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ABSTRACT 

Sensitivity analysis is a key part of a comprehensive 

energy simulation study.  Monte-Carlo techniques have 

been successfully applied to many simulation tools.  

Several sampling techniques have been proposed in the 

literature; however to date there has been no 

comparison of their performance for typical building 

simulation applications. 

This paper examines the performance of simple 

random, stratified and Latin Hypercube sampling when 

applied to a typical building simulation problem.  An 

integrated natural ventilation problem was selected as 

it has an inexpensive calculation time thus allowing 

multiple sensitivity analyses to be undertaken, while 

being realistic as wind and temperature effects are both 

modeled. 

The research shows that compared to simple random 

sampling: LHS and stratified sampling produce results 

that are not significantly different (at a 5% level) with 

increased robustness (less variance in the mean 

prediction).  However, it should not be inferred from 

this that fewer simulation runs are required for LHS 

and stratified sampling.  Given the results presented 

here and in previous work it would indicate that for 

practical purposes Monte-Carlo uncertainty analysis in 

typical building simulation applications should use 

about 100 runs and simple random sampling. 

 

INTRODUCTION 

The field of sensitivity analysis is becoming more 

commonplace in building simulation.  Early work by 

Lomas and Eppel (1992) compared the performance of 

three techniques (differential, Monte-Carlo and 

stochastic sensitivity analysis).  Following on from this 

Macdonald (2002) embedded sensitivity analysis in 

ESP-r and de Wit (2001) applied the Monte-Carlo 

technique to the analysis of natural ventilation and 

thermal comfort.  Since then several authors have used 

the Monte-Carlo technique on a diverse range of 

building simulation applications (for example: Hyun et 

al 2007 and Kotek et al 2007). 

To date the effect of sampling technique on the results 

has not been analysed in the above publications.  It is 

known that stratified sampling can introduce an 

unknown bias into the results of the analysis (discussed 

briefly by Macdonald (2002) and de Wit (2001)) and 

that there can be varying degrees of success with Latin 

Hypercube  (Saltelli et al 2000).  This paper will 

examine three sampling techniques (simple random, 

stratified and Latin hypercube) and compare their 

performance.  

Sampling techniques 

It is standard statistical procedure to use sampling 

techniques to improve the coverage of the sample, 

especially when the function being analysed is 

expensive.  The aim of a sampling strategy is to reduce 

the variance in the estimate of the mean.  When applied 

to building simulation this is attractive as the 

evaluation of the simulation results (e.g. building 

energy consumption) can be costly, therefore any 

reduction in the number of simulations required for a 

Monte-Carlo analysis will result in a reduction in 

computational effort. 

Three sampling techniques will be described: simple 

random sampling. Stratified sampling and Latin 

Hypercube sampling (LHS). 

Simple random sampling 

This is the most basic sampling technique described 

here and will be used as the basis for comparisons.  

The method works by generating a random number and 

scaling this to the target variable via its probability 

distribution.  The method conforms to the laws of 

statistics.  The mean of the estimate is: 

N

i

isimple a
N

a
1

1
   (1) 

where there are N samples and ai is the model output.  

The sample variance is: 
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and is an unbiased estimate of the population variance.  

Finally, the variance in the estimate of the mean is: 

)(
1

)( simplesimple aVar
N

aVar   (3) 

 

 

Eleventh International IBPSA Conference 
Glasgow, Scotland 

July 27-30, 2009 

- 992 -



 
Figure 1. Simple random sampling – 100 input values. 

 

Stratified sampling 

This method represents an improvement over simple 

random sampling by forcing the sample to conform to 

the whole distribution being analysed.  To achieve this, 

the probability distribution of the target variable is 

typically divided into several strata of equal 

probability, one value is then chosen at random within 

each stratum.  From Helton and Davies (2003) the 

mean of the estimate is: 
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where there are L strata each with one output (i.e. N=L 

samples in total), wi is the fractional weight of the total 

population covered by stratum L and ia  are model 

outputs.  The estimate of the variance is: 
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Finally, the variance in the estimate of the mean is: 
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Figure 2. Stratified sampling – 100 input values. 

 

Latin Hypercube sampling 

This method is an evolution of stratified sampling that 

can outperform simple random sampling (Salteilli et al 

2000).  The method works by dividing the input into 

strata and then generating samples so that the value 

generated for each parameter comes from a different 

stratum (Helton and Davies 2003).  For a monotonic 

function the method has been shown to be better than 

simple random and stratified sampling (McKay et al 

1979), however for non-monotonic functions a bias of 

unknown size is introduced into the results.  The mean 

and variance of the estimate are the same as for simple 

random sampling (Saltelli et al 2000, Helton and 

Davies 2003): 
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However, the variance in the estimate of the mean is 

(Iman 1999): 
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where term Cov() is the covariance between the input 

variables.  Thus for LHS to reduce the variance in the 

mean the covariance should be negative.  Iman (1999) 

quotes results showing that as the sample size tends to 

infinity this term is nonpositive. 

Comparison of techniques 

Equations 1 through 9 refer only to the results of each 

simulation and the number of simulations, thus it can 

be concluded that the robustness of the Monte-Carlo 

method is independent of the number of input 

parameters (this is discussed elsewhere, for example 

Lomas and Eppel 1992 and Macdonald 2002).   

In the context of this paper the robustness of the 

method can be measured via the variance in the mean 

output statistic (equations 3, 6 and 9).  This variance 

was estimated from repeated Monte-Carlo analyses as 

will be described later. 

Employing stratification (stratified sampling or LHS) 

forces the input variable coverage to be better than for 

simple random sampling.  For instance compare Figure 

1 and Figure 2; the gridlines represent the 10 strata for 

each of the two variables being sampled.  Figure 1 has 

several strata without a sample (e.g. the top right 

corner) and several with more than one sample (e.g. 

lower right corner).  This difference becomes less 

significant with a larger sample, Figure 3 (Iman 1999).  

It is expected that the curve for stratified sampling falls 

between the two curves in Figure 3.  The difference 

after 100 simulations is 2%. Therefore, it should be 

expected that the results should converge as the sample 

size increases in terms of the mean and variance in the 

output. 

Several sources, for example Maxval (2009), state that 

LHS is far superior to simple random sampling.  

However, Salteilli et al (2000) state that it is not 

possible to make firm conclusions.  Additionally, Hyun 

et al 2007 state that the minimum number of 

simulations required is a function of the number of 

uncertain parameters – this contradicts the theory 

Simple random sampling - 100 input values
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Stratified random numbers - 100 input values 
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presented above and appears to come from a discussion 

of correlation control by Wyss and Jorgensen (1998).  

A systematic test of sampling techniques is therefore 

justified in the context of building simulation. 

 

 
Figure 3. Sample coverage for simple random sampling 

and LHS. 

 

HYPOTHESES 

Three hypotheses will be tested: 

1. LHS is more robust than stratified sampling 

which in turn is more robust than simple 

random sampling.  Robustness is defined as a 

significantly reduced variance between 

repeated analyses (i.e. Var( a ) will be 

compared). 

2. The bias introduced by stratified and LHS will 

be insignificant (using simple random 

sampling as the reference method). 

3. The mean and variance will not be 

significantly different between the methods 

after 100 simulations. 

 

TEST MODEL 

Several algorithms exist to calculate infiltration rates 

from basic qualitative and quantitative descriptive data 

for houses (ASHRAE 2005).  Recent work (Reardon 

2007) compared the availability of data for Canadian 

houses and that required for available models.  It 

concluded that the single-cell Shaw model (Shaw 

1987) was suitable for most analyses.  For the purpose 

of this study the model is quick to run and suitably 

complex to be representative of a range of building 

simulation problems. 

The essence of the Shaw model is that the infiltration 

rates due to stack pressure and wind effect are 

calculated individually and then combined according to 

superposition of their driving pressures to produce a 

total infiltration rate.  The key input parameters are: 

wind speed, ambient temperature, internal temperature, 

neutral pressure ratio and data from a blower door test 

(coefficients C and n from the curve fit).  The model is 

now elaborated. 

Stack-effect driven infiltration is modeled by the 

equation below: 

n
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Where: 

0.5 factor has the units [m
3

s Pa
n
)/(L hr K

n
)],  

IS = infiltration air change rate due to stack effect 

[ac/hr], 

C = house flow coefficient from curve fit of the 

leakage test data [L/(s Pa
n
)], 

V = internal volume of the house including 

basement [m
3
],  

h =  height above grade of the neutral pressure level 

[m],  

H = height above grade of the upper ceiling of the 

house [m],  

Tin = indoor air absolute temperature [K], 

Tout = outdoor air absolute temperature [K], and 

n = house flow exponent from curve fit of the 

leakage test data. 

Shaw suggests that for a house without a flue h/H = 

0.64, and for a house with a single 127 mm dia. flue 

h/H = 0.86, based on the data set used to develop this 

model.  A later study (Reardon 1989) with measured 

NPLs in a larger number of houses has provided a 

guide for NPL=0.6 for houses without an open flue and 

0.7 with an open flue.  

The form of the curve fit to the leakage test data (from 

a fan depressurization measurement of the envelope 

airtightness of the house, following CGSB 1986), that 

is used to determine the flow coefficient and flow 

exponent is the power law curve: 

n

m PCQ )(      (11) 

Where: 

Qm = measured flow rates [L/s], and 

DP = measured pressure difference across envelope 

[Pa]. 

Wind driven infiltration is modeled by the equation 

below: 

n
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Where: 
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0.7 factor has units [m
3
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n

s
n+1

)/(L hr m
n
)], 

IW = infiltration air change rate due to wind [ac/hr], 

and 

U  = windspeed measured at height of 20m on-site 

[m/s]. 

The combined infiltration due to both stack-effect and 

wind is modeled by combining these two component 

infiltration rates using n-quadrature to effectively 

superpose the pressures created by these two physical 
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phenomena, since the two component infiltration rates 

do not simply add, due to the non-linear relationship 

between driving pressure and driven flow rate.  The 

combined model equation is: 

              (14) 

Where: 

IWS = total combined infiltration air change rate 

[ac/hr], 

F = an empirical factor defined by the following: 

1F for 1.00
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Where: 

Isml = the smaller of the two components IS and IW, and 

Ilrg = the larger of the two components IS and IW. 

 

METHOD 

Data from a single real building in Quebec City, 

Canada was used as the input data for the test model.  

The sensitivity analysis was undertaken for a range of 

ambient temperatures (18-22 m/s) and wind speeds (4-

6 m/s) using the simple random, stratified and latin 

hypercube sampling strategies.  Figure 4 shows a 

typical cumulative distribution for the input variables 

for the simple and stratified sampling compared to the 

„ideal‟.  The results are from a 100 point sample and 

totalled in 10 bins.  As expected the stratified sampling 

technique produces a better distribution compared to 

the simple random sample (i.e. the line is straighter).  

For all cases the Monte-Carlo analysis used a sample 

of Nruns simulations to generate the output distribution.  

This analysis was then repeated Mrepetitions times and the 

range of results calculated.   

 

 
Figure 4. Typical cumulative distribution for the 

input variables. 

 

To examine the differences in predictions resulting 

from the different sampling procedures the process 

depicted in Figure 14 was adopted.  For each sampling 

option the mean and variance in the predicted 

infiltration rate were predicted.  Four sampling options 

were used: 

1. Simple random sampling.  To guarantee a 

suitable coverage 100 samples were 

generated, thus Nruns=100. 

2. Stratified sampling.  The input distributions 

for both variables were divided into 10 equal 

probability strata. A sample was drawn at 

random from each stratum, to generate 100 

input samples, thus Nruns=100. 

3. Latin Hypercube Sampling (LHS(10)).  Using 

the same strata as in case 2 ten input samples 

were generated, thus Nruns=10. 

4. Replicated Latin Hypercube Sampling 

(LHS(10x10)).  The procedure for LHS(10) 

was repeated 10 times, each time a new 

random pairing was generated for the two 

input variables, thus Nruns=100. 

 

This process was initially repeated 10 times (i.e. 

Mrepetitions=10) for each of the four cases and then 100 

times to compare the robustness of the methods.   

In addition the simple random sampling method was 

repeated 100 times for 100, 1000, 10000 and 50000 

samples (i.e. Mrepetitions=100 for Nruns=100, 1000, 10000 

and 50000).  These results were used as a benchmark 

against which the remaining cases could be compared. 

 

RESULTS 

Summary statistics were generated from the 

simulations.  For each of the four sampling scenarios 

the mean result and its variance was calculated (from 

the Mrepetitions analyses), in addition the mean of the 

variance was calculated and its variance.  With these 

statistics the hypotheses can be tested. 

Simple Random Sampling 

Figure 5 shows the variance in the mean of the four 

analyses using different sample sizes for simple 

random sampling only.  As can be seen the variance is 

reduced by increased sampling (i.e. increasing Nruns).  

The significance of this reduction was tested against an 

F-distribution (Kreyszig 1993).  In all three differences 

the reduction is significant at the 5% level.  Therefore, 

the increased sampling produces a significantly more 

robust result. 
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Figure 5. Variance in mean results by Nruns. 

 

Examining the mean and variance in the results (Figure 

6 and Figure 7 respectively) it can be seen that there is 

less variation due to the additional runs.  Again the 

significance of these differences was tested at the 5% 

level (the variance was compared as above and the 

means against a t-distribution).  In all cases the 

difference was not significant.   

Overall, this would indicate that there is little point in 

running more than 100 simulations if using simple 

random sampling as the estimates of mean and 

variance will not vary significantly up to 50000 

simulations. 

 
Figure 6. Mean air change rate by Nruns. 

 

 
Figure 7. Mean variance in air change rate by Nruns. 

 

100 Samples 

Comparing the three sampling methods using 100 

samples/strata as described above: 

1. Figure 8 shows the results for mean air change 

rate.  Focussing on the first three columns 

there is no significant difference at the 5% 

level between the results in the first three 

columns.   Therefore, there is no significant 

bias introduced. 

2. Figure 9 shows the mean variance in the 

results.  Again focussing on the first three 

columns only there is no significant difference 

at the 5% level between the results in the first 

three columns. 

3. Finally, Figure 10 shows the variance in the 

mean air change rate (robustness).  Again 

focussing on the first three columns only there 

is a significant difference at the 5% level 

between the simple and stratified results and 

between the simple and LHS(10x10) results, 

i.e. the use of stratification generates a more 

robust result compared to simple random 

sampling. 

The results in the final columns of Figure 8, Figure 9 

and Figure 10 show that by only using 10 samples as 

opposed to 10 replications of the LHS method there is 

no significant difference at the 5% level for the mean 

and variance results, however the robustness is 

significantly improved by replication (Figure 10). 

 
Figure 8. Mean air change rate. 

 

 
Figure 9. Mean variance in air change rate. 
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Figure 10. Variance in mean air change rate. 

 

10 Samples 

Comparing the three sampling methods using 10 

samples for the simple and LHS methods and 9 for 

stratified (in this case three strata were used for each of 

the two variables resulting in 9 runs): 

1. Figure 11 shows the results for mean air 

change rate.  There is no significant difference 

between the results at the 5% level. 

2. Figure 12 shows the mean variance in the 

results.  Again there is no significant 

difference in these results at the 5% level. 

3. Finally, Figure 13 shows the variance in the 

mean air change rate (robustness).  There is a 

significant difference at the 5% level between 

all methods, i.e. the use of stratification 

generates a more robust result compared to 

simple random sampling. 

Sample size and method comparison 

Comparing the results from the 100 run simple 

sampling case with the 10 run LHS case, at the 5% 

level, there is no significant difference in the 

estimation of the mean and variance.  However, there 

is a significant difference in the variance of the mean 

results (robustness).  In this case the larger samples 

(simple) is more robust than the LHS method.  The 

same results are evident when comparing the stratified 

and LHS methods. 

 
Figure 11. Mean air change rate. 

 

    
Figure 12. Mean variance in air change rate. 

 

 
Figure 13. Variance in mean air change rate. 

 

DISCUSSION 

This paper set out to test three hypotheses related to the 

sampling method used for a Monte-Carlo analysis: 

Method robustness 

The results presented have shown that for equal sample 

sizes the robustness of the sampling methods was as 

expected.  This was true for the following cases: 

 100 simple < 100 stratified < 10x10 LHS 

 10 simple < 9 stratified < 10 LHS 

where the number is the number of samples (and 10x10 

represents the replicated LHS runs). 

There is also a significant change in the robustness 

between: 

 10 LHS < 100 simple 

 10 LHS < 100 stratified 

and 

 100 simple < 1,000 simple < 10,000 simple < 

50,000 simple 

Examining these results as a whole would indicate that 

the non-simple sampling techniques should be used to 

produce a more robust analysis, but not at the expense 

of fewer simulation runs. 

Bias 

In all cases there was no significant difference between 

the mean results for equal numbers of simulations.  

This was also true in the comparison between: 

 100 simple and 10 LHS 

 100 stratified and 10 LHS 
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This would indicate that there is no significant bias 

introduced by the sampling methods.   

Mean and variance 

The results presented were not significantly different 

for the following pairs: 

 100 simple & 1,000 simple 

 1000 simple & 10,000 simple 

 10,000 simple & 50,000 simple 

 100 simple & 100 stratified 

 100 simple & 10x10 LHS 

 100 stratified & 10x10 LHS 

 10x10 LHS & 10 LHS 

 10 LHS & 9 stratified 

 10 simple & 10 LHS 

 10 simple & 9 stratified 

This would indicate that with very small samples (9 or 

10 simulations) the results from a Monte-Carlo 

analysis are accurate in terms of the estimate of the 

mean and variance of the output. 

Practical concerns 

Given these results it would indicate that for practical 

purposes there is no requirement for LHS or stratified 

sampling in typical building simulation problems.   

The results presented here are for samples drawn from 

strata with equal probabilities – for multi-variate 

problems with multiple probability distributions 

management of the strata weights could become 

complex (formulae exist for accounting for the weights 

but this adds to the complexity of the analysis).  Given 

the simplicity of simple random sampling and that after 

100 simulations the coverage of the input range is 

within 2% of that with LHS, for ease of 

implementation, the simple sampling method would be 

preferred.  

CONCLUSIONS 

This paper set out to examine three aspects of the 

sampling method used in Monte-Carlo uncertainty 

analysis.  It has shown that: 

1. There is no significant bias introduced by the 

stratified and LHS methods compared to 

simple sampling.   

2. For the analysed cases there is no significant 

difference in prediction of mean and variance 

between the methods in terms of sampling 

method and number of simulations (Nruns). 

3. For the same number of simulations the LHS 

method produces a more robust result 

compared to the stratified method, which in 

turn produces a more robust result compared 

to the simple method. 

4. The stratified and LHS methods cannot 

necessarily be used as a mechanism to save 

simulations runs. 

Given these results and the analysis presented by 

Lomas and Eppel (1992) it would indicate that for 

practical purposes Monte-Carlo uncertainty analysis in 

typical building simulation applications should use 

about 100 runs and simple random sampling. 
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Figure 14. Analysis process for 100 sample runs. 
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