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ABSTRACT 
Schumann solution for the heating (cooling) of one-
dimensional packed beds by the passage of a hot 
(cool) fluid is extended by the incorporation of a 
small solid thermal conductivity by means of using 
perturbation methods based on the Laplace transform 
and a Picard iteration for the Green’s functions for 
the heat transfer of both phases. The new solution 
shows smooth heat front propagation through the 
medium during either the heating or the cooling 
(depending on its initial temperature) and can be 
easily incorporated into solar thermal storage 
simulators currently using Schumann solution, but 
with increased thermal accuracy. 

NOMENCLATURE 
x axial position along the packed bed 
y nondimensional axial position 
L  length of the solid medium 
t  time coordinate 
τ  nondimensional time coordinate 
Τf , Τs  temperature of fluid and solid, resp. 
χ nondimensional temperature of the solid 
ε nondimensional temperature of the fluid 
ρf , ρs density of fluid and solid, resp. 
cs  specific heat of the solid 
cf   fluid specific heat at constant pressure 
vf   fluid flow velocity 
h   fluid-solid heat transfer coefficient 
hb  fluid-solid boundary heat transfer coefficient 
γ  nondimensional boundary heat transfer ratio  
λs  solid thermal conductivity  
β2  nondimensional solid thermal conductance 
p “effective” porosity  
Ta ambient temperature 
Tf0 initial temperature of the packed bed 
n  fluid to solid heat capacity ratio 
 

INTRODUCTION 
Schumann (1929) obtained the analytical solution for 
the problem of heating (cooling) of one-dimensional 
porous media (packed bed) by the passage of a hot 
(cool) fluid. Such solution has been rediscovered 
several times during 20th century (Nusselt, 1911; 

Anzelius, 1926; Nusselt, 1930), using alternative 
mathematical formulations which are completely 
equivalent (Baclic & Heggs, 1985; Lach & Pieczka 
1985). The inclusion of a finite axial heat conduction 
in the Schumann problem complicates its theoretical 
analysis because exact analytical approaches cannot 
be applied in such a case. Numerical have been 
widely applied (e.g. Sözen & Vafai, 1993; Kuwahara 
et al., 2001; Hayes et al., 2008). However, 
asymptotic analysis is scarce in the scientific 
literature. Kuznetsov (1994; 1995; 1997) uses 
perturbation methods based on Fourier series for 
rectangular packed beds using a two-equation model 
for the fluid temperature and the difference between 
temperatures of the fluid and the solid phases.  
Kuznetsov (1997) uses the inverse of the product of 
the fluid-to-particle heat transfer coefficient between 
the solid and fluid phases by the specific surface area 
as small parameter. Under this assumption, the 
temperature difference between both phases is found 
to be small compared to the difference between the 
inlet temperature of the fluid and the initial 
temperature of solid. Spiga & Morini (1999) also 
developed an asymptotic solution for the two-
equation model but assuming an infinite velocity for 
the travelling wave in the gas phase. Such 
assumption is reasonable in typical air-rock bed 
installations but do not results in a proper 
characterization of the stratification in the packed 
bed. Such stratification is very important in 
charging/discharging conditions of the energy storage 
unit, requiring the consideration of a finite 
convection velocity in the gas.  
The main contribution in this paper is the 
development of an asymptotic approximate solution 
valid for small thermal conductivity under the 
assumption of a semi-infinite medium. In our 
approximation the temperature difference between 
both phases is not assumed to be small and a finite 
travelling velocity for the gas phase is considered.  
Packed or rock beds are the cheapest energy storage 
unit for solar heating and cooling systems since 
heating demands and solar irradiation are time-
dependent functions do not matching between them. 
Thermal energy storage provides a reservoir of 
energy to adjust this mismatch and to meet the 
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energy needs at all times. Figure 1 shows a simplified 
scheme of a air-rock bed, thermal storage unit in a 
solar air heating installation (Duffie & Beckman, 
1991; Schmidt & Willmott, 1981). Note that for 
installations using hot water or other fluids a heat 
exchanger must be incorporated in the sketch shown 
in Fig. 1. In charging the rock bed heat storage unit, 
hot air from the solar air collectors, or hot fluid 
through heat exchangers, is passed through the bed 
tank from its top and cold air is collected from the 
other side, where it is again passed to the solar 
collector, or  to the inlet of the heat exchanger for 
liquids. When the heat is required, the flow of the air 
in the packed bed storage unit is reversed (not shown 
in Fig. 1). This paper considers only the modelling of 
the charging (discharging) of the packed bed without 
taking into account the rest of the system. 

  

Figure 1 Rock bed as thermal storage system 
integrated in a solar collector installation.  

The contents of the paper are as follows. Next section 
presents the mathematical formulation of the problem 
and its physical assumptions. Schumann solution, the 
leading order solution for both the fluid and the solid 
phases, is recalled in Section 2. Sections 3 and 4 
present the first-order approximation for, respect-
ively, solid and fluid temperatures. In Section 5 the 
main results are discussed. Finally, Section 7 is 
devoted to the general conclusions and further lines 
of research.  

MATHEMATICAL MODEL 
The heat transfer in a packed bed is modelled by the 
two-phase problem (Nield et al., 1999)  

( )f f
f f f f s

T T
p c v h T T

t x
ρ

∂ ∂
+ = − − ,

∂ ∂

 
 
 

 (1) 

( )
2

2
(1 ) (1 ) .s s

s s f s s

T T
p c h T T p

t x
ρ λ

∂ ∂
− = − + −

∂ ∂
 (2) 

Let us assume, as initial condition, that both phases 
start in thermal equilibrium, i.e., with the same 
temperature equal to the ambient one,  

( )0 0f aT x T x, = , > ,  (3) 

( )0 0s aT x T x, = , > .  (4) 

Let us also assume that the fluid is injected in the 
solid at x=0, with constant flow velocity and 
temperature,  

( ) 00 0f fT t T t, = , > .  (5) 
and apply a Robin boundary condition at the inlet 
boundary of the solid matrix given by  

( )( 0) ( 0) ( 0) .s
s b s f

T
t h T t T t

x
λ

∂
, = , − ,

∂
 (6) 

Finally, let us also assume that the length of the solid 
medium is large enough such that it can be 
considered as semi-infinite ( L → ∞ ). In such a case, 
the outlet boundary condition is given by  
lim ( ) lim ( ) 0s gx x

T t x T t x
→∞ →∞

, = , = .  (7) 

Equations (1)–(7) may be nondimensionalized by 
introducing the following variables  

( )1 s s g g f
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p c p c v
τ

ρ ρ
= , = ,

−
 

where  
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f f
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p c

ρ

ρ
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−
 

and defining ( )yχ τ ,  and ( )yε τ ,  through the 
relationships  

( ) 0s a f aT T y T Tχ τ  
 
  
 

= + , − ,  

( ) 0f a f aT T y T Tε τ  
 
  
 

= + , − ,  

resulting in the dimensionless form  

n
y

ε ε
χ ε

τ
 ∂ ∂

+ = − , ∂ ∂ 
 (8) 

2
2

2y
χ χ

β ε χ
τ

∂ ∂
− = − ,

∂ ∂
 (9) 

with initial conditions  
( ) ( )0 0 0 0 0y y yε χ, = , , = , > ,  (10) 

and boundary conditions  
( )0 1ε τ , = ,  (11) 

( )( 0) ( 0) ( 0)
y
χ

τ γ χ τ ε τ
∂

, = , − , ,
∂

 (12) 

lim ( ) lim ( ) 0
y y

y yχ τ ε τ
→∞ →∞

, = , = ,  (13) 

where, in Eqs. (8)–(13),  
2

2 and b f f f
s

f f f s

h p c vn
h
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ρ
β λ γ

ρ λ

 
= , = .  

 
 

In order to solve the quarterplane problem given by 
Eqs. (8)–(13), the Laplace transform method can be 

used. Let $ ( )s yε ,  and µ ( )s yχ ,  be the Laplace trans-

form on τ  of ( )yε τ ,  and ( )yχ τ , , respectively. The 
Laplace transform of Eqs. (8)–(13) yields 

$ ( )
$ ( ) µ ( ) $ ( )

s y
n s s y s y s y

y

ε
ε χ ε

 ∂ ,
 , + = , − , ,
 ∂ 

 (14) 

µ µ $ ( ) µ ( )
2

2
2s s y s y
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χ

χ β ε χ
∂

− = , − , ,
∂

 (15) 
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with boundary conditions  

$ ( ) 1
0s

s
ε , = ,  (16) 

µ µ( 0) 1
( 0)

s
s

y s
χ

γ χ
∂ ,  = , − . ∂  

 (17) 

The exact solution of the problem given by Eqs. (8)–
(13) cannot be obtained analytically for general β  
since the exact solution of the problem in Laplace 
space given by Eqs. (14)-(17) is not known. 
Therefore, for large 2β , Eqs. (8)–(13) require the use 
of numerical methods. However, since the exact 
solution for 0β =  of Eqs. (8)–(12), is widely known, 
singular perturbation methods (Kevorkian & Cole 
1996) can be applied in order to obtain an 
approximate asymptotic solution at least for 2 1β = .  

LEADING ORDER SOLUTION 
Equations (8)–(13) for 0β =  are usually referred to 
as either Nusselt or Schumann problem in the 
quarterplane, whose exact solution is widely known. 
Let 0χ  and 0ε  be such solution, and · ( )0 s yε ,  and 
· ( )0 s yχ , , respectively, their Laplace transforms in 

τ . The solution of Eqs. (14)–(16) for 0β =  yields 

 · ( )0 exp
( 1)

y se s y
s y

s n s
ε

−  
, = − , + 

 (18) 

· ( ) ( )0 exp
1 ( 1)

y se s y
s y

s s n s
χ

−  
, = − . + + 

 (19) 

The evaluation of the Bromwich integral for the 
inverse Laplace transform of Eqs. (18) and (19) 
yields (Klinkenberg 1954)  
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( )
( ) 2y n y y y

y y e e I
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τ τ
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−
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 (22) 
Integration by parts in Eq. (20), recalling that 

0 1I I= , and ( )0 1I = , results in  

( ) /
0 10

e 1 e 2
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y I du
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τ
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  , = + . 
  

∫
 (23) 
 
Plots of the numerical evaluation of Eqs. (21) 
and (23) can be find, e.g., in (Lach & Pieczka 1985). 

FIRST-ORDER APPROXIMATION 
Let us start determining the Green’s function 

( )G y yβ τ τ ′ ′, ; ,  for the solid temperature, i.e., the heat 
equation (15) with the initial condition (10) and 
boundary conditions (12)–(13), given by the solution 
of  

2
2

2 ( ) ( ) 0
G G

y y y
y

β ββ δ τ τ δ τ
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 (24) 
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G
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y

β
βτ τ γ τ τ γ τ

∂
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∂
 (26) 

where Eq. (11) has been used and ( )δ ⋅  denotes the 
Dirac delta function. The expression for Green’s 
function of the quarterplane problem of the heat 
equation is given by (Polyanin 2002) 

( )
( )( ) ( )

( )( )2 2

2 24 4
exp exp

( ) ( )
2 ( )

y y y y

G y y
β τ τ β τ τ
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22 ( )
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β π τ τ

 ′ ′− + +
,  ′− 
 (27) 

where erfc( )⋅  is the complementary error function.  
Using the Green’s function (27), the formal solution 
of equation (15) with Eqs. (10)–(13) is given by 
(Polyanin 2002) 

( )( )0 0
( ) ( ) ( ) ( )y G y y y y dy d

τ

βχ τ τ τ ε τ χ τ τ
∞

′ ′ ′ ′ ′ ′ ′ ′, = , ; , , − , +∫ ∫
2

0
( 0)G y d

τ

βγ β τ τ τ′ ′, ; , .∫  (28) 

The first-order correction for the solid temperature 
may be obtained by substituting Eqs. (22) and (27) 
into Eq. (28), after evaluation of the integral in the 
boundary condition term in Eq. (28), yielding 
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Let us differentiate Eq. (8) on τ  and substitute 
Eq. (9) resulting in 

2 2
2

2 2( 1)n n
y y

ε ε ε χ
ε β

τ ττ
∂ ∂ ∂ ∂ ∂ + + + + = . ∂ ∂ ∂∂ ∂ 

 (30) 

This equation is used instead of Eq. (9) for the first-
order approximation to ε , because it lacks explicit 
dependence on β .  
The Laplace transform of Eqs. (30) and (11) yields 
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µ2 2
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s y s y
s s y
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ε β χ
ε

∂ ,   ∂ ,
+ + , = , ∂ + + ∂ 

 (31) 

and $ ( )0 1s sε , = / .  
The first-order ordinary differential equation (31) can 
be easily solved by using an integrating factor 
yielding  
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which, by means of using Eqs. (18) and (19), can be 
rewritten as  
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A first-order approximation of $( )s yε ,  on 2β  can be 

obtained by replacing the function µχ  in Eq. (33) by 
·

0χ , taking into account Eq. (18), (19), and the 
second partial derivative of Eq. (19), i.e., 
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resulting in  
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By applying the inversion formula of the Laplace 
transform to Eq. (35), then  

2
1 0 0( ) ( ) ( )y y yε τ ε τ β ε τ, = , + ∆ , ,  (37) 

where  
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and C is the simple closed contour shown in Figure 2. 
The integration in the CR arc of C is null if and only 
if 0yτ − >  as shown in the appendix.  

  

Figure 2 Simple closed contour C. 
Recalling that the generating function of the modified 
Bessel functions kI  is given by (Lebedev 1972)  
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then the exponential function in the integrand of 
Eq. (38) may be written as  
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( )
( )

1
2

y y s y
z g

n g n y
τ

σ
τ

− +
= , = , = .

−
 (40) 

The substitution of Eq. (39) in Eq. (38) results in  
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which can be expanded to  
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The use of Cauchy’s residue theorem (Antimirov et 
al., 1998) yields 
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 (43) 

PRESENTATION OF RESULTS 
The main result of this paper are the nondimensional 
solutions (29), (37) and (43), which depend on the 
parameter n , β, and γ, and may be evaluated by 
means of any numerical quadrature rule; here, 
adaptive Gauss-Kronrod quadrature (Press et al., 
1992) has been used. In solar thermal storage 
simulators, fast and accurate numerical results are 
required. Equation (29) has an oscillatory integrand 
which results in slow convergence of the numerical 
method. Therefore, the authors recommend the use of 
Eq. (21) for ( )yχ τ ,  and Eqs. (37) and (43) for 

( )yε τ , . 

Figures 3 and 4 show the solutions ( )1 yε τ ,  for 

0 1β = .  and 0 5n = . , respectively, for several values 
of the other parameters at times 1 2 10…τ = , , , , 
corresponding to curves plotted sequentially from the 
left to the right in each plot. Both figures show that 
the heat propagates through the medium from the 
boundary condition at 0y =  as a temperature 
wavefront approximately constant velocity, equal to 
unity in nondimensional units. Figures 3 and 4 show 
snapshots of the fluid heat wave propagating from 
the left to the right presenting a sharp front at 
position y τ=  due to the neglected gas heat 
diffusivity, mathematically corresponding to the 
Heaviside function in Eqs. (20) and (43). Figures  
correspond to the heating of the solid by the gas, but 

note that the cooling process may also be easily 
analyzed.  
Figure 4 shows that the main effect of the value of β, 
the diffusivity of the solid phase, in the fluid heat 
wave. For 0 1β = . , the solution is practically the 
same as for a null value, given by Eq. (20). The gas 
inside the packed bed becomes hotter as time 
increases, resulting, for large time, in a constant 
value equal to the boundary value in the whole length 
of the medium. However, for larger β, this behaviour 
changes, due to the rise in temperature of the solid 
matrix far away from the front of the gas due to the 
non-null solid heat conduction. Hence, the 
asymptotic value of the gas temperature as time 
increases does not reach the inlet value. This 
difference is more important as β increases.  
Figure 4 also shows that the heat flux (spatial 
derivative of the temperature) is not continuous at the 
heating front position ( y τ= ). The size of this 
discontinuity decreases as time evolves, until 
reaching a null value.  

CONCLUSION 
Perturbation methods based on Green’s function and 
Laplace transform have been applied in order to 
obtain analytical approximations for the solution of 
the heat transport in a packed bed for solar energy 
storage under the hypothesis of small solid diffusity 
and negligible fluid one. The resulting solution is a 
correction of the Schumann one, currently used in the 
majority of building simulators. The new solution for 
the fluid temperature is explicit and can be evaluated 
in an accurate and fast manner. However, the 
expression for the solid temperature is difficult to be 
evaluated numerically since they present a slowly 
converging integrand. Since, in practical simulators 
the most important expression is that of the fluid, this 
limitation is of minor value.  
The new solution for the solid temperature depends 
on the boundary heat transfer coefficient between the 
fluid and the solid, so can be used in order to 
incorporate its effects in current simulators. In such a 
case, the authors recommend that the integrand in Eq. 
(29) be interpolated in the domain of the two-
dimensional integral and a fast numerical method for 
the interpolant be used. The boundary heat transfer 
coefficient is an additional parameter which must be 
introduced in the building simulator.  
Our results can be used for the development of new 
design rules for the boundary conditions at inlet and 
outlet in heat storage tanks. It is very important to 
stress that the overall efficiency of a solar installation 
using a rock bed can be enhanced by using the 
greatest degree of temperature stratification. Such 
design criteria, depending strongly on the boundary 
heat transfer coefficient, are outside the scope of the 
present paper resulting in an interested line for 
further research.  
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Further research is also in progress on the 
incorporation of the finite length of the packed bed 
into the asymptotic solution. In such a case, a Fourier 
series expression is used for the Green’s functions 
instead Laplace transform, but the asymptotic method 
remains valid. Furthermore, nonlinear boundary 
conditions of radiative heat transfer will also be 
incorporated into our solution by means of using 
perturbation methods. 
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Figure 3 Evolution in time of the function  1( )yε τ ,  for β=0.1 and several values of parameter n at times  

τ=1,2,3,…,10, corresponding to curves from left to the right. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Evolution in time of the function  1( )yε τ ,  for n=0.5 and  several values of parameter β at times  
τ=1,2,3,…,10, corresponding to curves from left to the right. 
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