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ABSTRACT 
This paper demonstrates a systematic approach 
towards exploring the impact of urban built form and 
the heat island effect on the levels of domestic energy 
consumption in London. The study combines GIS 
databases and a modified version of the Standard 
Assessment Procedure (SAP) algorithm in order to 
estimate the space heating demand of urban domestic 
energy users. The output data is aggregated to the 
Middle Layer Super Output Area (MLSOA) level. 
External air temperatures in various locations across 
London were predicted as part of the London Site 
Specific Air Temperature (LSSAT) model 
development. This data was used as input to the 
energy use calculation model. Comparison of the 
model output for 95 case study areas with top-down 
energy statistics at MLSOA level demonstrated that 
the model ranks areas based on their domestic energy 
demand with relative success. 

INTRODUCTION 
Predicting the baseline domestic stock energy 
demand at an urban scale can play a significant role 
in the CO2 emission reduction strategies in the UK by 
identifying local level emission patterns and spatial 
relationships. In addition to the UK national target to 
cut emissions by 80% by 2050 (HMG 2008), the 
Mayor of London Climate Change Action Plan 
(MOL 2007) set the challenging target to reduce the 
London CO2 emissions by 60% by 2025. London is 
one of the most populated cities in the developed 
world and one of the fastest growing cities 
worldwide. As of 2005, a population of 7.5 million 
people was occupying more than 3 million household 
spaces (ONS 2009). Approximately 8% of UK CO2 
emissions are produced in London, corresponding to 
44 million tonnes of CO2 annually (excluding 
aviation). Based on the projected rates of population 
and economic growth, a 15% increase in emissions is 
predicted, raising its annual emission rate to 51 
million tonnes by 2025, if no action to tackle climate 
change is taken (MOL 2007).  
Approximately 38% of the total of delivered energy 
in London is associated with domestic energy use. 
More than half of that amount (54%) is attributed to 
space heating (MOL 2007). It is well understood, 
therefore, that significant savings could be achieved 

in the domestic building sector. Importantly, the 
thermal performance of building envelopes is 
predefined largely by existing buildings. In the UK, 
as in most post-industrial countries, the existing 
building stock is characterized by long physical 
lifetimes and low turnover rates of approximately 1% 
per annum (DCLG 2006).  
In the UK context, many tools have been developed 
as an attempt to predict the baseline energy demand 
of the existing domestic stock under different 
scenarios (Johnston et al. 2005, Shorrock and 
Dunster 2006, Boardman 2007, Natarajan and 
Levermore 2007). The main calculation algorithm 
integrated in the majority of the models is based on 
the Building Research Establishment Domestic 
Energy Model (BREDEM). BREDEM is the most 
widely used and extensively validated model for the 
calculation of space heating in the UK (Anderson et 
al. 1985). Its full version requires a large amount of 
data input. This data could be obtained by on-site 
surveys, but these tend to be costly and time-
consuming. As a result, Geographic Information 
Systems (GIS) tools in conjunction with built-in 
inference databases have been commonly used in 
recent years in order to facilitate the acquisition of 
building-specific data without the need of visual 
inspection of the properties (Rylatt et al. 2003, Gupta 
et al. 2006, Jones et al. 2007). 
This paper outlines the conceptual framework, the 
methodology and initial findings of a GIS-based 
domestic energy modelling approach. The research 
work is attached to the ‘Local Urban Climate Model 
and its Application to the Intelligent Design of 
Cities’ research project (LUCID 2009). The principle 
objective of the present study is the development of a 
Domestic Energy Use Urban Profiling Tool for 
different levels of the urban hierarchy system (i.e. 
local, intermediate and citywide).  

METHODS 
Level of data aggregation 
Data relating to the plan form of dwellings was 
extracted from digital maps. Individual building 
properties were also inferred from reduced datasets 
as a function of the building age and type. In 
addition, London local temperature data was 
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provided at a high spatial resolution by the London 
Site Specific Air Temperature (LSSAT) model.  
It should be noted at this point, however, that the 
model output is restricted to an aggregated level of 
approximately 3,000 households rather than at the 
individual building level where the accuracy would 
be open to significant variation. Its main aim is to 
plot the spatial distribution of domestic heat demand 
across London rather than produce accurate estimates 
of actual energy consumption for individual 
properties. It could potentially form a flexible tool for 
urban modellers, planners and energy policy makers 
in order to investigate the effect of climate change 
and the heat island phenomenon on domestic energy 
use within a reduced level of disaggregation. 
The model presented in this paper builds on previous 
work on GIS data extraction methods with reduced 
datasets. Despite the fact that data was derived from 
the digital maps at individual building level, the 
model output estimates have been aggregated to the 
Middle Layer Super Output Area (MLSOA) level. 
MLSOAs were first introduced by the Office for 
National Statistics (ONS) as Census output areas in 
2001. They have a relatively consistent population 
size (minimum 5,000, mean 7,200). They are 
constrained by Local Authority boundaries and they 
are not subject to frequent border re-arrangement 
(ONS 2005). This level of output data aggregation 
was chosen in the present study for the following 
reasons:  
(a) It is the minimum level of aggregation for which 
top-down London statistics are publicly available, 
including gas and electricity consumption data 
(DBERR 2009) as well as social profile data (ONS 
2009).  
(b) The level of inaccuracy tends to increase when 
aggregated building stock characteristics are assigned 
to individual dwelling units. As a result, the 
statistical interpretation of the model output would 
potentially be prone to the so-called ‘ecological 
inference fallacy’ (Openshaw 1984). This is a widely 
recognized error in ecological studies when the unit 
of analysis is groups of spatial entities rather than 
individual entities. In that case, the association that 
exists between variables at an aggregate level may 
not represent the true association that exists at an 
individual level.  
(c) In addition, no meaningful results for individual 
units would be produced due to the inherent 
limitations of the BREDEM-type model i.e. it would 
be impossible to take into account individual 
occupant schedules and behaviour.  
Therefore, it is not claimed that the model is able to 
predict accurately the actual energy consumption of 
individual dwellings. However, there is considerable 
value in applying such a methodology in order to 
capture the ranking of energy consumption of urban 
domestic users at an intermediate aggregated level.  

Geographic data 
The main GIS database used was the Greater London 
Area MasterMap Topography Layer, an extensively 
validated digital map provided by the Ordnance 
Survey (OS 2009).  Every geographic feature in the 
map is represented by a polygon and a unique 16-
digit code, the TOpographic IDentifier (TOID). The 
Topography Layer includes a rather crude land cover 
and land use classification system that distinguishes 
between natural and human surfaces, as well as 
residential and non-residential areas. By applying an 
automated script, each polygon was divided into 
individual properties by making use of the Address 
Point Layer 2, a set of points representing postal 
addresses and individual households in the case of 
multiple occupancy. It was assumed that the floor 
space area is equally divided between the address 
points contained within each polygon and that the 
resulting floor space area per address point is equally 
divided between the households contained in each 
address point. 
The OS MasterMap Topography Layer was 
subsequently merged with the Cities Revealed 
database (Cities Revealed 2009), a commercial 
geographic image product. As an additional feature, 
the Cities Revealed Topography Layer polygons of 
domestic buildings are classified to 8 different age 
bands and 18 built form categories. The data was 
derived by a combination of aerial photography 
interpretation and on-site surveys. Height 
information for each polygon is also provided, based 
on ‘Light Detection and Ranging’ (LiDAR) surveys 
and other height data sources. Full data is currently 
provided only for a limited area of the OS 
MasterMap for London (covering the 349 MLSOAs 
shown in Figure 1). The results obtained from a trial 
run of the program in 95 MLSOAs (approximately 
267,000 households) are showcased in the present 
paper.  
 

 
 

Figure 1 The Middle Layer Super Output Areas 
(MLSOA) data input to the model 
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The subset of these case study MLSOAs was selected 
according to the following criteria: 
(a) Complete age and building type data was 
available for all building polygons within the 
MLSOA boundary. 
(b) The MLSOAs were spread across the Greater 
London Area in order to form a representative 
sample of the existing domestic building stock and 
allow any heat island effects to be examined. 
By applying a set of GIS algorithms, information on 
the footprint area, overall structure height, age band 
and built form was extracted for each polygon. In 
addition, the GIS processing method incorporated a 
series of formulae included in a model for estimating 
the external dimensions of UK dwellings when only 
a limited number of characteristics are known 
(Chapman 1994). BREDEM geometric data input 
parameters such as the average room height, the 
glazing ratio, the roof type and the form of the 
dwelling (i.e. detached, semi-detached or terraced) 
were thus estimated as a function of its age and 
building type.  

An inference look-up table was built through the 
statistical analysis of the 2005 English House 
Condition Survey (EHCS) data (DCLG 2005). 
Ideally, this data would have been provided at Local 
Authority (LA) or Government Office Region (GOR) 
level. Unfortunately, however, the EHCS is based on 
a small sample of surveyed dwellings (approximately 
16,600) that is aggregated to the national level. The 
sample would be too small at a local level to carry 
out any meaningful analysis. In addition, households 
that take part in the survey are assured anonymity 
and therefore no geographical indicators are released 
as part of the public dataset. Thus, it was not possible 
to extract the regional data from the database at this 
stage of the study. Consequently, the national level 
database was used. The predominant value of a series 
of building fabric and fuel systems characteristics 
was derived for each combination of age and 
building type. At a further stage, this data was 
assigned to each building polygon in the digital maps 
based on its age and type classification. 

The London Site Specific Air Temperature Model 
The input of localized data on Heating Degree Days 
(HDD) to the BREDEM calculation algorithm is an 
innovative element of the present study. This data 
was predicted using the London Site Specific Air 
Temperature (LSSAT) model (Kolokotroni et al. 
2009) which comprises of a suite of Artificial Neural 
Network (ANN) models to predict site-specific 
hourly air temperature within the Greater London 
Area (GLA). The model was developed using a back-
propagation ANN model based on hourly air 
temperature measurements at 77 fixed temperature 
stations and hourly meteorological data from 
Heathrow; the field measurements on which the 
LSSAT model is based were carried out in 80 

locations (77 of which recorded sufficient data) 
covering eight transects as shown in Figure 2. A 
detailed description on measurement locations is 
presented in the research work done by Watkins 
(2002) and Kolokotroni et al. (2006). At all these 
locations, hourly basis data was collected for 18 
months in 1999 and 2000 using Tinytalk loggers 
mounted on lamp posts at a height approximately 6 m 
above the ground. The Tinytalk was placed inside a 
white painted solar shield. 
 

 
 

Figure 2 The eight transects of the LSSAT model in 
the Greater London Area 

 
As part of the LUCID project, data was measured 
seven years later from the original dataset that 
includes new urban locations in order to test the 
temporal and spatial validity of the model.  The 
LSSAT model was used to predict air temperature at 
the reference site (Langley Park) and one of the core 
sites in Central London (Montague Street) in October 
1999 and 2007. This is a month that measured values 
are available for both sites. Heathrow meteorological 
station weather data required by the LSSAT model is 
also available for the same month. The correlation 
coefficient of measured and predicted temperatures 
are 0.97 (1999) and 0.88 (2007) for the Langley Park 
site and 0.94 (1999) and 0.82 (2007) for the 
Montague Street site.  These results are as expected; 
the correlation between measured and predicted 
values is high in 1999 because this is the period used 
for training of the LSSAT model.  The correlation in 
2007 is lower for both sites, stronger for the Langley 
Park site, which is a rural site and therefore not 
affected by urban processes.  It is also acceptable for 
the core urban site (Montague Street) which is mostly 
affected by urban processes.    
As indicated by further analysis (Kolokotroni et al. 
2009), site specific hourly air temperature prediction 
is within accepted range and improves considerably 
for average daily and monthly values.   Thus, LSSAT 
predictions are particularly useful to calculate 
monthly and annual HDD. A comparison was made 
with HDD calculated for measured air temperature 

- 1063 -



during January 2000 (these was available for 54 
measurement locations, as data was missing for the 
rest). The correlation coefficient is 0.9988 for the 54 
locations where comparison of predicted and 
measured HDD was possible, indicating almost 
perfect agreement.  The annual HDDs calculated 
(September 1999 to August 2000) are presented in 
Figure 3. The calculated HDDs for Heathrow for the 
period considered is 1776 annual; the long-term 
average HDDs for Heathrow (CIBSE 2006) is 1731 
annual indicating that the period examined here is not 
unusual.  
The LSSAT model can be very useful in the 
calculation of HDDs for any base temperature across 
London using any Heathrow weather file for a 
specific year, design years or future climate years; 
such values can be used for the calculation of site-
specific building heating and cooling loads.   
 

 
 

Figure 3 Predicted annual Heating Degree Days 
(HDD) for base temperature 15.5 oC calculated from 

September 1999 to August 2000,  
divided into the eight LSSAT transects 

 
In the trial run of the model presented in this paper, 
each building polygon was assigned the localized 
HDD value of the nearest LSSAT measurement site. 
Nonetheless, it should be kept in mind that distance 
is not the only parameter to explain the variation in 
air temperature. A number of key microclimatic 
factors such as albedo, heat capacity and geometric 
characteristics of the surrounding area are expected 
to have a marked effect on the heat island intensity. 
The model will be further refined in the future in 
order to include these parameters. 

The Parametric Domestic Energy Model 
This data was finally fed into the Parametric 
Domestic Energy Model (Lowe et al. 2008), a 
modified version of the Standard Assessment 
Procedure (SAP) 2005 algorithm which is based on 
the annual version of BREDEM-9. The following 
modifications were made to the original spreadsheet: 
(a) The default table that expresses annual HDDs as a 
function of base temperature contained in SAP was 
substituted by annual HDDs calculated for Heathrow. 

Hourly air temperature was provided for the period 
September 1999 – August 2000 from the MetOffice 
and subsequently the annual HDDs were calculated 
for the same period. 
(b) An automated routine was also developed for the 
input of the LSSAT HDD.   
The data exchange between the GIS database and the 
BREDEM spreadsheet was automated by a 
customized Dynamic Data Exchange (DDE) 
algorithm embedded in the model.  
In order to assess the impact of the variation in 
external air temperature on domestic heat demand, 
two runs were executed: (a) one with Heathrow 
annual HDDs for all dwellings and (b) one with 
localized annual HDDs assigned at individual 
dwelling level. The difference between the base 
Heathrow HDD value and the LSSAT HDD values 
lies between +1012 and -307 HDDs. 

Comparison with top-down data 
The model output was finally compared to annual 
household energy consumption statistics at MLSOA 
level by collating a set of top-down publicly 
available datasets. Data on the count of dwellings, 
resident population, occupied household spaces, 
ownership type and other social characteristics (e.g. 
age of residents, income etc.) was provided at 
MLSOA level by the Office for National Statistics 
(ONS 2009). The annual domestic gas consumption 
profiles for the GLA at MLSOA level were provided 
from the Department for Business Enterprise and 
Regulatory Reform (DBERR) Regional Statistics. 
Data was available for the years 2004-06. Only the 
2005 dataset was used (DBERR 2009) in the present 
study due to its high level of completeness and low 
percentage of unallocated data.  
The comparison showed some discrepancy, for which 
a number of possible reasons for the discrepancy 
between aggregate data and the model predictions are 
identified: 
(a) The DBERR top-down statistics are provided for 
the year 2005 whereas the model incorporates 1999-
2000 HDD weather data. However, the average 
difference in the annual HDDs for the two years is 
approximately 10% for base temperatures between 
1oC and 20.5oC. Therefore, the comparison between 
the two datasets remains valid.  
(b) The DBERR data contains only gas and 
electricity totals at MLSOA level, whereas the 
BREDEM estimates are provided as primary and 
secondary fuel breakdowns. It was assumed that the 
primary fuel was gas in all the modelled households 
and that the primary fuel covers both space and 
domestic water heating demands. It is understood, 
however, that additional localized fuel type data (e.g. 
on the number of electrically heated dwellings at 
borough level) is needed in order to increase the 
accuracy of the model predictions.  
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DISCUSSION AND RESULT ANALYSIS  
Domestic stock characteristics 
A wide range of domestic dwelling types are covered 
in the case study MLSOAs examined. They vary 
from mid-war linked and step-linked two storey 
houses and late Victorian/Edwardian tall purpose 
shared discrete houses and maisonettes in semi-
suburban areas such as Barnet and Brent to 4-7 storey 
post-war regeneration flat buildings in Camden. 

Model output 
As can be seen in Figure 4, the distribution of the 
primary fuel demand model estimates are heavily 
skewed to the left for both runs (Heathrow and 
LSSAT HDD data). As it would be expected, the use 
of the localized LSSAT HDD data increases the 
variation in the energy demand values. The domestic 
heat demand decreases by between 7.9% and 3.8% in 
urban areas such as Newham, Lambeth, Hackney, 
Wandsworth, Camden, Barking and Dagenham and 
Westminster and increases by between 7.1% and 
4.0% in outer London boroughs such as Ealing, 
Enfield, Barnet, Hillingdon and Haringey, compared 
to the model output when Heathrow HDD were used 
for all sites. It should be noted however, that despite 
the fact that Heathrow is located towards the edge of 
the London urban heat island, it is significantly 
warmer that its rural surroundings. Thus, it is 
expected that the decrease in space heating demand 
due to the urban heat island phenomenon would be 
greater than the values presented above if a true rural 
reference site was used. 
 

 
 

Figure 4 Distribution of primary fuel demand  
model predictions by using (a) Heathrow HDD data,  

(b) the LSSAT HDD data   
 
The primary fuel demand for the 95 case study 
MLSOAs lies between 7,553 and 27,553 kWh/year 
per household when localized LSSAT HDD is used. 
The average demand is 13,113 (mean) and 11,923 
(median) kWh/year per household. As can be 
observed there is a large number of MLSOAs 
clustered on the lower end of the axis and a small 
number of MLSOAs with average annual heat 

demand above 23,000 kWh/household. 
Approximately 1/3 of the total domestic heat demand 
is attributed to only 1/4 of the case study areas 
examined.  
The highest values (between 24,000 and 27,500 
kWh/year per household) were calculated for 
MLSOAs in Bromley, Hillingdon and Barnet. The 
area with the lowest domestic heat demand among 
the case study MLSOAs is located in Camden, 
followed by areas located in Hackney, Wandsworth, 
Barking and Dagenham and Newham with estimated 
energy demand below 10,000 kWh/year per 
household (Figure 5). 
 

 
 

Figure 5 Primary fuel demand model predictions for 
MLSOAs located on the North-South transect of the 

Greater London Area (kWh/year per household) 
 

Comparison with regional statistics 
As can be seen in Figure 6, the model seems able to 
rank successfully the 95 case study MLSOAs 
according to their domestic heat demand. There is a 
good correlation between model predictions and gas 
regional statistics (r(95) = 0.749, p = 0.000). In 
addition, there is a strong correlation between the two 
ranking orders (r(95) = 0.820, p = 0.000). 
It was observed that the outliers of the regression plot 
presented in Figure 6 are MLSOAs which (a) rank in 
the top 10% of household gas consumption (above 
25,000 kWh/year per household), (b) rank in the top 
20% of estimated average weekly income (above 950 
pound sterling per week) and (c) feature large mid-
war bungalows and single-storey detached houses 
located in the semi-urban areas of Barnet, Bromley 
and Hillingdon. Obviously, this could be partly 
explained by the fact that dwelling size is positively 
correlated with income but it might also be an 
indication of particular high-consumption lifestyle 
patterns. 
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Figure 6 Comparison between DBERR gas 
consumption regional statistics and  

primary fuel demand model predictions  

 

The heat island effect 
As is illustrated in Figure 7, there seems to be a 
slightly positive correlation between domestic heat 
demand and distance from the centre of the London 
heat island (British Museum). However, as 
mentioned earlier, distance is not the only indicator 
of heat island intensity. Hence, additional urban 
morphology factors need to be co-examined in order 
to establish correlations with the model estimates. 
 

 

 
 

Figure 7 DBERR gas consumption regional statistics 
and primary fuel demand model predictions plotted 

against distance from the British Museum 
 

Further research 
The pilot run presented in this paper produced a set 
of encouraging results. Furthermore, it allowed the 
directions in which the model could be extended to 
be outlined. These could be summarized as follows: 
 (a) Local microclimatic features should be taken into 
account in addition with the building location for the 
assignment of HDD values at individual building 
level.  

(b) The BREDEM-type spreadsheet currently 
features a limited look-up table of U-values as a 
function of the age of the property, based on historic 
UK Building Regulations energy efficiency 
requirements. This could be refined by making use of 
regional building fabric statistics as well as retrofit 
data and uptake rates of energy efficient measures 
and the replacement of elements with shorter 
lifecycles i.e. boilers at borough level.  
(c) Future deliverables of the LSSAT model will 
include air temperature predictions for the year 2005 
onwards. This will allow for a direct comparison 
between aggregate regional gas consumption 
statistics and the modelled domestic heat demand. 
(d) Further investigation is needed on the social 
characteristics of the case MLSOAs in order to 
identify possible reasons for the observed differences 
between top-down/actual and modelled energy 
demand. This could potentially allow for the 
identification of individual occupant behaviour trends 
to be highlighted. For instance, income might prove 
to be a proxy for increased use of appliance related 
energy. 
(e) In addition to the above, the methodology will be 
refined by making use of a monthly instead of an 
annual version of BREDEM and, consequently, 
monthly HDD predictions which will be generated by 
the LSSAT model.   

CONCLUSION 
The methodological tools and initial findings 
produced by a preliminary run of the heat demand-
profiling tool in 95 case study MLSOAs were 
examined in the present paper. The heat demand 
estimates were decreased by up to 7.9% in central 
London boroughs as a result of using localized HDDs 
as input to the BREDEM model compared to results 
obtained by using Heathrow HDD data. The highest 
level of inconsistency between top-down statistics 
and modelled demand was observed for bungalows 
and detached houses in high income households 
located in semi-urban areas. At this time, it would be 
difficult for any definite conclusions to be drawn 
from such a small sample of data. Further work will 
produce estimates for all 349 MLSOAs for which 
classifications are available through an automated 
procedure. HDDs will be provided for the same year 
for which top-down energy data is also provided (e.g. 
2005), in order to eliminate inconsistencies. It is also 
crucial that a sensitivity analysis is carried out in 
order to quantify the impact that different data input 
parameters (e.g. building form, physical properties) 
have on the model output.  
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