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ABSTRACT

The purpose of this study is to develop a design 
support tool by combining a thermal environment 
simulation with a luminous environment simulation 
for urban outdoor and semi-outdoor living spaces. In 
order to evaluate thermal and luminous environments 
in parallel, a radiation transfer simulation algorithm 
with high-resolution mesh model was developed. 
The results of the application to an area containing 
membrane structure buildings confirmed that this 
simulation tool is capable of examining this trade-off 
between thermal and luminous environments.

INTRODUCTION

In recent years, the deterioration of the thermal 
environment in the urban areas of Japan has resulted 
in an increase in heat prostration victims during 
the summer. One of the methods of creating a 
comfortable thermal environment is by blocking 
solar radiation with trees, eaves, or membrane 
roofs. While solar shading provides a comfortable 
thermal environment, it also creates dark spaces. 
Thus, in order to create a thermal and visual comfort 
at outdoor living space, it is important to develop a 
simulation tool that is capable of examining the trade-
off between thermal and luminous environments 
when planning urban blocks and designing buildings.

Some reseachers have coupled daylighting and 
thermal simulation for indoor environment(e.g. 
Franzetti et al., 2004). In order to evaluate luminous 
environment in outdoor space, Miguet(2002) was 
developed daylight simulation tool for urban and 
architectural spaces. And, ENVI-met (Bruse et al., 
1998) is a three-dimensional microclimate model 
designed to simulate microscale interactions between 
urban surfaces, vegetation and the atomsphere in an 
urban environment. However, only few attempts have 
so far been made at coupling luminaous environment 
simulation and thermal simulation for outdoor living 
space.

The thermal design tool for use in outdoor spaces 
is based on a heat balance simulation that was 

developed by author’s group (Takashi A et al., 2008). 
This tool allows designers to simulate the surface 
temperature distribution of urban blocks while taking 
into consideration the actual design of the urban 
areas, including the buildings, the landscape and 
surrounding vegetation. Using this thermal design 
tool, the mean radiant temperature (MRT) distribution 
of an urban outdoor living space can be calculated.  
However, the MRT distribution calculated by this tool 
only evaluates the influence of long wave radiation. 
Recently, materials with high solar reflectance as well 
as translucent materials have been in use in building 
construction. These materials make it possible to 
deteriorate thermal comfort because solar radiation is 
incident to human bodies. Thus, the MRT distribution 
should be computed including influence of not 
only long wave radiation but also solar radiation. 
Furthermore, the influence these materials have on 
the luminous environment needs to be clarified.

In the present study, we propose a simulation tool that 
can predict the horizontal illuminance distribution as 
well as the distribution of MRT by considering solar 
radiation. We developed this tool in order to evaluate 
luminous and thermal environments in parallel.

DEVELOPMENT OF THE SIMULATION 
ALGORITHM

Outline of this simulation tool

In order to develop a practical simulation tool which 
don't require expert knowlege, the input and pre-
processing method of this tool were developed 
using the featres of the 3D-CAD system and the 
GUI. The CAD models made using above system 
are then transformed into a 3D-voxel mesh model 
that includes the calculation parameters required 
for thermal and lumious environment simulation. 
Thermal and  lumious environment simulation were 
carried out. In the post-process of this system, the 
result of surface temperature distribution are visually 
projected onto the 3D-CAD model generated in 
the pre-process. And horizontal illuminance and 

 

Eleventh International IBPSA Conference 
Glasgow, Scotland 

July 27-30, 2009 

- 1268 -



mean radiant temperature distribution also depict 
on the 3D-CAD. Figure 1 shows the flow of this 
simulation tool. Detailed account of the algorithm 
was mentioned below.

Reproduction method for spatial geometry and 
material position on buildings and the ground

It was necessary to reproduce spatial geometries and 
material positions because these factors have an effect 
on the thermal radiation and luminous environments 
of outdoor living spaces. To accomplish this, the 
following steps were taken:

1. The target spatial geometry including buildings, 
materials used, positions and the surrounding 
landscape were recreated by 3D-CAD.

2. The CAD models created above were then 
transformed into a three-dimensional 3D- 
voxel mesh model that included the calculation 
parameters required for radiative analysis and 
heat transfer analysis. The voxel mesh size was 
set at 0.2 m in order to reproduce detailed outdoor 
spatial geometry (Figure 2).

3. The calculation parameters (material properties, 
such as optical reflectance, solar reflectance, 
volumetric specific heat and normal direction of 
the surface, etc.) were entered at each point in the 
3D-voxel mesh (Figure 3). 

Weather conditions

In order to evaluate thermal environment and 
luminance environment in parallel, it is important to 
use the same weather data when calculating thermal 
and luminous environments. Thus, in this study, 
direct sunlight illumination and skylight illumination 
were computed multiplying the direct solar radiation 
and sky solar radiation by luminous efficacy which 
was suggested by Igawa (Norio I et al., 1999).

Illuminance calculation method

The simulation tool developed for this study evaluates 
luminous environments by observing horizontal 
illuminance. The reference point was1.5 meters 
above ground level. In order to estimate horizontal 
i l luminance, direct i l luminance and indirect 
illuminance needed to be calculated (Figure 4).

1) Direct illuminance

(i) Direct sunlight illuminance

Direct sunlight illuminance was simulated by a 
ray-tracing method. In this method, the ray-tracing 
starting reference point and the tracer extends upward 
to the solar position. Direct sunlight illuminance was 
allotted to any point if the ray being traced was not 

Fig.9 Schematic diagram of the mesh model generation 
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blocked in the calculation area.

(ii) Skylight illumination

Skylight illuminance was computed taking into 
account sky luminance distribution. In this study, 
sky luminance distribution was calculated by the All 
Sky Model (Norio I et al., 2004). The multi-tracing 
simulation calculated skylight illuminance from 
the reference point towards multiple hemispherical 
directions. The tracing direction is established in a 
way that allows the tracing density to have the same 
configuration factor (Figure 5, Formula (1)).  Skylight 
illuminance was estimated by aggregating the sky 
luminance obtained at the upper boundary surface 
that the tracers could reach. 

2) Indirect illuminance

In order to compute indirect illuminance at the 
reference points, it was necessary to calculate 
luminous emittance of buildings and ground surfaces. 
The calculation algorithm used was as follows:

( i )Direct  sunl ight  i l luminance and skyl ight 
illuminance on building and ground surface

Direct illuminance on buildings and ground surfaces 
was estimated in the same manner as direct sunlight 
illuminance and skylight illuminance was at the 
reference points discussed above. That is, direct 
sunlight illumination on buildings and ground 
surfaces was estimated by the ray-tracing method 
while the multi-tracing simulation computed skylight 
illuminance

(ii) Reflected sunlight illuminance on building and 
ground surface

The illuminance received by buildings and ground 
surfaces due to reflected sunlight that was simulated 
by this method included both specular reflection and 
isotropic diffuse reflection. Both of these reflections 
considered the third reflections. 

Specular reflective sunlight was calculated in such 
a way that the tracing simulation that extends in the 
direction of the specular reflection was implemented, 
and the luminance was allotted to any point in the 
mesh that the tracing could reach. Diffuse reflective 
sunlight was estimated based on the assumption 
of isotropic diffuse reflection, following Lambert's 
cosine law, and the illuminance that a mesh receives 
was calculated by performing the multi-tracing 
simulation toward the surrounding meshes. 

The method used for the multi-tracing simulation was 
the same as that used for the skylight illuminance 
estimation. In this tracing process, if a ray tracing 
hit a mesh that had a diffuse reflection surface, the 
luminance of the reflected light of the mesh was 
obtained. This ray tracing method was implemented 
for multiple directions in order to estimate the total 
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ground surfaces

Transmitted sunlight was calculated by the same 
method as the diffuse reflective light. In this process, 
if a tracing hit a mesh that had a transmitted surface, 
the luminance of the transmitted sunlight of the mesh 
was obtained. The multi-tracing simulation toward 
the surrounding meshes was implemented in order to 
determine the meshes effected, which are then used 
to estimate the luminance from the surroundings. The 
multi-tracing simulation method used was basically 
the same as the method used for the estimation of the 
diffuse reflective sunlight. 

3) Indirect illuminance at the reference point at 1.5 m

The illumination of buildings and ground surfaces 
was calculated by integrating the luminance that 
was estimated using the above method. Luminous 
emittance received by buildings and ground surfaces, 
which was computed by multiplying the illuminance 
by the reflectance and transmittance of the surface, 
was allotted to the mesh.

In the next step, indirect illuminance at the reference 
point was estimated by the multi-tracing simulation, 
which is the same method as that used to calculate 
skylight simulations and diffuse reflected sunlight. 
This tracing was implemented for multiple directions 
in order to estimate the total amount of indirect 
illumination received from the surroundings.

Optimum number of tracers in the multi-tracing 
simulation

The increase in the number of tracers in the multi-
tracing simulation used in estimation of skylight 
illuminance as well as the indirect illuminance of 
building and ground surfaces and the horizontal 
illuminance at reference plane allowed computation 
of more accurate results. However, the multiple 
factors also caused the calculation load to increase. 
Thus, it was important to determine the optimum 
number of traces for practical use. Therefore, the 
relationship between the number of tracers in the 
multi-ray-tracing simulation and the calculation 
accuracy using horizontal illuminance was examined.

The root mean square error (RMSE) was used as 
the calculation accuracy index (Formula (2)). The 
maximum number of tracers set as the standard for 
this investigation, was over 16,000.

Figure 6 shows the relationship between the 
number of tracers and the RMSE of the horizontal 
illumination for all the reference points in the 
calculation area. As the number of tracers increased, 
the value of the RMSE decreased. However, 
the difference in the RMSE was small when 
approximately 446 tracers were used. When 446 
tracers were applied, the RMSE value was less than 

100lx. This result confirmed that optimum number 
of tracers for this multi-tracing simulation was more 
than 450.

Calculation method for mean radiant temperature 
taking into account solar radiation

In this tool, mean radiant temperature taking into 
account solar radiation (MRTsolar) was used as an 
index for the thermal radiant field. The calculation 
method was as follows.

1)  Human body model for calculating MRT

In order to calculate the budget of incident radiation 
to a human body located at an outdoor space, the 
following two features were considered:

1.  Direct solar radiation is parallel beam. 

2. Sky solar radiation, reflected solar radiation, 
atmospheric radiation and long wave radiation 
were in a radial pattern.

Therefore, in this calculation method, the following 
human body model was used (Figure 7).

(i)   Human body model for direct solar radiation

The direct solar radiation area received by a human 
body was needed to calculate the budget of incident 
direct solar radiation applicable to human bodies. 
For this calculation method, The direct solar 
radiation area (formula (4)), which was suggested 
by Underwood (Underwood C.R. et al., 1966), was 
employed.

Figure.6  Relationship between the number of tracer 
and RMSE of illuminance
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(ii) Human body model for sky solar radiation, 
reflected solar radiation, atmospheric radiation, 
and long wave radiation

The form factors from a human body to surrounding 
buildings and ground surfaces were needed in order 
to calculate the budget of incident radiation, except 
for direct solar radiation. There have been many 
studies that have examined the form factor from 
the human body to surrounding subjects. In Ozeki’s 
method (Yoshichi O et al., 2003), which was used in 
our calculation, the human body was represented by 
a micro-cube. The relationship of form factors from a 
human body to objects was expressed by the surface-
weighting factor on the micro-cube.

2) Calculation method of MRTsolar

Figure 8 shows a flow chart of this calculation 
method. The height of evaluation point was set at 1.5 
meters.

(i)  Calculation method of solar radiation

a)  Direct solar radiation

The budget of incident solar radiation to a human 
body was simulated by the ray-tracing method. If the 
ray tracing was not interrupted by obstructions in the 
calculation area, the budget of direct solar radiation 
that the human body received was then allotted.

b) Sky solar radiation

The budget of incident sky solar radiation was 
calculated by the same basic multi-tracing simulation 
that was used for the estimation of skylight 
illuminance. The sky radiance distribution was 
considered for computing sky solar radiation. The 
sky radiance distribution was estimated by All-Sky-
Model-R(Norio I et al., 2004).

c) Refl ected solar radiation

The simulated refl ected solar radiation included both 
specular reflection and isotropic diffuse reflection. 
The calculation method on the each micro-cube 
surface was the same as that used for indirect 
illuminance.

(ii) Calculation method of long wave radiation

a) Atmospheric radiation

The budget of atmospheric radiation received by the 
surface of micro-cube was estimated by multiplying 
the sky view factor and the budget of atmospheric 
radiation, which was calculated by Brunt’s formula 
for unobstructed sky.

b) Long wave radiation from the surroundings

The surface temperature distribution of buildings 
and ground surfaces that was needed to calculate 
the budget of incident long wave radiation from the 
surroundings into the micro-cube was simulated 
by Asawa’s method (Takashi A et al., 2008). When 
calculating surface temperature, convective heat 
transfer was calculated under the assumption that 
there was no distribution of air temperature and 
wind velocity in the subject urban canopy and one-
dimensional heat conduction was simulated.The 
multi-tracing simulation toward the surrounding 
building and ground surface meshes was implemented 
in order to determine the meshes used to estimate the 
radiant fl ux from the surroundings. The method of the 
tracing simulation was the same as that used for the 
estimation of diffuse refl ective radiation.

(iii) Calculation of MRT taking into account solar 
radiation

The incident radiation to human body was calculated 
by the formula (5) in Figure 8, and mean radiant 
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temperature was then simulated by formula (6). 
The solar absorptivity and long wave emittance of 
a human body is discretionary. In this paper, solar 
absorptivity was set at 0.7 and long wave emittance 
was set at 1.0.

SIMULATION TOOL APPLICATION

In order to confirm the applicability of this simulation 
tool to the purpose of thermal and luminous design of 
semi-outdoor spaces, it was applied to a commercial 
structure that consisted of semi-outdoor spaces under 
a membrane roof (Figure 9). The membrane was 
constructed of a light, solar-radiation-transmissive 
material. In this situation, a high-transmissive 
membrane roof would form a bright space, but also 
an uncomfortable radiation field. On the other hand, a 
low-transmissive membrane roof would form a dark 
space, but more comfortable radiation field. 

Calculations were performed for two different 
scenarios .  In  the f i rs t  scenario,  the opt ical 
transmittance and solar transmittance of the 
membrane roof was set at 0.10, 0.09 (Case 1). In Case 
2, the optical transmittance and solar transmittance 
of the membrane roof was set at 0.20, 0.18 (Table 
1). Table 2 gives the reflectance of main constituent 
materials of building and ground. The weather 

conditions used in both calculations were that of a 
summer day with clear skies in Tokyo (Figure 10).

1) Luminous environment

Figure 11 shows a horizontal illuminance distribution 
at 1200. The horizontal illuminance at point A under 
the membrane roof for Case 1 was 6500 lx. The 
surrounding buildings resulted in 1/15 less horizontal 
illuminance than the illuminance experienced at an 
outdoor space (10,000 lx), even though the value 
of membrane transmittance was 0.1. On the other 
hand, the horizontal illuminance at point A for Case 2 
was 12,000 lx due to high transmittance level of the 
membrane roof.

2) Thermal environment

Figure 12 depicts the surface temperature distribution 
from viewpoint B. The difference of surface 
temperature at ground level between Case 1 and Case 
2 was 3 °C and, the difference of surface temperature 
at the building wall was 2°C. 

Figure 13 shows the MRTsolar distribution at a 
height of 1.5 m for Case 1 and Case 2. The MRTsolar 
condition under the membrane roof for Case 1 was 
40°C, which is approximately 25°C lower than that in 
areas exposed to direct solar radiation. On the other 
hand, the MRTsolar condition under the membrane 
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Figure 8  The flow chart of MRT calculation
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roof for Case 2 was approximately 8°C higher than 
that for Case 1 due to the high solar transmittance of 
the membrane roof for Case 2.

These results revealed that the tool was capable 
of simulating the effects of building shapes and 
materials on the horizontal illuminance and MRTsolar 
distribution, and could be used to study the trade-
off between luminous and thermal environments in 
practical semi-outdoor designs. 

 CONCLUSIONS

In this paper, we described a simulation tool that is 
capable of predicting the horizontal illuminance and 
mean radiant temperature by taking into account 
solar radiation at outdoor and semi-outdoor living 
space. In order to allow consideration of detailed 
outdoor spatial geometry as well as material positions 
and types, a radiation model algorithm with a 
high-resolution mesh model was developed and a 
method of multi-tracing simulations for horizontal 
illuminance was examined.

The results of applying this tool in a semi-outdoor 
space revealed that it was capable of simulating 
the effects of building shapes and materials on the 
horizontal illuminance as well as the MRTsolar 
distribution, and that it could be used to study the 
trade-off between luminous and thermal environments 
in parallel.

When evaluating luminous and thermal environments 
in the the indoor space, objects existing in outdoor 
and semi-outdoor, such as trees standing beside 

window,   influence indoor thermal and visual 
comfort. Thus, In future work, a passive design tool 
will be developed that will be capable of evaluating 
the luminous and thermal environments in indoor 
space by combined with this simulation tool.

REFERENCES

Christelle Franzetti, Gilles Fraisse, Gilbert Achard, 
2004. Energy and Buildings Volume 36, Issue 2, 
pp.117-126

Francis Miguet, Dominique Groleau, 2002. Building 
and Environment, Volume 37, Issue 8-9,pp.833-
843

Bruse Michael, Fleer Heribert, 1998. Environmental 
Modeling and Software, Volume 13, pp.373-384

Ta k a s h i  A s a w a  ,  A k i r a  H o y a n o ,  K a z u a k i 
Nakaohkubo, 2008. Building and Environment, 
Volume 43, Issue 12, pp.2112-2123

Norio Igawa , Sachiyo Shimasaki, Hiroshi Nakamura, 
1999.J. Environ. Eng., AIJ, No. 526, pp.17-24

Norio Igawa,  Yasuko Koga, Tomoko Matsuzawa, 
Nakamura Hirohi, 2004. Solar Energy Volume 
77, Issue 2,  pp.137-157

Underwood C.R. and Ward E.J.: The solar radiation 
area of man, ERGONMICS, vol. 9, No. 2, pp. 
155-168.1966

Yoshiichi Ozeki, Tetsuya Hiramatsu, Shin-ichi 
Tanabe,  2003. J. Environ. Eng., AIJ, No. 566, 
pp. 47-50

- 1275 -




