
“PARALLEL” ENERGYPLUS AND THE DEVELOPMENT OF A PARAMETRIC

ANALYSIS TOOL

Yi Zhang
1

1
Institute of Energy and Sustainable Development, De Montfort University, Leicester, UK

ABSTRACT

Parametric analysis is a powerful method for

exploring alternative design options and establishing

variable dependency therefore design guide. The

text-based user interface of EnergyPlus makes it a

perfect simulation tool for automated (or scripted)

parametric analysis. Since the number of simulations

required for parametric analysis tend to be large, a

software utility that may take advantage of the ever-

increasing desktop computing power is desirable.

“Parallelism”, in its broad sense of running more

calculations simultaneously, comes naturally into our

view. Two implementations have been tested on a

single-box dual-core PC and a 256-core Beowulf

Cluster. This paper presents the development of the

Java tool that prepares the parametric runs, as well as

the performance enhancement achieved on different

platforms.

INTRODUCTION

Parametric analysis is often needed for exploring

design options, especially when a global optimization

method is unavailable, or the optimization result is in

doubt. Parametric analysis can also be applied to all

design variables simultaneously, which forms an

exhaustive search approach that, providing that the

search grid is fine enough, will guarantee the global

optimal solution. This is potentially a very useful

method.

In order to perform complex parametric analysis on

multiple parameters with more than a handful

alternative values each, two crucial ingredients are

required – a simulation model that supports

parametric runs, and a tool to generate commands for

those runs and collect results afterwards. EnergyPlus

(EERE, 2009) is suitable tool to run parametric

models because of its command-line interface and

text-based model definition. It also works with Linux

therefore can be used on computer clusters. We shall

see the benefit of this in the “Experiment” section.

There have been a few tools available for EnergyPlus

users.

EP-Macro (EERE, 2008)

According to the user manual of the auxiliary

programs of EnergyPlus, the EP-Macro program is

intended for advanced users who need to prepare

input manually, by providing the following functions

that are relevant to parametric runs:

• Incorporating blocks of IDF in external files

• Conditioned activation / deactivation of blocks

• Defining parametric blocks

• Defining parameters and performing arithmetic

and logic operations on parameters and values

EP-Macro itself is not a parametric tool because it

does not implement any loop nor specify alternative

parameter values. However, it can be used with an

external parametric shell to define any complex

parametric runs. This will be further discussed in the

later part of the paper.

EzPlus-Parm (EERE, 2002)

“EzPlus-Parm” was developed by the Derringer

Group at Berkeley, California in 2002. It is one of

earliest parametric tools for EnergyPlus. Although

still listed on EnergyPlus’ website, the tool is no

longer available. EzPlus-Parm claimed to “simplify

running multiple parametric EnergyPlus simulations”

by assisting a user to organize and edit all needed

files, and write AWK scripts to specify parametric

runs and result collection. Essentially EzPlus-Parm

streamlined the processes of a parametric analysis by

linking various software tools (EnergyPlus, AWK

interpreter, Ms Excel) in one GUI. It does require the

user to be familiar with AWK, however, because all

input and output methods have to be specified in this

syntax. The existing user base of EzPlus-Parm is

unclear.

COMFEN 2.0 Beta

“COMFEN is a tool designed to support the

systematic evaluation of alternative fenestration

systems for project-specific commercial building

applications.” (LBNL Windows and Daylighting,

2009). It allows users to specify details of up to 4

different fenestration façade systems in an Excel-

based user interface and compare the results of

EnergyPlus simulations. Although it is not a tool for

parametric analysis, it is relatively easy to be

converted to one with some extra VBA (Microsoft

Visual Basic for Applications) scripts. It can also be

used for defining alternative glazing systems and

shading controls with the provided libraries.

Eleventh International IBPSA Conference
Glasgow, Scotland

July 27-30, 2009

- 1382 -

GenOpt

GenOpt (LBNL, 2008), developed by Dr Michael

Wetter, was first introduced in 2000. It is a collection

of optimization algorithms bundled with a generic

interface that can work with many simulation tools

including EnergyPlus and TRNSYS. GenOpt

supports parametric runs on an orthogonal,

equidistant grid. Some casual users may find its

sophisticated and powerful mechanism for defining

optimization problems and coupling with simulation

tools overly complex. The most significant

limitation, however, is that GenOpt does not support

non-numeric variables, nor arbitrary list of alternative

values.

DesignBuilder V2

Providers of commercial frontend to EnergyPlus, e.g.

DesignBuilder (DesignBuilder Sofware Ltd., 2009),

are also considering implementing full parametric

capability in their software, e.g. selecting variables

and report results in one screen. Speculatively this

could be the best solution since the quality of the

software can be controlled by the vendor. To the

research community, however, commercial software

often means less flexibility and more cost.

This paper describes the development of a parametric

shell called “jEPlus”. This tool interfaces with

EnergyPlus in the same way as GenOpt does, except

giving users more control on the graphical interface.

First, a user prepares an IDF file by putting tags

(special search strings) at the places of the

parameters. jEPlus chooses the next set of values for

the parameters according to the information provided

by the user. It then searches the IDF file for the tags

and accordingly replaces them with the new values.

EnergyPlus is subsequently called to run the

simulation and produce results. A number of distinct

features are offered by jEPlus:

• Unique parameter tree for defining complex

parametric runs;

• Simulation results are collected in both tables

and databases;

• Completely written in Java to be platform-neutral

PARAMETRIC DEFINITION

Obviously, the ability to define parametric runs is the

elementary function of a parametric analysis tool.

jEPlus uses a Tree structure to organize parameters

and their values.

The Parameter Tree

Traditional parametric studies are designed for

analysing sensitivity of a model to a number of

independent parameters. In engineering design

however, investigations of the effects of different

combinations of dependent parameters are often

required. For example, to study the effect of window

sizes, four parameters have to be considered together:

the coordinates (x, y) of one corner, and the height

and width of the window. The choices of the four

values are constrained by the geometry of the wall, as

well as the overall size (in m
2
) of glazing. To encode

the dependency between parameters, a Tree structure

is necessary.

The definition of window size parameters is not a

particularly good example because it can be easily

handled using one parameter (e.g. the glazing ratio in

DesignBuilder) with some pre-processing. However,

this example is used to explain the concept of the

Parameter Tree.

Assume that, on a 5x3m
2
 wall, the impact of glazing

area is to be evaluated. The lower edge and the height

of the window are fixed to 1.0m and 1.5m,

respectively. There are two adjustable parameters,

the left edge (x) and the width (w). The two

parameters are constrained by the width of the wall

(5m). For example, if x=2m,]3,0[∈w m. Now

consider x is varied between 1.0m and 2.0m at a step

of 1.0m; whereas w is also varied at a step of 0.5m, to

encode this without arithmetic calculations, the

following syntax have to be used: {{x=1.0, w={0.5,

1.0, …4.0}}, {x=2.0, w={0.5, 1.0, …3.0}}}.

It can be presented as part of the Tree structure in

Figure 1, i.e. P2 represents x with value {1.0}; P3

represents w with alternative values {0.5, 1.0, …4.0};

P4 represents x with value {2.0}; and finally, P5

represents w with alternative values {0.5, 1.0, …3.0}.

A traverse of the tree will give us all combinations of

the alternative values of the parameters.

Figure 1 Parameter tree and simulation job

Figure 1 illustrates the full structure of the Parameter

Tree used in jEPlus. The first three nodes in the tree,

i.e. the Group ID (identified by “G” + user-specified

integer), the IDFs (“T”) and the Weather Files

(“W”) are implicit and default to all projects.

Each simulation job is a path from the root node of

the tree to a leaf (the end of a branch) of the tree,

with each node containing an optional value of the

corresponding parameter. As a result, the total

- 1383 -

number of jobs encoded in the tree equals the total

number of paths from the root to the leaves. Figure 2

shows an example Parameter Tree defined in a

project. Each row contains the definition of a

parameter.

Figure 2 An example parameter tree

Parameter definition

A parameter to be incorporated in the parametric

analysis is specified with three essential elements, a

unique ID, a Search string, and a list of Alternative

values. The ID is short string used for identifying the

parameter. It is also used to form part of the job title

as well as the work directory name in which the job

is to be executed. The formulation of the job titles

will be further explained in the “Result collection”

section.

The Search string (or “tag”) is a character sequence

to be planted in the IDF files to identify the location

of a value to be later inserted. This string must not

naturally occur in an IDF file; therefore it is

recommended to include special characters (e.g. ‘@’)

that are not used in the standard EnergyPlus syntax.

Note that jEPlus only searches and replaces one

occurrence of a search string in each job. A user must

ensure that there is only one instance of a search

string, as well as all search strings in the IDF will be

replaced within the job. A validation facility has been

provided in the jEPlus GUI.

The “Alternative values” is a list of strings to be used

one at a time in the parametric jobs. jEPlus supports

three types of alternative values: Discrete, Integer

and Double. The syntax for specifying the list of

values is explained next. Figure 3 shows an example

of parameter definition. There are two extra fields,

i.e. “Name” and “Description”, which are recorded

in the output files for reference, but not used in the

simulation.

Figure 3 Parameter definition

Syntax for Alternative Values

For the “Discrete” type of parameters, the values can

be specified with a comma (‘,’) delimited list

enclosed in a pair of curly brackets (‘{}’), e.g.

{Detailed, Simple, CeilingDiffuser}

For the “Integer” and “Double” parameters, square

brackets (‘[]’) and union/exclusion operations (‘&’

‘^’) are accepted in addition to the curly brackets

(‘{}’). The square brackets are used to define a

number series with a uniform interval. For example,

the list {1,3,5,7,9} can be specified using [1:2:9].

Colons (‘:’) are used to separate the Start Value, the

Interval, and the End Value. Please note the last

value in the resultant list is unnecessarily the End

Value.

The union operator (‘&’) combines the elements in

two lists. For example, [1:2:5]&{2,4,6} is

equivalent to {1,3,5,2,4,6} (Note that the list is not

sorted). The exclusion operator (‘^’) removes

elements in the right-hand list from the left-hand list,

e.g. [-2:1:6]^{2,4,6} gives {-2,-1,0,1,3,5}. The

operators are processed in the left-to-right order. In

the current version, grouping with parentheses is not

supported. The following example shows the use of

all supported operations: {1}&[0:5:30]^{0}, which

results in {1,5,10,15,20,25,30}.

More Possibilities with EP-Macro

Using EP-Macro in the pre-processing step can

significantly extend the ability of jEPlus. First, it

allows replacement of IDF code blocks by using the

“##include” clause. Secondly, the “##def”

command allows a block of input text to be defined

with arguments, therefore enables associating values

at different locations with one search string. Used in

conjunction with the “##if/##elseif/##else/

##endif” and “##ifdef/ ##ifndef”, “##def” can

also be used to include multiple buildings/systems in

one input file, therefore reducing the number of IDF

files to be handled. The arithmetic functions will be

useful for calculating dependent parameters,

therefore reducing the total number of parameters to

be specified for parametric runs. EP-Macro will be

incorporated in jEPlus in the near future.

RESULT COLLECTION

It is almost impossible to develop a generic GUI for

the post-processing of the results of parametric runs.

This is mainly because each research problem will

need its own way to process and present data. As a

result, jEPlus provides only a convenient way to

transfer the (large amount of) results to another

software tool (e.g. Excel, Database, or Matlab) for

post processing.

Index files in CSV Format

Information of jobs to be executed is stored in a

series of index files in both Comma Separated Values

(CSV) and Structured Query Language (SQL)

- 1384 -

formats. The definition of each parameter is stored in

a CSV file, in which the first row contains the

column headers. Figure 3 shows an example

parameter index file. Figure 4 shows an IDF index,

which’s fields are different to other parameter’s

index files.

Figure 4 Content of a parameter index file

Figure 5 Content of an IDF index file

Figure 6 The Jobs index file

The complete list of jobs identified for the parametric

run is listed in the file named “IndexJobs.csv”.

Each job has a unique serial number (“Index”), as

well as a unique “JobName” in the form of:

G_[group num]-T_[IDF file num]-W_[Weather

file num]-[Parameter 1’s ID]_[val num]-…

Index numbers of the Group, IDF file, Weather file

and Parameter values used in each job are listed in

the same row as the JobName and the serial number.

This information can later be used to reference the

actual file names or values in the IDF/Weather and

parameter index files.

SQL File for Indexes

A SQL file will be generated for easy importing of

job indexes into database software. The commands in

the SQL file (“jobdb.sql” by default) perform the

following operations:

1. Create a new database with a user-specified

name (e.g. “EpResultDB”);

2. Use the database;

3. Create table “[prefix]_IndexIDF”. [prefix] is a

user specified string to distinguish tables for this

batch of jobs from others;

4. Insert records (list of IDF files used in the jobs);

5. Create table “[prefix]_IndexWthr”;

6. Insert records (list of Weather files used in the

jobs);

7. Create table “[prefix]_Index[Param 1’s ID]”;

8. Insert records (list of values for Parameter 1);

9. (Repeat steps 7 and 8 for all parameters)

The generated SQL commands have been tested to

work with MySQL.

Get Result Data

By default, the utility ReadVarsESO supplied with

EnergyPlus is used to extract results from the

standard output file (“eplusout.eso”). The

ReadVarsESO is controlled by the contents of

“my.rvi” file. For more information, please refer to

the Output section in the Input Output Reference in

the EnergyPlus documentation. ReadVarsESO

produces a result table in CSV format. An extra

column containing the serial number of the current

job is added to the table, which will be subsequently

renamed to “[the job’s name].csv”, and copied to

the root directory. A user can then import the files to

the database (or other software), where the results

can be accessed in conjunction with the indexes.

IMPLEMENTATION

Some details of the implementation including the

GUI are discussed bellow.

System Configuration

Minimum configuration is needed to setup the work

environment for EnergyPlus. jEPlus uses the binary

directory and commands that are default to the

operating system on which it is running. If

EnergyPlus is not installed in the default directory, a

user can manually locate the executables by pressing

the browse button.

Figure 7 System configuration

Execution Control

jEPlus is primarily designed to run parametric jobs

on the local computer, either it has a Windows or

Linux platform. The Internal Batch Controller is

designed to take advantage of the modern multi-

processor/multi-core systems. A user can specify the

number of processor cores to use for running the

parametric jobs. The batch controller will start a new

job as soon as an allocated core becomes available. A

small delay time (5,000ms by default) is inserted to

minimize the chances that several jobs start at the

same time, which may cause congestion in the file

- 1385 -

system. A batch controller for running jobs on

computer clusters is currently under development.

Figure 8 Execution control

Parametric Run Details

Figure 9 shows the basic settings for a parametric

run. A user can specify a group ID that helps identify

different batches. As mentioned before, jEPlus

allows parametric runs with multiple IDF files and

Weather files. In the current version, a user has to

select these files using the file browsers. A simple

editor is provided so the user can edit the IDF files

and the “my.rvi” file without leaving the GUI.

Figure 9 Job group configuration

Figure 10 Parameter definition

Figure 10 shows the Parameter Tree editor, in which

parameters can be defined while some commands

will help a user arrange the parameters in the tree.

The specifications of a parametric run can be saved

to or loaded from the files system. The “Validate”

command generates the list of jobs from the

parameter tree. Checks are carried out during the

compilation. The user is prompted for the total

number of jobs to be executed if validation has been

successful, upon which the “Start Simulation”

command is enabled.

EXPERIMENT

A simple experiment was carried out to demonstrate

the use of jEPlus. We were also interested in how

different simulation algorithms and options may

affect the computing time. The DOE Benchmark

Commercial Building (Deru et al, 2008), the model

of a 47-zone secondary school, was used to run

annual simulation. The parameters considered

include following:

1. Solution algorithm – choice between Conduction

Transfer Functions (CTF) and Conduction Finite

Difference (CondFD)

2. Inside and outside convection algorithms –

Detailed, simple or CeilingDiffuser

3. Shadow update interval – 1 to 30 at step of 5

4. Time steps in hour – 2/4/6 for CTF, 20/40/60 for

CondFD.

There are total 189 jobs with CTF algorithm, and 189

jobs with CondFD algorithm. The CTF jobs were ran

on both a dual-core desktop PC and a 256-core

cluster. The CondFD jobs were only run on the

cluster. Only simulation time was collected from the

results.

Table 1

Computing times

CondFD jobs

(189)

PC

Core2D E6600

2 cores

2 threads

Cluster

Xeon E5440

256 cores

upto 128 threads

Cluster

Xeon E5440

256 cores

upto 128 threads

Mean 0.72 1.24 6.01

SD 0.05 0.14 1.84

Sum 135.47 230.70 1120.64

68.45

(-49.5%)

8.20*

(-96.4%*)

15.90*

(-98.6%*)

CTF jobs

(189)

Time (hr)

Batch

(time saved)

Job

* The CTF jobs and the CondFD jobs are submitted at the
same time to the Cluster. The total computing hours are
counted from the time of submission to the completion of the
last job in the group. ’15.90hrs’ is also the total time for all
jobs on the Cluster.

Table 1 shows a summary of the simulation times,

where “job” stands for one simulation; “Batch”

includes all simulation runs in the category. The

mean and standard deviation of the CPU time (hours)

required by the jobs are shown in the first two rows.

The sum of CPU core-hours for all jobs is listed in

the third row. Since the jobs in a batch are ran in

parallel, the actual time required to complete the

execution of a batch is significantly less than the total

CPU-hours.

To perform a single simulation, the PC required only

60% of the time required for the cluster, despite the

slightly lower CPU speed (2.4GHz vs. 2.66GHz).

This may be a result of the overhead associated with

the communications between the nodes of the cluster.

As a batch, however, the speed increase achieved on

the PC by running more jobs at once is almost linear

to the number of cores employed. On the cluster,

running 128 threads in parallel achieved 85 times

- 1386 -

speed boost. Although the ratio is lower than that

achieved on the PC, the cluster has nevertheless

finished 378 jobs in 15.9 hours, which would

otherwise take nearly 2 months if executed in a single

thread.

0

1000

2000

3000

4000

5000

6000

7000

1 31 61 91 121 151 181

Jobs

C
P

U
 t

im
e
 (

s
)

CTF jobs on Desktop PC (E6600 2.4GHz)

CTF jobs on Cluster (E5440 2.83GHz)

Figure 11 CPU times for the jobs

Figure 11 shows the computing time of each job on

the PC and the cluster. On the PC, a tight pattern is

observed, in which jobs are roughly grouped in three

rows that represent 2, 4 and 6 time steps in an hour,

respectively. Slight inverse correlation between the

job number and the computing time is directly

visible, too. The job numbers are primarily ordered

by Inside Convection Algorithm (“Detailed”,

“Simple”, “CeilingDiffuser”), and secondarily

ordered by Outside Convection Alogrithm

(“Detailed”, “Simple”, “CeilingDiffuser”).

No clear pattern of computing times is observed on

the cluster. This may be attributed to the existing

loads on the cluster nodes. At the time of the

experiment, half of the processor cores (128) have

already engaged to other jobs. The computing time of

each EnergyPlus job was dependent on the type and

characteristics of other jobs running on the same

node.

Despite the noises, correlations are still observed

statistically between the choices of the Inside Wall

Convection Algorithms, Shadow Update Interval and

Time Step in Hour, and the computing time. Figure

12 shows the 50-point moving average of the option

numbers (e.g. 0-2 for Convection Algorithm and

Time Step; 0-6 for Shadow Update Interval) against

computing time on the x-axis (expressed as percent

increase based on the shorted run). The computing

time shows a positive relation to the options of Time

Steps in Hour, whereas negatively correlated to the

options for the Convection Algorithm and the

Shadow Update Interval.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0% 10.0% 20.0% 30.0%

Excess computing time

M
e

a
n

 o
p
ti
o

n Shadow update interval

Inside wall convection algorithm

Time step in hour

Figure 12 Correlation between CPU time and

parameters

DISCUSSION

In this paper, we presented the development of a Java

shell (jEPlus) for EnergyPlus. jEPlus is designed to

assist building researchers preparing and executing

parametric runs with EnergyPlus. Some useful and

distinctive features have been implemented. Firstly,

the parameters are organized in a Tree structure,

which makes it possible to define complex

dependencies between parameters. Secondly, the

simulation results can be collected in both CSV

tables and databases with associated indexes for the

IDF files, the Weather files and the Parameter values.

jEPlus also provides a Batch Job Controller that can

take advantage of the modern multi-core computers.

The software tool is completely written in Java and

works on multiple platforms.

More features have been identified for future

implementation. One of such opportunities is to make

use of the EP-Marco utility, which’s pre-processing

functions, may substantially extend the ability of

jEPlus.

REFERENCES

DesignBuilder Software Ltd. (2009) “DesignBuilder

Features”, http://www.designbuilder.co.uk/

content/ view/ 6/14/

Deru, M.; Griffith, B.; Long, N.; Benne, K.;

Torcellini, P; Halverson, M.; Winiarski, D.; Liu,

B.; Crawley, D. (2008). “DOE Commercial

Building Resarch: Benchmarks for Commercial

Buildings.” Washington, DC: U.S. Department

of Energy, Energy Efficiency and Renewable

Energy, Office of Building Technologies.

- 1387 -

EERE, (2009) “EnergyPlus Energy Simulation

Software”, http://apps1.eere.energy.gov/

buildings/ energyplus/

EERE, (2008) “EnergyPlus Auxiliary Programs

Manual”, http://apps1.eere.energy.gov/ buildings/

energyplus/ pdfs/auxiliaryprograms.pdf

EERE, (2002) “Third-Party EnergyPlus Tools -

EzPlus-Parm”, http://apps1.eere.energy.gov/

buildings/ energyplus/ third_party_tools.cfm

#drawezplus

LBNL Windows and Daylighting, (2009) “COMFEN

2.0 Beta”, http://windows.lbl.gov/ software/

comfen/ 2/

LBNL, (2008) “GenOpt – Generic Optimization

Program”, http://gundog.lbl.gov/GO/

- 1388 -

