements, earth tube cooling systems and buried 
coils – have serious consequences for the HVAC 
design and simulation communities when this heat 
transfer mode is a significant fraction of the total 
thermal load. Normally one discards the initial output 
of a simulation run, that is, the output calculated 
during the pre-conditioning period, which is typically 
of the order of weeks. In doing this, we are 
recognizing that the initial transient response of the 
building is not accessible to us without knowledge of 
the initial temperature conditions throughout the 
building. If, however, the pre-conditioning period is 
decades in duration, as is the case when heat is 
transferred to/from the ground, then temperature 
predictions are inaccurate for a significant fraction of 
the building life unless initial conditions are directly 
measured – using bore-holes for example. Standard 
sub-surface temperature profiles are of little use on 
most sites, which will have been disturbed by site 
excavation during the construction phase and 
probably by road works, pipe laying and construction 
of adjacent buildings prior to that. 
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NOMENCLATURE 
t  time (s) 
T  nodal temperature (K) 
x, y, z  space coordinates (m) 

�  thermal diffusivity (m2/s) 

aδ   absolute uncertainty in a 

DM  dynamic model 
LAE  linear algebraic equation 
ODE  ordinary differential equation 
SSM  steady state model 
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Figure 1 Geometry of a typical test problem (Neymark et al., 2008). 
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Figure 2 Mesh pattern for a test problem that includes two axes of symmetry. 
 
 
 

Table 1 
Optimal and confirmatory runs for selected cases 

 
Case F 

(m) 
E 

(m) 
dx0 
(m) 

dz0 
(m) 

fxL0 fxF0 fz0 Number 
of nodes 

Floor slab 
heat loss 

Comments 

GC10a* 150 300 0.020 0.012 1.150 1.495 1.150 892,552 2431.82 W Optimal run. 
GC10a 120 240 0.020 0.012 1.150 1.495 1.150 849,120 2431.60 W 0.009% change. 
GC10a 150 300 0.020 0.012 1.155 1.5015 1.155 849,120 2431.54 W 0.012% change. 
GC30a 20 30 0.015 0.0090 1.135 1.4755 1.135 840,840 2694.99 W Optimal run. 
GC30a 20 30 0.016 0.0096 1.135 1.4755 1.135 798,720 2694.87 W 0.004% change. 
GC40a 20 30 0.015 0.0090 1.135 1.4755 1.135 840,840 23,608.9 kWh/y Optimal run, 

(10 year run). 
GC40a 20 30 0.015 0.0090 1.135 1.4755 1.135 840,840 23,609.1 kWh/y 0.001% change, 

(9 year run). 
GC40a# 20 30 0.016 0.0096 1.135 1.4755 1.135 798,720 23,607.8 kWh/y 0.005% change, 

(10 year run). 
GC45b 15 15 0.020 0.012 1.135 1.4755 1.135 410,000 33,483.5 kWh/y Optimal run, 

(10 year run). 
GC45b 15 15 0.020 0.012 1.135 1.4755 1.135 410,000 33,483.5 kWh/y 0.000% change, 

(9 year run). 
GC45b# 15 15 0.020 0.012 1.138 1.4794 1.138 384,160 33,479.2 kWh/y 0.013% change, 

(10 year run). 
GC65b 15 15 0.015 0.0090 1.135 1.4755 1.135 715,520 2003.66 W Optimal run. 
GC65b 15 15 0.015 0.0090 1.140 1.4820 1.140 677,376 2003.50 W 0.008% change. 
GC80b 15 15 0.015 0.0090 1.135 1.4755 1.135 715,520 6151.43 kWh/y Optimal run, 

(10 year run). 
GC80b 15 15 0.015 0.0090 1.135 1.4755 1.135 715,520 6151.53 kWh/y 0.002% change, 

(9 year run). 
GC80b# 15 15 0.015 0.0090 1.140 1.4820 1.140 677,376 6150.86 kWh/y 0.009% change, 

(10 year run). 
*Analytical solution is 2432.60 W.  #Error tolerance for ODE solver was increased by 5%. 
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