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ABSTRACT 
There has been extensive research focusing on 
developing smart environments by integrating data 
mining techniques into environments that are 
equipped with sensors and actuators. The ultimate 
goal is to reduce the energy consumption in buildings 
while maintaining a maximum comfort level for 
occupants. However, there are few studies 
successfully demonstrating energy savings from 
occupancy behavioural patterns that have been 
learned in a smart environment because of a lack of a 
formal connection to building energy management 
systems. In this study, the objective is to develop and 
implement algorithms for sensor-based modelling 
and prediction of user behaviour in intelligent 
buildings and connect the behavioural patterns to 
building energy and comfort management systems 
through simulation tools. The results are tested on 
data from a room equipped with a distributed set of 
sensors, and building simulations through 
EnergyPlus suggest potential energy savings of 30% 
while maintaining an indoor comfort level when 
compared with other basic energy savings HVAC 
control strategies.  
 

INTRODUCTION 
Occupant presence and behavior in buildings has 
been shown to have large impacts on space heating, 
cooling and ventilation demand, energy consumption 
of lighting and space appliances, and building 
controls (Page, 2007). Several stochastic models 
have been developed to model occupant presence and 
interactions with space appliances and equipment. 
Fritsch et al. (1990) proposed a model based on 
Markov chains to model the random opening of 
windows by occupants. Degelman (1999) developed 
a Monte Carlo modeling approach for space 
occupancy prediction based on survey statistics. 
Reinhart et al. (2004) determined occupant presence 
for lighting software by using a simplified stochastic 
model of arrival and departure. Wang et al. (2005) 
applied Poisson distributions to generate daily 
occupancy profile in a single-occupied office.  
Mahdavi et al. (2006) explored the possbilities of 
identifying general patterns of user control behavior 
as a function of indoor and outdoor environmental 
parameters such as illuminance and irradiance. 

Bourgeois et al. (2006) integrated an occupancy 
model based on Reinhart’s algorithm into ESP-r to 
investigate lighting use. However, most of the 
previous occupancy presence models were either 
tested on a single person office or presented a 
specific application such as lighting control. Only 
recently, Page et al. (2008) targeted individual 
occupancy behavior by developing a generalized 
stochastic model for the simulation of occupant 
presence with derived probability distributions based 
on Markov chains. However, the occupancy behavior 
derived from stochastic model was based on the 
assumption that occuapncy will interact with 
different appliances in the space and the validation 
was conducted in single-occupied offices. Most of 
the previous works are based on supervised 
approaches, which require ground truth occupancy 
information. In addition, the latest models are all 
based only on motion sensors, which often fail to 
detect occupants that are sitting or standing still, and 
thus have been shown in some cases to provide 
insufficient accuracy for occupancy detection (Lam, 
et al., 2008).  Because occupants generate heat, water 
vapour, CO2 and odors, a richer sensor enviroment 
allows for a  more robust means of detecting 
occupancy presence and  behaviour than motion 
sensors alone. 
Recently, there has been extensive research focusing 
on developing smart environments by integrating 
data mining techniques into environments that are 
equipped with rich sensors and actuators. A smart 
environment is defined as an environment able to 
acquire and apply knowledge about the resident and 
the physical surroundings to improve the resident’s 
experience (Cook et al, 2004).  Duong et al. (2006) 
used hidden semi-Markov models for modeling and 
detecting activities of daily living such as cooking, 
eating, etc., and Youngblood et al. (2007) introduced 
a new method of automatically constructing 
hierarchical hidden Markov models using the output 
of a sequential data mining algorithm to control a 
smart environment.  Other work investigates HVAC 
preconditioning and device automation via mined 
location and device interaction patterns, and the 
energy savings potential is estimated through a 
relatively simple consumption model (Roy et al. 
2007). The objective of this study is to develop and 
simulate unsupervised algorithms for ambient sensor- 
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Figure 1 A holistic view of this study
 
based modelling and prediction of user behaviour 
within the context of intelligent buildings and 
connect the derived user behavioural patterns to 
building energy and comfort management. We base 
our approach on the work of Youngblood et al. 
(2007) in that a behavioral pattern model is 
constructed by mining sensor events for significant 
patterns (Episode Discovery), and then a Markov 
model is generated from the resulting patterns.  Our 
contributions lie first in the integration of a rich 
environmental sensor network using acoustics, 
temperature, relative humidity etc. into the data-
driven model of occupancy behavioural patterns. 
Sensor event definitions account for significant 
behavioral changes and energy events, and the 
resulting (semi-)Markov models incorporate duration 
to capture behavioral transitions over larger time 
scales.  Second, we develop a formal method to 
connect the discovered patterns with energy and 
comfort management in buildings and demonstrate 
through simulation the energy-savings potential on 
real data from a conference room in an office 
building.  In particular, we propose a dynamic 
occupancy schedule for use in both EnergyPlus 
(Crawley, 1999) simulations as well as more 
commonly used energy management strategies, thus 
providing a first step to truly integrating smart 
building concepts into the building management 
community. 
An overview of the approach used in this study is 
shown in Figure 1. The outline of the paper is as 
follows. Section II describes sensor event detection. 
Section III presents the approach for frequent pattern 
detection using Episode Discovery, minimum 
description length (MDL), period detection (PD) and 
energy weight factors. Section IV introduces a semi-
Markov model for occupancy duration models. 
Section V discusses the connection of these frequent 
patterns with building and energy comfort 
management, and Section VI presents conclusions 
and possibilities for future work.   

 

OCCUPANCY PATTERN 
RECOGNITION 
 

Event Detector  
We first discuss the detection of events from a 
variety of different sensors. We denote each single 
event with a symbol and an episode as a sequence of 
symbols.  Table 1 shows symbol assignments; an 
example of an episode is “agghkjhk…”. A detailed 
explanation of the event definitions for each sensor is 
discussed below.  All parameter values used in the 
definitions are determined empirically for the testing 
environment used in this work; however, variations 
in these values are possible while still producing 
meaningful sensor events. 
 

Table 1 
Definition of important events from sensors 

Sensors State 
Transitions 

C
ode 

Sensors State 
Transitions 

C
ode

Acoustics 1. Low acoust. a CO2 1. Increasing g
2. Loud acoust. b 2. Decreasing h

Illumination 1. Off-On c Temperature 1. Increasing i

2. On-off d 2. Decreasing j
Motion 1. Off-on 

(motion) 
e Relative 

Humidity 
1. Increasing k

2. On-off 
(no motion) 

f 2. Decreasing l

 
a. Acoustics 
The acoustics sensor outputs a calibrated percentage 
of the acoustics level in the space. Figure 2 shows an 
example acoustics profile for a typical day in a 
conference room. The acoustic events are categorized 
into two types: (1) ventilation noise or background 
noise, defined as an acoustics level between 15% and 
20% that is accompanied by at least a 5% increase 
from the previous level (event ‘a’); (2) human 
activity (e.g., voice or door opening/closing), defined 
as an acoustics level above 20% accompanied by at 
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least a 10% increase from the previous level (event 
‘b’). A smoothing method based on a root mean 
square approach is implemented to reduce noise 
(Smaton  and McHugh, 2006).  
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Figure 2 One day example of acoustic events 

 
b. Lighting  
Lighting events are defined as: (1) light turned on 
(event ‘c’); (2) light turned off (event ‘d’).  
 
c. Motion 
Motion sensor events are defined in the obvious way 
for a binary motion sensor with an event each for 
motion switching (1) on (event ‘e’) and (2) off (event 
‘f’).  However, to avoid capturing high frequency 
fluctuations that occur naturally when occupants are 
inside the room and to obtain a more informative 
signal, a 10 minute time window is used to smooth 
the signal. A motion off event must be followed by 
no motion activity within this window.  Figure 3 
shows an example motion profile and the 
accompanying events. 
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Figure 3 Example motion events 

 
d. CO2  
According to the results from Lam et al. (2008), an 
increase of 50 ppm CO2 level in 10 minutes is found 
to have high correlation with human presence. This, 
however, clearly depends on the location of the 
sensor; in this study, the CO2 sensor is located above 
the conference table in the center of the room at 
roughly nose level. The events are then defined as: 
(1) CO2 increase of 50 ppm in a 10 minute time 
window (event ‘g’); (2) CO2 decrease of 50 ppm in 
10 minutes (event ‘h’).  
 

e. Temperature and relative humidity  
In a room without any windows, as is the conference 
room test-bed, individual human-based temperature 
fluctuations are minimal or on vary slow time scales. 
Large changes in temperature (1 ºC) in a short time 
frame (10 minutes) are more likely associated with 
high energy activities such as large group presence, 
the HVAC system being turned, or a projector. 
Hence, the events for temperature are defined as (1) 1 
ºC increase in 10 minutes (event ‘i’); (2) 1 ºC 
decrease in 10 minutes (event ‘j’). Relative humidity 
fluctuates very little under the test-bed conditions 
unless there are occupants inside the space or the 
HVAC system brings in outside air. Hence RH 
events are defined as: (1) 10% increase in 10 minutes 
(event ‘k’); (2) 10% decrease in 10 minutes (event 
‘l’).  
 
Episode Discovery 
 

Episode Discovery (Heierman et al., 2004) is the 
process of discovering significant patterns in the data 
sequence by first generating candidate sequences and 
then pruning this set to obtain a final set of important 
sequences. Time series sensor event sequences 
generated according to our definitions in the previous 
section are mined for potentially significant 
candidate episodes using a sliding time window.  
Briefly, in every episode window, the event codes are 
ordered according to the time of occurrence. If the 
codes happen at the exact same time, they are 
ordered by alphabetical order for consistency. For 
each episode window, all possible subsets of the 
episode are generated.  The generation of these 
subsets as additional candidates accounts for 
fluctuations in event order or the occurrence of 
spurious events. For example, if the episode pattern 
in a 3 minutes time window is {c,e,f,g,d}, then the 
candidate episode patterns are {null}, {c,e,f}, {g,d} 
and so on. However, to make this problem more 
tractable and avoid considering the superset of the 
episode as candidates, subsets are pruned using the 
following rule (Heierman et al., 2004). The subset 
candidates of a candidate episode that have the same 
episode occurrences as the parent episode do not 
need to be generated as candidates. An example 
resulting candidate episode is ‘cef’, which, for our 
event definitions, corresponds to ‘light on’ followed 
by ‘motion on’ and ‘motion off’ and is most likely 
representative of someone entering a room.  
 

After candidate episodes are generated, significant 
episodes to be included in the behavioural model are 
determined using the minimum description length 
(MDL) criteria and periodicity (PD) as described 
below.  Additionally, because our focus is on energy 
consuming behaviour, we use a weighting factor in 
both the MDL and PD steps to increase the 
importance of episodes containing high energy 
impact events, namely lighting, temperature, and 
humidity events. 
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1. Minimum description length 
The intent of MDL is to discover event patterns that 
best represent the original input stream. Event 
patterns may be thought of as a code table for 
encoding the original input sequence.  The optimal 
code table is the one that minimizes both the size of 
the code table plus the length of the encoded original 
sequence.  A brief algorithm is shown below (for a 
detailed algorithm, see Bathoorn, 2006): 
 

Let candidate episodes Θ={P1, P2,.. Pn}, where Pn is 
the nth episode.  
1. Ordering Θ according to  

a. Length; b.Frequency 
2. Compress (Θ) 
CodeTable = allSinglePatterns; 
minSize  = computeSize(CodeTable) 
for each Pi Є Θ 
 CodeTable.add(Pi) 
 newSize = computeSize(CodeTable) 
 if newSize<minSize 
    minSize = newSize; 
 else 
   CodeTable.remove(Pi) 
return CodeTable 

 
2. Periodicity detection 
Often, behaviors with the most utility for smart 
building or building automation systems are those 
that exhibit some periodicity.  In a time series data 
set Dorg, a symbol s or an episode p is said to be 
periodic with a period l, if s or p exists every l time 
steps. We compute episode periodicity using a 
convolution-based approach, where the time series is 
shifted l positions and the shifted series Dnew is 
compared with Dorg (Mohamed et al., 2005).  This 
amounts to conducting a frequency spectrum analysis 
using a Fourier transform.  A detailed algorithm can 
be found in Elfeky et al. (2005).    
 

Semi-Markov model generation 
One of the most important inputs in designing an 
optimal room controller is the duration of occupancy 
in the room. To this end, we investigate an 
occupancy duration model from the discovered event 
patterns. Specifically, we employ a semi-Markov 
model that allows for duration in each state before 
transitioning to the next state (Murphy, 2002). Duong 
et al. (2006) applied HSMMs for pattern recognition 
of daily human activities. In this study, as in 
Youngblood et al. (2007), we treat each discovered 
important pattern as a state in the Markov model. We 
learn the semi-Markov model using a forward-
backward algorithm (Yu and Kobayashi 2003).  Note 
that in our current approach, states are not considered 
hidden and thus the typical HSMM framework is not 
needed.  Hence, the model parameter estimation 
algorithm is greatly simplified. 
 

EXPERIMENT IN A CONFERENCE 
ROOM 
Sensor data collection 
Six different types of wireless and wired sensors are 
installed in a conference room of a commercial 
building in Pittsburgh.  Data is collected every one 
minute from May 1st to August 31th, 2008. Figure 4 
shows a picture of the conference room and its 
installed sensors.  
 

 
Figure 4 Test-bed in a conference room, wireless 

mote and occupancy counting input device 
 
Results of event detection 
 

Figure 5 illustrates an example day of sensor events 
generated according to the definitions described 
earlier. Event numbers on the y axis indicate which 
event occurred for the given sensor according to the 
codes in Table 1. For example, at 5:40am, the 
temperature decrease event (Event_2 for the 
temperature decrease event) occurred when the air 
conditioning system turned on. As is typical with 
most days in the conference room, numerous motion 
and acoustic events occur from 10:00am to 11:00am 
when the room is active with meetings. At 11:00 pm, 
a custodian enters the room, generating lighting and 
acoustics (vacuum cleaner) events.  

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
0

Event_1

Event_2

Events Generator

Time

 

 

Acoustics
Illumination
Motion
CO2
Temp
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Figure 5  A one day example results of event 

detection  
 

Results of MDL and PD 
 

Based on a time window of 10 minutes, a summary 
of important patterns resulting from the MDL and PD 
selection criteria are shown in Table 2. It is noted 
here that the MDL component discards some very 
long patterns due to highly infrequent occurrence 
(once every week or every few days). The final set of 
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important patterns are those resulting from both 
MDL and PD.  

Table 2 
Results of Patterns from MDL and PD 

  # of 
Patterns 

Longest 
Pattern 

Most 
Compressed 
Pattern 

Other 
Patterns 

MDL  9  bebdf (22)  cedf (19)  dfcedf, 
bebdf, 

ebbdf, fefe, 
aa, ghg,gge 

PD  8  ebbfe(24)  bg (84)  bgfb, feg, 
hbe, aec, 

fhd 
 

Results of semi-Markov model 
 

The exponential family of distribution functions were 
found to best model the durations associated with the 
discovered patterns.  This is consistent with other 
work in speech recognition (Russell, 1985) and 
occupancy of single-person offices (Wang et al., 
2005). Figures 6 and 7 show the resulting semi-
Markov model of important patterns. Event code 
letters are as defined in Table 1. Figure 6 shows a 
standard Markov model with numbers on the arcs 
indicating the transition probability between states, 
Transitions with relatively low probabilities (less 
than 15%) are not shown. Parentheses indicate 
number of occurrences of the pattern in the training 
period. As an example, state “ecf” has a 25% 
transition probability to state “eb” and a 24% 
probability to state “def”, with “ecf” occurring 22 
times, “eb” 37 times and “def” 15 times during the 
month. Figure 7 shows the results of including 
duration in the model. Each duration distribution is 
denoted as X~(time), where time is the expected 
duration for the exponential model.  For example, 
“ecf” has an expected duration of 30 minutes before 
it transitions to state “eb” and 10 minutes before 
transiting to state “def”. The red-dotted line indicates 
a typical 75 minute meeting scenario where an 
occupant enters the room, triggers the motion sensor 
“e”, turns on the light “c”, and sits down, triggering 
the motion off “f”. The occupant continues to stay in 
the room, generating acoustics “b” and moving 
around generating motion “e”. Upon leaving, the 
occupant turns off the light “e”, moves towards the 
door “e” and finally departs “f”. Another possible 
duration path is on average 138 minutes, representing 
a longer meeting.  
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Figure 6 Markov model of discovered patterns on 10 

minutes maximal window 
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Figure 7 Semi-Markov model of discovered patterns 

on 10 minutes maximal window 

Additional models representing longer time scales 
may be generated by considering a pattern such as 
‘ecf’ as a new event ‘G’ and repeating the pattern 
discovery process (Youngblood et al., 2007).  Results 
are shown in Figures 8 to 9 for the resulting model of 
this approach using a maximal window of two hours. 
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D: ‘hdf’ leave I:‘def’ leave H: ‘ag’ stay F: ‘hj’ HVAC  

 
Figure 8 Markov model of discovery patterns on 

patterns 
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Figure 9 Semi-Markov model of discovery patterns 

on patterns  
 

ENERGY AND COMFORT 
MANAGEMENT 
A dynamic occupancy schedule with expected 
durations was developed from the behavioural 
pattern recognition results. This dynamic schedule, as 
described below, can be connected with a building 
energy and comfort management system (BECMS) 
through dynamic real-time temperature and 
ventilation set point inputs. The BECMS can then 
make decisions according to the dynamic schedule. 
In order to test the practicality of this approach, we 
coupled the dynamic schedule with EnegyPlus, a 
widely used energy simulation tool. 
There are several current approaches in the literature 
for modelling occupancy within the context of energy 
simulation. Claridge et al. (2001) suggested that 
occupancy diversity profiles might be derived from 
lighting diversity profiles through establishing a 
strong correlation between observed occupancy 
levels. However, other studies suggested diversity 
profiles generate misleading information when 
occupancy-sensing lighting controls are used 
(Degelman ,1999). Bourgeois et al. (2006) developed 
a sub-hourly occupancy-based control (SHOCC) 
coupled with the ESP-r simulation program. SHOCC 
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tracks individual instances of occupants and 
occupancy-controlled objects such as blinds. 
However, its application is limited with lighting 
controls.  
In this study, the dynamic schedule was used toward 
lighting and HVAC controls. The control strategy 
utilizes the learned Markov model of behaviour and 
takes advantage of the fact that some patterns such as 
‘ecfdef’ only last briefly, corresponding to commonly 
found scenarios where users step into the conference 
room to, for example, make a cell phone call. In 
situations such as this, the HVAC system does not 
need to meet the temperature set point and ventilation 
rate. Figure 10 illustrates the coupling of an HVAC 
control strategy with occupancy pattern recognition.  
The term “dynamic schedule” refers to the time and 
state-dependent use of the Markov model in the 
HVAC and lighting control strategy.  The system 
monitors sensor events to determine the current state 
of the environment as given by the Markov model.  If 
an entry state (e.g., one involving lights turning on) is 
identified, the system computes the most probable 
duration of occupancy based on the model and 
responds accordingly.  The control strategy is 
updated as the detected state changes.  Because our 
emphasis here is on illustrating the utility of data-
driven behavioural modelling for energy 
management rather than on controller design, we 
implement a simple occupancy-dependent on/off 
control; however, more advanced controllers can 
achieve better performance by utilizing the duration 
information contained in the model. For our 
simulation, a software link between the dynamic 
schedule and EnergyPlus is used so that the time 
dependent schedule can be generated automatically 
from pattern recognition.  
 

 
 

Figure10 HVAC controls based on pattern 
recognition 

 

Comparison among current set point strategies 
In order to evaluate the energy saving effects and 
thermal comfort conditions based on dynamic 
scheduling strategies from the occupancy behavioural 
patterns, the energy usage of four different set point 
strategies are compared. These four possible HVAC 
set point schedules, and their advantages and 
disadvantages are: 
1.  Fixed system schedule set point at 24 C° from 
7:00am to 6:00pm. 

     Advantage: simplicity for facility manager 
     Disadvantage: High Energy Cost. No need to   

maintain 24 C° when there are no people present 
2.  Outlook schedule based on company outlook 
(Barney and Lynne, 2007) 
     Advantage: exact meeting schedule and possible 

meeting duration 
     Disadvantage: Many meetings occur 

spontaneously with no pre-scheduling in Outlook 
3.  Occupancy (Motion) sensor based 
     Advantage:  Simplicity 
     Disadvantage: No motion occurs if occupants are   

relatively still in the room. Also, motion is 
triggered if an occupant enters the room in the 
middle of the meeting, generating spurious 
events.  

4.   Dynamic occupancy schedule  
     Advantage: Dynamic temperature set point; An 

explicit meeting duration model; Automatic 
lighting control when zero occupancy; Save 
energy and maintain comfort  

     Disadvantage: Need for additional sensors  
 
All schedules have a night setback temperature of 30 
C°, and, aside from the fixed-point schedule, all have 
a daily setback of 27 C° at 7:00 am. A lower 
temperature setpoint of 24 C° during the day is set as 
determined by the approach when the room is 
considered occupied. 
 
EnergyPlus simulations with three zones were 
conducted: a simple conference zone of size 3m by 
6m faces east, a “Resistive” zone before the 
conference zone, and a North zone. We focus on 
evaluating controller performance in the conference 
zone (the other zones are kept at fixed standard 
operation schedules).  The building simulation is 
conducted from June 1st to August 31st, 2008, with 
TMY-3 Pittsburgh weather data, and the predicted 
occupancy profile used for the controller is based on 
training data from May 1st to May 30th, 2008. The 
true occupancy profile used for the simulation is 
taken from an “occupancy counter box” (see Figure 
4) deployed in the conference room that allows 
occupants to keep track of the number of people in 
the room at all times by pushing up or down buttons.  
Table 3 shows the results from EnergyPlus in terms 
of total building loads for the three months.  

Table 3 
Building loads and comfort based on different HVAC 

set point schedules in the conference room 

 Fixed Outlook Motion Dynamic 
Total Cooling 
Loads (kWh) 5483 4050 3794 3833 
Total Lighting 
(kWh) 1150 880 872 872 

Total (kWh) 6633 4930 4666 4705 
Time Comfort 
Not Met 
(ASHRAE-55) 
(hour/day) 0.63 3.26 2.38 1 
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Table 3 shows that while the fixed schedule achieves 
very good comfort conditions (with very little time 
when comfort is not met), it is very energy 
inefficient.  The Outlook schedule does not perform 
well because meetings are often either shorter than 
scheduled or even cancelled, leaving the HVAC 
system running with no one present.  The largest total 
savings are from the motion–based approach; 
however, this comes with a sacrifice in occupant 
comfort because of times when occupants are present 
with little or no motion, causing the HVAC system to 
revert to the higher, less comfortable daily setback 
temperature. The dynamic schedule, which is derived 
from the data-driven pattern model, achieves energy 
savings comparable to that of the motion-based 
approach, but with a less amount of time when 
comfort is not achieved.  The one hour per day of 
uncomfort arises mostly from short visits to the 
meeting room (approximately 10 minutes) that are 
not worth the cooling effort. 
Figure 11 shows a daily indoor temperature profile 
from these four different set point schedules. The 
outlook schedule for the given day is: 
9:15am~10:30am and 1:45pm~3:30pm. All three 
non-fixed set point schedules reach the daily setback 
temperature at 7:00am as scheduled. Beginning at 
7:00am, the temperature profiles behave differently 
according to the different set point strategies. 
Interestingly, during lunch time, the motioned-based 
schedule still tried to meet the set point despite only 
short visits to the conference room during that time. 

CONCLUSION 
In this study, we demonstrate through simulation the 
energy-saving utility of using a data-driven model of 
occupant behaviour for energy management.  
Ambient sensing data such as lighting, acoustics, 

CO2, temperature, and relative humidity are 
incorporated into an event-based pattern detection 
algorithm used for modelling occupant behaviour 
toward HVAC system control. Our aim is for an  
unsupervised approach that does not require 
extensive training or modelling of the environment at 
hand. The pattern discovery and model generation 
approaches are based on the work of Youngblood et. 
al (2007) with extensions for integrating ambient 
sensor events with a focus on energy-related 
activities and the use of semi-Markov models that 
allow for pattern or state durations.  Additionally, we 
illustrate a connection of the learned behavioural 
model with energy control systems through the 
generation of a dynamic occupancy schedule.  Such a 
dynamic schedule was generated from a conference 
room environment equipped with a wireless sensor 
network and tested as an input to an HVAC control 
system in an EnergyPlus simulation.  Compared with 
other alternative occupancy-based control strategies, 
the results of the dynamic schedule show significant 
energy savings with minimal comfort sacrifice.  

Possibilities for future work include investigations 
into data mining techniques for increased 
computational efficiency in generating learned 
patterns as well as the use of the Markov model for 
prediction-based control of energy management 
systems.  Additionally, future studies may investigate 
more advanced control designs for exploiting learned 
behaviour for different HVAC systems (e.g., VAV). 
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Figure 11 Temperature profile on Summer Design Day (July 21) based on different set points
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