
BUILDING ENERGY SIMULATION AND OBJECT-ORIENTED MODELLING:
REVIEW AND REFLECTIONS UPON ACHIEVED RESULTS AND FURTHER

DEVELOPMENTS.

Livio Mazzarella1, Martina Pasini2
1Department of Energy, Politecnico di Milano - Milan, Italy

2Department of Building Environment Sciences and Technology, Politecnico di Milano -
Milan, Italy

ABSTRACT
Over the past 30 years numerous Building Simulation
Codes (BSC) have been developed. Nevertheless,
none of them has yet become a “standard”. Focusing
the attention on the use of advanced Object-Oriented
Modelling, a review of the most used BSC is here
carried out. First, new requirements have been
investigated. Actually, the evolving nature of
Building Systems and of society demand for tools
designed to evolve at the hands of the users.
Modularity seemed to be the answer to these needs.
However, in the BPS (Building Performance
Simulation) field, modularity has been interpreted in
different ways leading to different approaches to
Modelling and Simulation (M&S). A first purpose of
this work is to redefine what modularity is needed in
BPS tools (an “enriched” one) and subsequently to
investigate if and how actual tools address that.
Focusing on Building Fabric’s M&S, we have
investigated the different approaches taken by Esp-r,
IDA ICE and PsiGene. The goal was to understand if
they could allow: simpler distributed calculus,
distributed responsibilities in code’s developing, an
exponential evolution of algebraic routines and an
increased productivity and widespread use of these
tools, thanks to design and process automation. The
finding was that almost always when one of these
requirements was addressed another one was
unsatisfied. It could be concluded that such BPS tool
(characterized by an enriched modularity) is not yet
ready and that a technology driven research should
be pursued to develop it. Indeed, different concepts
derived by Information Technology should be further
analyzed in order to understand if similar
formalization might lead to a renewed modelling,
simulating and validating methodology more focused
and oriented towards BPS tools’ evolutionary
growth.

INTRODUCTION
Energy savings in buildings is today mandatory in
developed countries, so it is imperative to perform,
during the design stage, an accurate estimation of the
energy used by buildings to assure different kinds of
comfort. To do that, we need first to describe the
object of the design, as a collection of relationships
among parts, i.e. a system (the conceptual model),

and then to “emulate” its behaviour (through
simulation) with an assured level of accuracy. The
object of the design is the Building System or BS,
which comprises Building’s Fabric, Building’s
Envelope and Service Systems. The need to use
simulation stems from its nature, i.e. from its
complexity and time dependent performances. Its
behaviour depends, in a complicate way, from
different aspects, causing problems when
simultaneously addressing all the interrelated
performances of each subsystem. Simulation is the
only way to allow the designer to explore the
complex relationships between environment and
building’s form, fabric, services and control. Besides,
innovative technologies and knowledge progresses
impose the development of new models and powerful
modelling and simulation techniques in different
research fields and application domains. These
common issues, along with strong differences, claim
the importance of a shared resolution approach, able
to promote the work done in different fields and to
allow reuse by modification. Modularity claimed
good features for answering these requirements.
However, in the BPS (Building Performance
Simulation) field, modularity has been interpreted in
different ways leading to different implications. The
reason for these differences is certainly the issue’s
complexity, but it is also the lack of exploitation of
progresses achieved in other research fields. Hence,
the aim of this paper is to understand:

• why a fully developed suite of high quality
software applications is still not available;

• how modularity has been used till now and
which kind of problems has encountered;

• which new logical structures might help to
define a new modelling, simulating and
validating methodology.

To do that, we will try to understand:
• which new needs BPS tools should address

and how old BSC might cope with those,
• what are meanings and aspects of modelling

and simulation (M&S) and why different
development process approaches took place;

• which are the major barriers in BPS tools’
development process (validation, numerical
solution, etc);

Eleventh International IBPSA Conference
Glasgow, Scotland

July 27-30, 2009

- 638 -

• which kind of tool have been developed till
now, with which major differences.

NEW NEEDS & EXISTING CODES
BSs have changed in the last years, as society has and
as the possibilities offered by other technologies
have. Many of the BPS tools on the market were born
years ago and tried to address past requirements with
the help of past knowledge and Information
Technologies (ITs). Today, advanced knowledge and
tools are available and requirements are changed.
Globalization demand for economic convenience in
using BPS tools; the law is struggling to emanate
general, usable, and reliable regulations to address
the environmental problem, while the evolution of
BS and society demand an evolutionary growth of
such tools. In the following, some of those new needs
that more influence the BPS tool’s development
process will be analysed to understand which issues
should be addressed and solved by today’s BPS tools.

BS’s evolution
Some of the past requirements were dictated by the
nature of past BSs. Traditional constructions allow
specific assumptions that do not cope with new BS
typologies. Large highly-glazed spaces are usually
not well represented; room’s irregular geometry is
usually not well taken into account when calculating
internal longwave energy exchange; Indoor Air
Quality impositions require accurate determinations
of air flow inside and between different zones; the
effect on building performances of shading devices
linked with internal room geometry cannot be easily
assessed; innovative building component or materials
are not appropriately represented, etc. To make an
example, the Double Skin Façade, an “innovative”
technology for the envelop component, is sometimes
treated like a whole zone. However, some of its
features are not automatically represented by the
common behaviour of a zone. The air, entering the
inlet openings, is heated by some degrees; this effect,
along with the presence of the shading device, might
affect its natural ventilation; also the determination of
inside superficial convective coefficients has more
influence in this case than in that of a generic zone.
Today, BSs are thus becoming more and more
heterogeneous with components from many
engineering domains. They are complicated systems,
governed by control laws, filled with innovative
responsive elements (plant system, new material,
strategic building features, etc.). Therefore, BPS
tools must include these new complexities and be
able to solve simultaneously coupled problems, as
already claimed by the need of integrated simulation
(Clarke, 2001b; Kelly and Strachan, 2001).
Due to this evolving and inherent interdisciplinary
nature, collaboration among model developers should
be certainly enabled and encouraged.

Coping with evolution
As biology confirms, complex, natural systems are
not created all at once but must evolve over time
(Dawkins, 1987). How this evolution takes place is a
crucial issue, as described by Fischer’s model of
evolution (Fischer, et al 1994): the Seeding,
Evolutionary growth, and Reseeding model (SER).
Accordingly to this model, to actualize tools like BPS
ones, “activities of unplanned evolution and periods
of deliberate (re)structuring and enhancement must
continually alternate each other”.
Consequently, BPS tools must be designed to evolve
with the user’s experience, since they cannot be a
priori designed able to fulfil any user requirements.
This evolution will lead to the creation of different
“species” grown in different contests to face different
problems, i.e. to a growing information space (a
mixture of annotations, partial designs, and
discussions), which must be structured, generalized,
and formalized periodically to incorporate such
“natural” evolution into a consistent updated frame.
This phase of reseeding, brings IT developers back in
to collaborate with application domain experts and
might benefit from new languages, frameworks,
enhanced functionalities, etc.

User & Developers’ role and related consequences
To allow evolutionary growth, advanced features
should be introduced or linked to BPS tools. Such
features might be: model development facilities, tools
for databases compilation and query, for the
personalization of user interface, for optimization
activities, for the management or presentation of
input and output, etc. Some of these facilities might
be acquired by interoperability among software;
others would benefit a higher level of coherence and
therefore should be more deeply integrated.
Project that follow the SER model are based on the
belief that human-computer interaction will evolve
from easy to use (even though not yet completely
achieved in the case of BPS) to easy to develop
(Fischer et al., 2004). Examples of End User
Development (EUD) are already present in today’s
tools, such as recording or writing Visual Basic
macros in spreadsheets, using lisp or GC scripting for
parameterize CAD drawing with Autocad or with
GenerativeComponents, etc.
There will be different levels of development to
allow user’s customization (simple, advanced and
expert development mode). For each level, the right
tools should be detected and implemented. Users
should not become IT experts. According with the
level of interaction they aim to reach, they might be
asked to gain some more insight in IT. What might
be helpful in such user’s customization process is a
clear model structure view, which may be achieved
by the use of functional block diagrams. The
navigation through “similar class diagrams”,
explicitly developed for users, for instance, can give
with a picture a lot of information also at model

- 639 -

level. This is crucial for concept’s communication,
problem’s detection and existing code’s
comprehension, since avoids burying domain
knowledge in an unreadable code, where model’s
assumptions and equations are spread all over the
program.

The Open source approach
One important aspect in the evolutionary growing
process is the enrichment of the simulation
components library. This enrichment might consist in
a compiling activity (insertion of data, describing
equipment, materials, etc., into a specific computer
code, e.g. via web pages) or in a modelling activity
(development of new models or modification of old
ones) and may be achieved effectively, following the
Open Source Scheme’s modelling activity approach.
Having an enlarged pool of potential model
developers, the number of implemented models
might increase exponentially. A structured web-
based information repository is surely needed to
assure models diffusion and maintenance. The
definition of development’s rules, the clear
presentation of achieved results and the management
and documentation of developed code would allow
several developers (separated in space and/or time) to
collaborate. A cross-validation might occur as a first
kind of validation.
The reseeding phase should follow periodically to
ensure the implementation of a stable release of the
source code (placed in a specific directory).
However, to guarantee the reseeding phase with a
correct schedule, some higher organization should be
charged of that. A public-figure might have the right
and the interests to fulfil this role, since today’s
energy conservation laws are asking for more and
more complex energy performance standard.

DEVELOPMENT PROCESS’ ISSUE
To handle efficiently BS’s complexity, many issue
had to be faced at different levels, starting from
mathematical models joining, to stability issues. A
coherent and integrated approach is required. In the
following, we will examine some issues concerning
the development process of a multi-domain,
intelligible, stable, robust and extendible BS’s model.

Modelling vs. Simulation
Some model’s development approaches tend to
separate the activities of modelling from that of
simulating. Modelling is the act of describing a
system, by extracting, organizing, and representing in
some unambiguous way the knowledge gained upon
the System Under Investigation (SUI), i.e. by
building a conceptual model (CM). There are
different system description levels and different
languages or meta-languages to do that. Undoubtely
the features of the CM will affect quite all the aspects
of a simulation study: the data requirements, the
developing model speed, the model validity, the

experimentation speed and the confidence in model’s
results. However, the CM’s notion is still vague and
not well defined. Someone separates the CM from
the communicative model; others identify a domain-
oriented and a design-oriented CM. What seems to be
agreed is that the CM refers to the early stages of a
simulation study and that it “is a non-software
specific description of the simulation model that is to
be developed, describing its objectives, inputs,
outputs, content, assumptions and simplifications
(Robinson, 2004).
Simulating is instead the act of performing
experiments on the model to make predictions about
how the real system would behave; that is how the
real SUI would react when subjected to such
stimulating conditions. Even in this case some
differences exist between a simulation model and a
simulation program (Birta & Arbez, 2007).
A simulation model (SM) is the piece of computer
code that embodies the SUI; a simulation program
(SP) is the stand-alone executable code employing
such SM and all the other needed facilities (I/O, etc.).
Any of the programming languages today available
may be used to build a SM and, later on, a SP, but,
typically in the model design phase, model oriented
languages, designed expressly to support simulation
studies, like Modelica, CSIM, and SIMPLE++, may
be more helpful. In these cases, it is possible to
develop BPS tools in an advanced “framework”
expressly designed for the development of SP.

Verification and Validation
The purpose of a SM is to provide an adequate
emulation of some SUI performance. However, as
Karl Popper pointed out: “theories are not verifiable,
but they can be corroborated”. Consequently, to
assess the SM suitability in respect to the project
goals, different activities of Verification and
Validation (V&V) should be performed1.
However, the way the CM evolves towards the SP
and the SM’s architecture might have an influence on
BPS tools’ attitude towards V&V.
For example, the possibility to “isolate” part of the
model to validate it might be valuable. Nevertheless,
in some cases, it will be mandatory to verify or
validate each module used in combination with
others, instead of validate each of them separately.
This has led to the problematic definition of an
empirical or analytical whole model V&V
methodology (Jensen, 1995; Xiao et al., 2002).
Besides, to take under control model’s evolution, a
specific structure used to encapsulate tests which
“allow developers to ensure that recent code
modifications have not resulted in unforeseen
impacts on program predictions” has also been
developed (Ben-Nakhi & Aasem, 2002). Still the

1 for much insight into V&V’s activities and meanings refer to
Oberkampf & Trucano, 2002

- 640 -

evolutionary nature of BPS tools has led also to the
necessity of diffuse V&V activities (Jensen, 1995).
These are some of the aspects that should be handled
when defining model’s structure and tool’s
development process.

Modularity’s concepts
To allow a development at a community level, the
concept of software modularity might help. Once
interface’s roles have been defined, software
modularity should allow each expert to easily
develop functionalities he is specialized in. However,
modularity has different goal and implication at
different levels of the tool’s implementation.
At a common user level, modularity provides design
functional elements, structured in a way to allow the
mixing and recombination of an arbitrary number of
these functional components in a specific layout.
Consequently, functional layout modularity and
configuration’s flexibility are the main aspects at this
level. If we look at hospital design, a functional
layout modular structure of the model implemented
into a BPS tool will allow the designer to choose
among modules (intensive care unit, reception area,
operating room) or easily add a new one. Such
modules may define a “template” for hospital design.
An important aspect for modules composition is
connection rules’ definition, either imposed directly
by the user, or automatically generated. Some rules
might be mandatory (a bathroom must be divided
from the living room), other not (the kitchen should
be near to the dining room). Generalising, this is the
BS’s representational level of the BS’s model. At
this level, the user deals with components or
subsystems that are real entities and “should only
connect the pipe with the radiator”. Of course,
module’s granularity levels should be consistent with
the specific design process’ goal.
Along with the representational level, there are also a
mathematical level, a numerical level and a code
level, which affect the definition of tools’ modularity.
At a mathematical level, modularity leads to a
structure where combining new subsystems’
mathematical models is easy and does not require
modifying the entire system model. One fundamental
paradigms of Object Oriented (OO) programming,
i.e. encapsulation, exemplifies this concept. Actually,
it aims at hiding the internal mechanisms and data
structures of a software component, e.g. a
subsystem’s mathematical model, behind a defined
interface. In such a way, the other subsystems’
mathematical models only need to know what
information they have to exchange through that
interface. This approach will allow easy ways to
replace or improve mathematical models, and may be
identified as mathematical models modularity.
To support the evolutionary growth phase, a modular
mathematical model, which does not assure
extendibility by default, has to comply with some

constrains: the definition and use of standardised
module interfaces. This will allow developing any
new mathematical model as a real stand-alone
module, which will be later just “plugged in” into the
program. This kind of standardization will also
improve flexibility and may be identified as
standardised mathematical models modularity.
However, problems may arise from the development
of mathematical modularity. The numerical solution
of the simulated system imposes a choice among
several numerical schemes and among ways to
handle interactions between mathematical modules.
The way mathematical modules are combined with
each other could lead to a sequential (TRNSYS) or
simultaneous (Esp-r, IDA ICE) solution. The
designed inter-module interaction procedure might
affect the accuracy and stability of the overall code.
The inter-module interaction procedure may allow or
deny numerical solution’s parallelization.
Furthermore, the coupling through co-simulation2 of
extremely different equations could lead to
conditionally stable system; hence, much attention
should be paid when combining different modules, as
showed by Wang & Chen, 2007. These aspects, with
specific reference to performance, V&V and
accuracy, should be properly handled when
developing modular mathematical models. These are
the modularity implications at the numerical level.
At the end, this standardized mathematical
modularity has to be converted into code modularity.
Code’s modularity aims at facilitating code’s reuse
and maintenance or improvement activities by
encapsulation and responsibilities assignment. These
requirements are clearly addressed by some of the
OO design rules, such that of low coupling3 and high
cohesion4 between different code’s parts.
Hence, modularity may exist at different levels and
might affect V&V processes, accuracy prevision,
stability, etc. Consequently, we should be careful
when speaking about it and we should try to set some
constraints at each of the above-mentioned levels to
reduce its influences on the tool. Nevertheless, to
comply with the evolutionary growth, at any level the
modularity has to assure the following goals:

• to allow users to better understand and split
the simulated system in a coherent way;

• to ease modules’ selection and modification,
according with simulation needs;

• to allow easy ways to extend the model;
• to allow modules reuse and exchange via a

web-based repository.
Now we can introduce the concept of enriched
modularity, referring to the aforementioned features.

2 for an analysis of the implications of different approaches to run-
time interoperability among tools, refer to Trcka et al., 2007
3 dependency of a software component from others is low
4 functional component homogeneity is high and various
components work together to reach higher complexity levels

- 641 -

TOOLS COMPARISON
Focusing the attention on the development of
building fabric’s simulation model and not on that of
the whole BS, the main differences among BPS tools
will be analyzed. Those differences concern
implemented mathematical models, internal structure
and applicability domains of BPS tools.
The differences concerning the implemented
mathematical models are related to: how conduction
heat transfer is calculated (numerical or analytical
based methods); how zone air is treated (mixing,
nodal, zonal or CFD model); how convective
coefficients are calculated; how longwave radiative
heat transfer is distributed within zones (with a
fictitious T*, with or without view factor
calculation); how windows’ transmission of direct
shortwave or diffuse radiation is calculated and
distributed within zones; how 3D effect are taken
into account; which kind of controls are allowed;
how shading devices are treated; which sky model
has been implemented, etc.5
Numerical problems, computational time’s increase,
sensitivity to input data’s uncertainty, difficulties
concerning algorithm implementation, etc., have led
to the implementation of one model over the others.
However, even if the differences are so wide-ranging,
in many cases, BPS tools have been classified
according to the way conduction heat transfer
through fabric was treated. Actually, heat exchange
by conduction was the main concern of BPS tools
once. Along that, the system composed by building
enclosures has been usually represented in a
“compact” way, by a large sparse matrix of equation
with predefined topological structure. Probably, the
governing domain theory of combined problems of
thermal diffusion and aero-dynamic system, has led
to this monolithic representation (Tang, 1997).
However, precisely for solving the difficulties
involved in the maintenance, further development or
adaptation to non-standard problem of these
monolithic tools, in the mid ‘80s, the need for
general-purpose and modular tools, led to the birth of
many projects (e.g. EKS6, SPARK and IDA ICE7).
Nevertheless, despite the high enthusiasm and
expectations for their success, we will see that their
supremacy has not yet been clearly stated.
A general-purpose simulation program (IDA ICE,
visualSPARK8, Dymola9) treats mathematical models
as input data, being characterized by great
extendibility and flexibility. The other kind of tools,
the Special-purpose ones, (ESP-r10, EnergyPlus11),

5 for a more complete list of mathematical models implemented
inside BSC refer to Crawley et al., 2005
6 http://www.esru.strath.ac.uk/Programs/EKS.htm
7 http://www.equa.se/eng.ice.html
8 http://gundog.lbl.gov/VS/spark.html
9 http://www.dynasim.se/index.htm
10 http://www.esru.strath.ac.uk/Programs/ESP-r.htm
11 http://apps1.eere.energy.gov/buildings/energyplus/

takes advantages from the structure of a class of
problems to reach high execution speed. This
approach leads also to robustness and limits the risk
of generating insoluble problems, as far as input data
are reasonable. Both special-purpose and general-
purpose tools commonly lead to the construction of a
global matrix for the BS. However, in the first case,
the structure of this matrix is pre-defined, and it
might be difficult to add other equations. While, in
the second case, the tool has been designed to allow
the addition of new equations by handling automatic
symbolical manipulation of this new system to create
a simpler-to-solve, or lower index matrix.
However, other approaches to modularity exist, thus,
in the following, we will go much into the details of
the features of the most relevant ones.

Special-purpose tools
Probably the most reliable and documented
methodology for the implementation of building’s
simulation model is that used by Esp-r (Clarke,
2001a). This tool solves conduction with a finite
difference approach and bases the process of the
simulation model’s implementation upon the
automatic generation of a single sparse matrix of
algebraic equations. This matrix is built thanks to the
definition of some primitive parts and their
characteristic heat balance equations. This approach
discretizes the building in control volumes, each
represented by a node. To simplify the concept, a
node could be a capacity/insulation system, a surface,
or a fluid volume. In all the cases, the most general
configuration is studied and self-coupling and cross-
coupling coefficients between state variables are
defined. A routine builds up a sparse matrix of
equations, where these coefficients are opportunely
positioned. The solution of this overall sparse matrix
is achieved through its partitioning into sub-matrices:
“component matrixes” and a “coupling matrix”. Each
component matrix can be processed using
customized solvers applied to each domain equation-
set, at any frequency (to manage stiff problems’
complexity). At the end, thanks to the coupling
matrix, the global solution is calculated. This
numerical method ensures accuracy by preserving
spatial and temporal integrity of real energy systems,
since it solves simultaneously at each time step a
whole system of PDE-sets.
In this case, realty has been “modularized”, however,
to include a new equation in such a structure, it is
necessary to know the global matrix’s
implementation routine and to automatically
calculate those self and cross coupling coefficients to
be added to the general matrix.
Different functionalities are offered by TRNSYS,
where the user can encapsulate new models, as
FORTRAN routines with standardized arguments, in
so-called TYPEs. These TYPEs are represented
through icons that can be dragged and dropped in a

- 642 -

Graphical User Interface12. However, this possibility
has not been extended to building’s components,
limiting the level of standard mathematical model
modularity achieved by this special-purpose tool.

General-purpose tools
Since the majority of the physical systems, can be
characterized by algebraic and differential equations,
ordinary (ODE) or partial (PDE), generic tools for
their resolution have been developed. Special-
purpose tools require that PDEs are turned into a
system of Algebraic Equations. On the contrary,
general-purpose tools try to solve, by symbolic
manipulation, a “general” system of differential-
algebraic equations (DAEs), composed of algebraic
and ODEs (PDEs should be discretized in space).
One attractive feature of general-purpose simulation
tools is that they follow the “divide and conquer”
rule, building successively larger component model’s
libraries.
Among general-purpose tools, there are Dymola,
OpenModelica13 and IDA ICE. Dymola is the most
used commercial front-ends for Modelica, like
OpenModelica is the free one. Modelica is an Object-
Oriented, declarative, multi-domain modelling
language for component-oriented modelling of
complex systems. The Neutral Model Format (NMF),
introduced since the late 1980s by Per Sahlin (Sahlin
& Sowell, 1989) and upon which IDA ICE has been
developed, is a predecessor of Modelica.
The main objectives of such language are to allow
anyone:

• to easily learn modelling, by knowing the
system’s equations;

• to disregard numerical solution’s problems
or coding ones and to focus on modelling;

• to easily and quickly implement new
models, even by inheriting by old ones;

• to easily understand models developed by
others, by identifying each equation.

The goals of this approach are to divide modelling
from simulation and to assure extendibility,
flexibility of use and code’s reuse. The equations
written in Modelica describe equality, having no pre-
defined causality and are used to define connections
and modules’ behaviour. The simulation environment
manipulates these equations symbolically to
determine which term are inputs and outputs and
which execution order and numerical routine should
be preferable to solve the entire system.
Recently, a hygrothemal wall model (Nytsch-Geusen
et al., 2005) and a Multizone Airflow Model (Wetter,
2006) have been developed using Modelica. The
model describing thermal processes between building
components is decomposed into simple thermal

12 for a description of TYPEs implementation and dynamic link
libraries refer to McDowell et al., 2004
13 http://www.ida.liu.se/projects/OpenModelica/

processes (heat convection, long-wave radiation, etc.)
connected in such a way that they share the
temperature of the body and that the sum of all heat
flows in such connection point is set to zero. The use
of OO programming typical concepts, help in
aggregating common subsystems modules into
macro-components to achieve more user-friendliness.
However, some drawbacks in this approach are: poor
runtime efficiency, limitations in the solution of
system with impulses as inputs, or PDEs and
difficulties in understanding simulation error
messages, due to the strong symbolic manipulation
applied to model’s equations.
Besides, even if it is rather easy and natural to
achieve reusability using object-oriented modeling
tools when models are described by DAE, some
problems might arise when model variables are
expressed with complicated algebraic algorithms. In
the case of highly geometrical problems, as radiation
flows’ distribution among internal surfaces, object-
oriented modelling is less effective and reusability is
not gained implicitly by using Modelica. Additional
efforts should be made to develop fully reusable
components, as shown in (Sodja & Zupančič, 2008).
However, even if some advantage and disadvantage
of these tools have been reported, the supremacy of
one approach over the other has not been yet proved.
Actually a practical and politically acceptable
framework for fair comparisons of numerical
performance, that takes into account at least the
physical phenomena modelled, the level of ambition
of the physical models, the level of numerical
accuracy obtained and the time resolution obtained,
does not exist (Shalin et al., 2004).
To give a first quantitative impression of the
differences among these tools Shalin et al., 2004,
made some comparisons between IDA ICE and
EnergyPlus. An experiment where EnergyPlus was
run with six timesteps per hour, led to 17,712 steps
and an execution time of 250 s for a 4 month summer
simulation. Running IDA ICE with a maximum
timestep of 1,5 h and an adjusted tolerance of 0,015
gave 17,755 steps and an execution time of 127 s.
Conversely, comparisons without natural ventilation
have shown that EnergyPlus was faster.
Other comparisons between multizone building
models developed with Modelica and TRNSYS, in
term of development and computational times, have
been presented by Wetter & Haugstetter, 2006. The
authors compare the model development time for
their Modelica model with the multizone thermal
building model BuildOpt (giving a time estimate for
the TRNSYS building model was quite impossible).
They have concluded that using Modelica lead to a
five to ten times reduction in development time
compared to using C/C++ languages and in a four
times smaller code’s size. However, TRNSYS was
faster than Dymola and some convergence problems
have been noticed with Dymola and Simulink.

- 643 -

Nevertheless, since authors did not explore ways to
improve Modelica model’s numerical performance,
they concluded that a longer computation time might
not be an inherent feature of equation-based
simulation environments.

The Matlab/Simulink environment
The Matlab/Simulink environment has been recently
used to implement BPS (El Khoury et al., 2005;
Kalagasidis et al., 2007). As a matter of fact, it
allows to define models whose hypothesis are well
known by the user, to use the drag and drop
functionality offered by Simulink and to be able to
use the huge library of numerical and statistical
methods implemented in Matlab. However, some
drawbacks of such approach have been recently
highlighted by some publications (Zupančič & Sodja,
2008). Simulink: 1) imposes the development of
procedural models; 2) assumes that a system can be
decomposed into block diagram structures with
causal interactions, leading to significant analytical
transformation’s efforts to prepare the problem in this
form; 3) is a “signal-oriented” environment, that
often lead to algebraic loops whose numerical
resolution might be risky; 4) imposes a modelling
structure that might forbid the subdivision of models
in modules with physical meanings, causing the
spread of parameters of singular components in
mixed model expressions. In addition, developing
something in this context implies the cost of the tool.

The “remote procedure” approach
Going back to the physics of buildings, another tool
named PsiGene14, models building’s components
(wall, windows, air volumes, radiators, etc.) as
autonomous objects that have topological and
aggregation relations and that interact
asynchronously by messages, exchanging value
(surface temperatures, radiation, etc.), only when
necessary (Zimmermann, 2001). Within autonomous
objects, physical effects are modelled in classical
ways by solving the physical equations numerically.
No global system of equations is solved at run-time.
For example, a room object collects all the heat-flows
from its neighboring objects (walls, heating
installations, sun, etc.) and uses these values together
with the elapsed time interval to compute its air’s
temperature. It doesn’t have to know how those heat
flows are calculated. To allow this approach, the
interfaces of the objects and the data they exchange
are declared by predefined design patterns which
provide the “glue” between objects or between partial
models (Schütze et al., 1999).
A similar approach is that of agent oriented
engineering. This paradigm aims at reaching an
object-aware rather than object-oriented model, by
using agents, i.e. “encapsulated computer system
situated in some environment and capable of flexible,
autonomous action in that environment in order to

14 http://wwwagz.informatik.uni-kl.de/projects/psigene.html

meet its design objectives” (Wooldridge, 1997).
Further work should help to understand if and how
such construct might help BS model’s development.
However, even if the PsiGene’s approach closely
resembles reality, it might lead to numerical
problems. In this case, the implementation of airflow
models in free spaces and in HVAC systems seems to
be still an open problem (Zimmermann, 2001).

CONCLUSION
BSs and society’s evolutionary nature imposes that
the development process of BPS tools follows the
approach described by the SER model. Furthermore,
since BPS is an interdisciplinary and heterogeneous
subject, a collaborative environment should be
enabled and encouraged. However, we have derived
that different modelling and simulating activity
generates different model’s levels, thus it is
necessary to analyse the nature and the implication of
each of them to set the right recommendations.
All these considerations lead us to underline the
importance of attaining an “enriched” modularity
during the model development process, as previously
defined. Indeed, without this characterization,
modularity has been interpreted in different ways
leading to different approaches to M&S. For
example, to fulfil flexibility’s requirements,
autonomous objects (AO) that interact when
necessary (PsiGene) have been developed. To free
developers from numerical problems, tools that
accept differential-algebraic equations (DAE) as
input for the simulation (Dymola), have been
implemented. To allow new interactions, maintaining
the robust and efficient previous structure (Esp-r,
EnergyPlus), co-simulation (CS) has been pursued.
These different approaches lead to different
implications. The first approach (AO) might result in
an extensive “atomization” of the calculation, leading
to difficulties in reaching a convergent and reliable
solution. The second approach (DAE) might result in
low numerical resolution efficiency and in debugging
difficulties. The third approach (CS) would be
difficult to maintain and extend. Each of such
approaches, while trying to reach some specific
goals, does not succeed in addressing also the others.
The above-mentioned considerations aim at showing
that a full-enriched modular BPS tool is not yet ready
and that a technology driven research should be
pursued to develop it. Starting from perceived
problems and ambitions and seeking appropriate
technological means, different concepts derived by
Information Technology should be further analyzed
to understand if similar formalization might lead to a
renewed modelling, simulating and validating
methodology. It can be concluded that, thanks to
current IT facilities and to new knowledge
formalization derived from other fields, a reseeding
phase might lead to a more functional approach to
model development and BPS tools use, more focused
and oriented towards their evolutionary growth.

- 644 -

REFERENCES
Ben-Nakhi A, Aasem EO., 2002, Development and

integration of a userfriendly validation module
within whole building dynamic simulation,
Energy Conversion and Management, vol. 44,
53-64.

Birta, LG. and Arbez, G., 2007, Modelling and
Simulation, Exploring Dynamic System
Behaviour, Springer, London, UK.

Clarke JA. 2001a. Energy simulation in building
design. Second Edition, Butterworth-
Heinemann, Oxford, UK.

Clarke, J.A. 2001b. Integrated Building Performance
Simulation, ESRU, University of Strathclyde,
Glasgow, Scotland, UK.

Crawley, D.B., Hand, J.W., Kummert, M. and
Griffith, B.T. 2005. Contrasting the capabilities
of building energy performance simulation
programs, US DOE, Washington, DC, USA.

Dawkins, R. 1987. The Blind Watchmaker, W.W.
Norton, New York, USA.

El Khoury, Z., Riederer, P., Couillaud, N., Simon, J.,
Raguin, M. 2005. A multizone building model
for matlab/simulink environment, Proc. of
IBPSA ’05, Montréal, Canada, 525-532.

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G.,
Mehandjiev, N. 2004. Meta-Design: A
Manifesto for End-User Development,
Communications of the ACM, vol. 47(9), 33-37.

Fischer, G., McCall, R., Ostwald, J., Reeves, B.,
Shipman, F. 1994, Seeding, evolutionary growth
and reseeding, Proc. of the SIGCHI conference
on Human factors in computing systems, Boston,
United States, p.292-298.

Jensen, S.O. 1995, Validation of building energy
simulation programs: a methodology, Energy
and Buildings, vol. 22, 133-144.

Kalagasidis, A.S., Weitzmann, P., Nielsen, T.R.,
Peuhkuri, R., Hagentoft, C.E., Rode, C. 2007,
The International Building Physics Toolbox in
Simulink, Energy and Buildings, vol. 39(6), 665-
674.

Kelly, N. and Strachan, P. 2001. Multi-Domain
Modelling Using the ESP-r System, Proc. of
eSim '01, Ottawa, 253-260.

McDowell, T.P., Bradley, D.E., Thornton, J.W. and
Kummert, M. 2004. Simulation synergy:
expanding TRNSYS capabilities and usability,
Proc. of SimBuild 2004, Boulder, USA.

Nytsch-Geusen, C., Nouidui, T., Holm, A., Haupt,
W. 2005. A hygrothermal building model based
on the object-oriented modeling language
Modelica, Proc. of IBPSA ’05, Montréal,
Canada, 867-874.

Oberkampf, W.L. & Trucano, T.G.2002, Verification
and validation in computational fluids dynamics,
Progress in Aerospace Sciences, vol 38, 209-
272.

Robinson S. 2004, Simulation: The Practice of Model
Development and Use, John Wiley & Sons, UK.

Sahlin, P. & Sowell, E.F. 1989. A neutral format for
building simulation models, Proc. of IBPSA ’89
Conference, Vancouver, Canada, 147-154.

Schütze, M., Riegel, J.P., Zimmermann, G. 1999,
PSiGene: A Pattern-Based Component
Generator for Building Simulation, Theory and
practice of object systems, vol. 5(2), 83-95.

Sodja, A., Zupančič, B. 2008, Some aspects of
thermal and radiation flows modelling in
buildings using Modelica, Proc. of 10th
International Conference on Computer M&S,
Cambridge, UK., 637-642.

Tang, D. 1997, Object Technology in Building
Environmental Modelling, Building and
Environment, vol. 32, 45-50.

Trcka, M., Wetter, M., Hensen, J. 2007. Comparison
of co-simulation approaches for Building and
HVAC/R System Simulation, Proc. of the
Building Simulation ‘07, Beijing, China, 1418-
1425.

Wang, L. & Chen, Q. 2007. Theoretical and
numerical studies of coupling multizone and
CFD models for building air distribution
simulations, Indoor Air, vol. 17(5), 348-361.

Wetter, M.& Haugstetter, C. 2006. Modelica versus
TRNSYS - A Comparison Between an Equation-
Based and a Procedural Modeling Language for
Building Energy Simulation, Proc. of the 2nd
SimBuild Conference, Cambridge, USA.

Wetter, M. 2006. Multizone Airflow Model in
Modelica, Proc. of the 5th International
Modelica Conference, Vienna, Austria.

Wooldridge, M. 1997, Agent-based software
engineering, IEE Proc. on Software Engineering,
144 (1), 26-37.

Xiao, D., Spitler, J.D., Rees, S.J. 2002, An Analytical
Verification Test Suite for Multizone Building
Fabric and Control Models in Whole Building
Energy Simulation Programs, Proc. of the eSim
2002 Conference, Montreal, Canada, 260-267.

Zimmermann, G., 2001. A New Approach to
Building Simulation Based on Communicating
Objects, Proc. of IBPSA ‘01 Conference.

Zupančič, B., Sodja, A. 2008, Object oriented
modelling of variable envelope properties in
buildings, WSEAS Transactions on Systems and
Control, vol. 3(12), 1046-1056.

- 645 -

