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ABSTRACT 
Over the past 30 years numerous Building Simulation 
Codes (BSC) have been developed. Nevertheless, 
none of them has yet become a “standard”. Focusing 
the attention on the use of advanced Object-Oriented 
Modelling, a review of the most used BSC is here 
carried out. First, new requirements have been 
investigated. Actually, the evolving nature of 
Building Systems and of society demand for tools 
designed to evolve at the hands of the users. 
Modularity seemed to be the answer to these needs. 
However, in the BPS (Building Performance 
Simulation) field, modularity has been interpreted in 
different ways leading to different approaches to 
Modelling and Simulation (M&S). A first purpose of 
this work is to redefine what modularity is needed in 
BPS tools (an “enriched” one) and subsequently to 
investigate if and how actual tools address that. 
Focusing on Building Fabric’s M&S, we have 
investigated the different approaches taken by Esp-r, 
IDA ICE and PsiGene. The goal was to understand if 
they could allow: simpler distributed calculus, 
distributed responsibilities in code’s developing, an 
exponential evolution of algebraic routines and an 
increased productivity and widespread use of these 
tools, thanks to design and process automation. The 
finding was that almost always when one of these 
requirements was addressed another one was 
unsatisfied. It could be concluded that such BPS tool 
(characterized by an enriched modularity) is not yet 
ready and that a technology driven research should 
be pursued to develop it. Indeed, different concepts 
derived by Information Technology should be further 
analyzed in order to understand if similar 
formalization might lead to a renewed modelling, 
simulating and validating methodology more focused 
and oriented towards BPS tools’ evolutionary 
growth. 

INTRODUCTION 
Energy savings in buildings is today mandatory in 
developed countries, so it is imperative to perform, 
during the design stage, an accurate estimation of the 
energy used by buildings to assure different kinds of 
comfort. To do that, we need first to describe the 
object of the design, as a collection of relationships 
among parts, i.e. a system (the conceptual model), 

and then to “emulate” its behaviour (through 
simulation) with an assured level of accuracy. The 
object of the design is the Building System or BS, 
which comprises Building’s Fabric, Building’s 
Envelope and Service Systems. The need to use 
simulation stems from its nature, i.e. from its 
complexity and time dependent performances. Its 
behaviour depends, in a complicate way, from 
different aspects, causing problems when 
simultaneously addressing all the interrelated 
performances of each subsystem. Simulation is the 
only way to allow the designer to explore the 
complex relationships between environment and 
building’s form, fabric, services and control. Besides, 
innovative technologies and knowledge progresses 
impose the development of new models and powerful 
modelling and simulation techniques in different 
research fields and application domains. These 
common issues, along with strong differences, claim 
the importance of a shared resolution approach, able 
to promote the work done in different fields and to 
allow reuse by modification. Modularity claimed 
good features for answering these requirements. 
However, in the BPS (Building Performance 
Simulation) field, modularity has been interpreted in 
different ways leading to different implications. The 
reason for these differences is certainly the issue’s 
complexity, but it is also the lack of exploitation of 
progresses achieved in other research fields. Hence, 
the aim of this paper is to understand: 

• why a fully developed suite of high quality 
software applications is still not available; 

• how modularity has been used till now and 
which kind of problems has encountered; 

• which new logical structures might help to 
define a new modelling, simulating and 
validating methodology. 

To do that, we will try to understand: 
• which new needs BPS tools should address 

and how old BSC might cope with those, 
• what are meanings and aspects of modelling 

and simulation (M&S) and why different 
development process approaches took place; 

• which are the major barriers in BPS tools’ 
development process (validation, numerical 
solution, etc); 
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• which kind of tool have been developed till 
now, with which major differences. 

NEW NEEDS & EXISTING CODES 
BSs have changed in the last years, as society has and 
as the possibilities offered by other technologies 
have. Many of the BPS tools on the market were born 
years ago and tried to address past requirements with 
the help of past knowledge and Information 
Technologies (ITs). Today, advanced knowledge and 
tools are available and requirements are changed. 
Globalization demand for economic convenience in 
using BPS tools; the law is struggling to emanate 
general, usable, and reliable regulations to address 
the environmental problem, while the evolution of 
BS and society demand an evolutionary growth of 
such tools. In the following, some of those new needs 
that more influence the BPS tool’s development 
process will be analysed to understand which issues 
should be addressed and solved by today’s BPS tools. 

BS’s evolution 
Some of the past requirements were dictated by the 
nature of past BSs. Traditional constructions allow 
specific assumptions that do not cope with new BS 
typologies. Large highly-glazed spaces are usually 
not well represented; room’s irregular geometry is 
usually not well taken into account when calculating 
internal longwave energy exchange; Indoor Air 
Quality impositions require accurate determinations 
of air flow inside and between different zones; the 
effect on building performances of shading devices 
linked with internal room geometry cannot be easily 
assessed; innovative building component or materials 
are not appropriately represented, etc. To make an 
example, the Double Skin Façade, an “innovative” 
technology for the envelop component, is sometimes 
treated like a whole zone. However, some of its 
features are not automatically represented by the 
common behaviour of a zone. The air, entering the 
inlet openings, is heated by some degrees; this effect, 
along with the presence of the shading device, might 
affect its natural ventilation; also the determination of 
inside superficial convective coefficients has more 
influence in this case than in that of a generic zone. 
Today, BSs are thus becoming more and more 
heterogeneous with components from many 
engineering domains. They are complicated systems, 
governed by control laws, filled with innovative 
responsive elements (plant system, new material, 
strategic building features, etc.). Therefore, BPS 
tools must include these new complexities and be 
able to solve simultaneously coupled problems, as 
already claimed by the need of integrated simulation 
(Clarke, 2001b; Kelly and Strachan, 2001). 
Due to this evolving and inherent interdisciplinary 
nature, collaboration among model developers should 
be certainly enabled and encouraged. 

Coping with evolution 
As biology confirms, complex, natural systems are 
not created all at once but must evolve over time 
(Dawkins, 1987). How this evolution takes place is a 
crucial issue, as described by Fischer’s model of 
evolution (Fischer, et al 1994): the Seeding, 
Evolutionary growth, and Reseeding model (SER). 
Accordingly to this model, to actualize tools like BPS 
ones, “activities of unplanned evolution and periods 
of deliberate (re)structuring and enhancement must 
continually alternate each other”. 
Consequently, BPS tools must be designed to evolve 
with the user’s experience, since they cannot be a 
priori designed able to fulfil any user requirements. 
This evolution will lead to the creation of different 
“species” grown in different contests to face different 
problems, i.e. to a growing information space (a 
mixture of annotations, partial designs, and 
discussions), which must be structured, generalized, 
and formalized periodically to incorporate such 
“natural” evolution into a consistent updated frame. 
This phase of reseeding, brings IT developers back in 
to collaborate with application domain experts and 
might benefit from new languages, frameworks, 
enhanced functionalities, etc. 

User & Developers’ role and related consequences 
To allow evolutionary growth, advanced features 
should be introduced or linked to BPS tools. Such 
features might be: model development facilities, tools 
for databases compilation and query, for the 
personalization of user interface, for optimization 
activities, for the management or presentation of 
input and output, etc. Some of these facilities might 
be acquired by interoperability among software; 
others would benefit a higher level of coherence and 
therefore should be more deeply integrated. 
Project that follow the SER model are based on the 
belief that human-computer interaction will evolve 
from easy to use (even though not yet completely 
achieved in the case of BPS) to easy to develop 
(Fischer et al., 2004). Examples of End User 
Development (EUD) are already present in today’s 
tools, such as recording or writing Visual Basic 
macros in spreadsheets, using lisp or GC scripting for 
parameterize CAD drawing with Autocad or with 
GenerativeComponents, etc. 
There will be different levels of development to 
allow user’s customization (simple, advanced and 
expert development mode). For each level, the right 
tools should be detected and implemented. Users 
should not become IT experts. According with the 
level of interaction they aim to reach, they might be 
asked to gain some more insight in IT. What might 
be helpful in such user’s customization process is a 
clear model structure view, which may be achieved 
by the use of functional block diagrams. The 
navigation through “similar class diagrams”, 
explicitly developed for users, for instance, can give 
with a picture a lot of information also at model 
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level. This is crucial for concept’s communication, 
problem’s detection and existing code’s 
comprehension, since avoids burying domain 
knowledge in an unreadable code, where model’s 
assumptions and equations are spread all over the 
program. 

The Open source approach 
One important aspect in the evolutionary growing 
process is the enrichment of the simulation 
components library. This enrichment might consist in 
a compiling activity (insertion of data, describing 
equipment, materials, etc., into a specific computer 
code, e.g. via web pages) or in a modelling activity 
(development of new models or modification of old 
ones) and may be achieved effectively, following the 
Open Source Scheme’s modelling activity approach. 
Having an enlarged pool of potential model 
developers, the number of implemented models 
might increase exponentially. A structured web-
based information repository is surely needed to 
assure models diffusion and maintenance. The 
definition of development’s rules, the clear 
presentation of achieved results and the management 
and documentation of developed code would allow 
several developers (separated in space and/or time) to 
collaborate. A cross-validation might occur as a first 
kind of validation. 
The reseeding phase should follow periodically to 
ensure the implementation of a stable release of the 
source code (placed in a specific directory). 
However, to guarantee the reseeding phase with a 
correct schedule, some higher organization should be 
charged of that. A public-figure might have the right 
and the interests to fulfil this role, since today’s 
energy conservation laws are asking for more and 
more complex energy performance standard. 

DEVELOPMENT PROCESS’ ISSUE 
To handle efficiently BS’s complexity, many issue 
had to be faced at different levels, starting from 
mathematical models joining, to stability issues. A 
coherent and integrated approach is required. In the 
following, we will examine some issues concerning 
the development process of a multi-domain, 
intelligible, stable, robust and extendible BS’s model. 

Modelling vs. Simulation 
Some model’s development approaches tend to 
separate the activities of modelling from that of 
simulating. Modelling is the act of describing a 
system, by extracting, organizing, and representing in 
some unambiguous way the knowledge gained upon 
the System Under Investigation (SUI), i.e. by 
building a conceptual model (CM). There are 
different system description levels and different 
languages or meta-languages to do that. Undoubtely 
the features of the CM will affect quite all the aspects 
of a simulation study: the data requirements, the 
developing model speed, the model validity, the 

experimentation speed and the confidence in model’s 
results. However, the CM’s notion is still vague and 
not well defined. Someone separates the CM from 
the communicative model; others identify a domain-
oriented and a design-oriented CM. What seems to be 
agreed is that the CM refers to the early stages of a 
simulation study and that it “is a non-software 
specific description of the simulation model that is to 
be developed, describing its objectives, inputs, 
outputs, content, assumptions and simplifications 
(Robinson, 2004). 
Simulating is instead the act of performing 
experiments on the model to make predictions about 
how the real system would behave; that is how the 
real SUI would react when subjected to such 
stimulating conditions. Even in this case some 
differences exist between a simulation model and a 
simulation program (Birta & Arbez, 2007). 
A simulation model (SM) is the piece of computer 
code that embodies the SUI; a simulation program 
(SP) is the stand-alone executable code employing 
such SM and all the other needed facilities (I/O, etc.). 
Any of the programming languages today available 
may be used to build a SM and, later on, a SP, but, 
typically in the model design phase, model oriented 
languages, designed expressly to support simulation 
studies, like Modelica, CSIM, and SIMPLE++, may 
be more helpful. In these cases, it is possible to 
develop BPS tools in an advanced “framework” 
expressly designed for the development of SP. 

Verification and Validation 
The purpose of a SM is to provide an adequate 
emulation of some SUI performance. However, as 
Karl Popper pointed out: “theories are not verifiable, 
but they can be corroborated”. Consequently, to 
assess the SM suitability in respect to the project 
goals, different activities of Verification and 
Validation (V&V) should be performed1. 
However, the way the CM evolves towards the SP 
and the SM’s architecture might have an influence on 
BPS tools’ attitude towards V&V. 
For example, the possibility to “isolate” part of the 
model to validate it might be valuable. Nevertheless, 
in some cases, it will be mandatory to verify or 
validate each module used in combination with 
others, instead of validate each of them separately. 
This has led to the problematic definition of an 
empirical or analytical whole model V&V 
methodology (Jensen, 1995; Xiao et al., 2002). 
Besides, to take under control model’s evolution, a 
specific structure used to encapsulate tests which 
“allow developers to ensure that recent code 
modifications have not resulted in unforeseen 
impacts on program predictions” has also been 
developed (Ben-Nakhi & Aasem, 2002). Still the 

                                                           
1 for much insight into V&V’s activities and meanings refer to 
Oberkampf & Trucano, 2002 
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evolutionary nature of BPS tools has led also to the 
necessity of diffuse V&V activities (Jensen, 1995). 
These are some of the aspects that should be handled 
when defining model’s structure and tool’s 
development process. 

Modularity’s concepts 
To allow a development at a community level, the 
concept of software modularity might help. Once 
interface’s roles have been defined, software 
modularity should allow each expert to easily 
develop functionalities he is specialized in. However, 
modularity has different goal and implication at 
different levels of the tool’s implementation. 
At a common user level, modularity provides design 
functional elements, structured in a way to allow the 
mixing and recombination of an arbitrary number of 
these functional components in a specific layout. 
Consequently, functional layout modularity and 
configuration’s flexibility are the main aspects at this 
level. If we look at hospital design, a functional 
layout modular structure of the model implemented 
into a BPS tool will allow the designer to choose 
among modules (intensive care unit, reception area, 
operating room) or easily add a new one. Such 
modules may define a “template” for hospital design. 
An important aspect for modules composition is 
connection rules’ definition, either imposed directly 
by the user, or automatically generated. Some rules 
might be mandatory (a bathroom must be divided 
from the living room), other not (the kitchen should 
be near to the dining room). Generalising, this is the 
BS’s representational level of the BS’s model. At 
this level, the user deals with components or 
subsystems that are real entities and “should only 
connect the pipe with the radiator”. Of course, 
module’s granularity levels should be consistent with 
the specific design process’ goal. 
Along with the representational level, there are also a 
mathematical level, a numerical level and a code 
level, which affect the definition of tools’ modularity. 
At a mathematical level, modularity leads to a 
structure where combining new subsystems’ 
mathematical models is easy and does not require 
modifying the entire system model. One fundamental 
paradigms of Object Oriented (OO) programming, 
i.e. encapsulation, exemplifies this concept. Actually, 
it aims at hiding the internal mechanisms and data 
structures of a software component, e.g. a 
subsystem’s mathematical model, behind a defined 
interface. In such a way, the other subsystems’ 
mathematical models only need to know what 
information they have to exchange through that 
interface. This approach will allow easy ways to 
replace or improve mathematical models, and may be 
identified as mathematical models modularity. 
To support the evolutionary growth phase, a modular 
mathematical model, which does not assure 
extendibility by default, has to comply with some 

constrains: the definition and use of standardised 
module interfaces. This will allow developing any 
new mathematical model as a real stand-alone 
module, which will be later just “plugged in” into the 
program. This kind of standardization will also 
improve flexibility and may be identified as 
standardised mathematical models modularity. 
However, problems may arise from the development 
of mathematical modularity. The numerical solution 
of the simulated system imposes a choice among 
several numerical schemes and among ways to 
handle interactions between mathematical modules. 
The way mathematical modules are combined with 
each other could lead to a sequential (TRNSYS) or 
simultaneous (Esp-r, IDA ICE) solution. The 
designed inter-module interaction procedure might 
affect the accuracy and stability of the overall code. 
The inter-module interaction procedure may allow or 
deny numerical solution’s parallelization. 
Furthermore, the coupling through co-simulation2 of 
extremely different equations could lead to 
conditionally stable system; hence, much attention 
should be paid when combining different modules, as 
showed by Wang & Chen, 2007. These aspects, with 
specific reference to performance, V&V and 
accuracy, should be properly handled when 
developing modular mathematical models. These are 
the modularity implications at the numerical level. 
At the end, this standardized mathematical 
modularity has to be converted into code modularity. 
Code’s modularity aims at facilitating code’s reuse 
and maintenance or improvement activities by 
encapsulation and responsibilities assignment. These 
requirements are clearly addressed by some of the 
OO design rules, such that of low coupling3 and high 
cohesion4 between different code’s parts. 
Hence, modularity may exist at different levels and 
might affect V&V processes, accuracy prevision, 
stability, etc. Consequently, we should be careful 
when speaking about it and we should try to set some 
constraints at each of the above-mentioned levels to 
reduce its influences on the tool. Nevertheless, to 
comply with the evolutionary growth, at any level the 
modularity has to assure the following goals: 

• to allow users to better understand and split 
the simulated system in a coherent way; 

• to ease modules’ selection and modification, 
according with simulation needs; 

• to allow easy ways to extend the model; 
• to allow modules reuse and exchange via a 

web-based repository. 
Now we can introduce the concept of enriched 
modularity, referring to the aforementioned features. 

                                                           
2 for an analysis of the implications of different approaches to run-
time interoperability among tools, refer to Trcka et al., 2007 
3 dependency of a software component from others is low 
4 functional component homogeneity is high and various 
components work together to reach higher complexity levels 
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TOOLS COMPARISON 
Focusing the attention on the development of 
building fabric’s simulation model and not on that of 
the whole BS, the main differences among BPS tools 
will be analyzed. Those differences concern 
implemented mathematical models, internal structure 
and applicability domains of BPS tools. 
The differences concerning the implemented 
mathematical models are related to: how conduction 
heat transfer is calculated (numerical or analytical 
based methods); how zone air is treated (mixing, 
nodal, zonal or CFD model); how convective 
coefficients are calculated; how longwave radiative 
heat transfer is distributed within zones (with a 
fictitious T*, with or without view factor 
calculation); how windows’ transmission of direct 
shortwave or diffuse radiation is calculated and 
distributed within zones; how 3D effect are taken 
into account; which kind of controls are allowed; 
how shading devices are treated; which sky model 
has been implemented, etc.5 
Numerical problems, computational time’s increase, 
sensitivity to input data’s uncertainty, difficulties 
concerning algorithm implementation, etc., have led 
to the implementation of one model over the others. 
However, even if the differences are so wide-ranging, 
in many cases, BPS tools have been classified 
according to the way conduction heat transfer 
through fabric was treated. Actually, heat exchange 
by conduction was the main concern of BPS tools 
once. Along that, the system composed by building 
enclosures has been usually represented in a 
“compact” way, by a large sparse matrix of equation 
with predefined topological structure. Probably, the 
governing domain theory of combined problems of 
thermal diffusion and aero-dynamic system, has led 
to this monolithic representation (Tang, 1997). 
However, precisely for solving the difficulties 
involved in the maintenance, further development or 
adaptation to non-standard problem of these 
monolithic tools, in the mid ‘80s, the need for 
general-purpose and modular tools, led to the birth of 
many projects (e.g. EKS6, SPARK and IDA ICE7). 
Nevertheless, despite the high enthusiasm and 
expectations for their success, we will see that their 
supremacy has not yet been clearly stated. 
A general-purpose simulation program (IDA ICE, 
visualSPARK8, Dymola9) treats mathematical models 
as input data, being characterized by great 
extendibility and flexibility. The other kind of tools, 
the Special-purpose ones, (ESP-r10, EnergyPlus11), 

                                                           
5 for a more complete list of mathematical models implemented 
inside BSC refer to Crawley et al., 2005 
6 http://www.esru.strath.ac.uk/Programs/EKS.htm 
7 http://www.equa.se/eng.ice.html 
8 http://gundog.lbl.gov/VS/spark.html 
9 http://www.dynasim.se/index.htm 
10 http://www.esru.strath.ac.uk/Programs/ESP-r.htm 
11 http://apps1.eere.energy.gov/buildings/energyplus/ 

takes advantages from the structure of a class of 
problems to reach high execution speed. This 
approach leads also to robustness and limits the risk 
of generating insoluble problems, as far as input data 
are reasonable. Both special-purpose and general-
purpose tools commonly lead to the construction of a 
global matrix for the BS. However, in the first case, 
the structure of this matrix is pre-defined, and it 
might be difficult to add other equations. While, in 
the second case, the tool has been designed to allow 
the addition of new equations by handling automatic 
symbolical manipulation of this new system to create 
a simpler-to-solve, or lower index matrix. 
However, other approaches to modularity exist, thus, 
in the following, we will go much into the details of 
the features of the most relevant ones. 

Special-purpose tools 
Probably the most reliable and documented 
methodology for the implementation of building’s 
simulation model is that used by Esp-r (Clarke, 
2001a). This tool solves conduction with a finite 
difference approach and bases the process of the 
simulation model’s implementation upon the 
automatic generation of a single sparse matrix of 
algebraic equations. This matrix is built thanks to the 
definition of some primitive parts and their 
characteristic heat balance equations. This approach 
discretizes the building in control volumes, each 
represented by a node. To simplify the concept, a 
node could be a capacity/insulation system, a surface, 
or a fluid volume. In all the cases, the most general 
configuration is studied and self-coupling and cross-
coupling coefficients between state variables are 
defined. A routine builds up a sparse matrix of 
equations, where these coefficients are opportunely 
positioned. The solution of this overall sparse matrix 
is achieved through its partitioning into sub-matrices: 
“component matrixes” and a “coupling matrix”. Each 
component matrix can be processed using 
customized solvers applied to each domain equation-
set, at any frequency (to manage stiff problems’ 
complexity). At the end, thanks to the coupling 
matrix, the global solution is calculated. This 
numerical method ensures accuracy by preserving 
spatial and temporal integrity of real energy systems, 
since it solves simultaneously at each time step a 
whole system of PDE-sets. 
In this case, realty has been “modularized”, however, 
to include a new equation in such a structure, it is 
necessary to know the global matrix’s 
implementation routine and to automatically 
calculate those self and cross coupling coefficients to 
be added to the general matrix. 
Different functionalities are offered by TRNSYS, 
where the user can encapsulate new models, as 
FORTRAN routines with standardized arguments, in 
so-called TYPEs. These TYPEs are represented 
through icons that can be dragged and dropped in a 
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Graphical User Interface12. However, this possibility 
has not been extended to building’s components, 
limiting the level of standard mathematical model 
modularity achieved by this special-purpose tool. 

General-purpose tools 
Since the majority of the physical systems, can be 
characterized by algebraic and differential equations, 
ordinary (ODE) or partial (PDE), generic tools for 
their resolution have been developed. Special-
purpose tools require that PDEs are turned into a 
system of Algebraic Equations. On the contrary, 
general-purpose tools try to solve, by symbolic 
manipulation, a “general” system of differential-
algebraic equations (DAEs), composed of algebraic 
and ODEs (PDEs should be discretized in space). 
One attractive feature of general-purpose simulation 
tools is that they follow the “divide and conquer” 
rule, building successively larger component model’s 
libraries. 
Among general-purpose tools, there are Dymola, 
OpenModelica13 and IDA ICE. Dymola is the most 
used commercial front-ends for Modelica, like 
OpenModelica is the free one. Modelica is an Object-
Oriented, declarative, multi-domain modelling 
language for component-oriented modelling of 
complex systems. The Neutral Model Format (NMF), 
introduced since the late 1980s by Per Sahlin (Sahlin 
& Sowell, 1989) and upon which IDA ICE has been 
developed, is a predecessor of Modelica. 
The main objectives of such language are to allow 
anyone: 

• to easily learn modelling, by knowing the 
system’s equations; 

• to disregard numerical solution’s problems 
or coding ones and to focus on modelling; 

• to easily and quickly implement new 
models, even by inheriting by old ones; 

• to easily understand models developed by 
others, by identifying each equation. 

The goals of this approach are to divide modelling 
from simulation and to assure extendibility, 
flexibility of use and code’s reuse. The equations 
written in Modelica describe equality, having no pre-
defined causality and are used to define connections 
and modules’ behaviour. The simulation environment 
manipulates these equations symbolically to 
determine which term are inputs and outputs and 
which execution order and numerical routine should 
be preferable to solve the entire system. 
Recently, a hygrothemal wall model (Nytsch-Geusen 
et al., 2005) and a Multizone Airflow Model (Wetter, 
2006) have been developed using Modelica. The 
model describing thermal processes between building 
components is decomposed into simple thermal 
                                                           
12 for a description of TYPEs implementation and dynamic link 
libraries refer to McDowell et al., 2004 
13 http://www.ida.liu.se/projects/OpenModelica/ 

processes (heat convection, long-wave radiation, etc.) 
connected in such a way that they share the 
temperature of the body and that the sum of all heat 
flows in such connection point is set to zero. The use 
of OO programming typical concepts, help in 
aggregating common subsystems modules into 
macro-components to achieve more user-friendliness. 
However, some drawbacks in this approach are: poor 
runtime efficiency, limitations in the solution of 
system with impulses as inputs, or PDEs and 
difficulties in understanding simulation error 
messages, due to the strong symbolic manipulation 
applied to model’s equations. 
Besides, even if it is rather easy and natural to 
achieve reusability using object-oriented modeling 
tools when models are described by DAE, some 
problems might arise when model variables are 
expressed with complicated algebraic algorithms. In 
the case of highly geometrical problems, as radiation 
flows’ distribution among internal surfaces, object-
oriented modelling is less effective and reusability is 
not gained implicitly by using Modelica. Additional 
efforts should be made to develop fully reusable 
components, as shown in (Sodja & Zupančič, 2008). 
However, even if some advantage and disadvantage 
of these tools have been reported, the supremacy of 
one approach over the other has not been yet proved. 
Actually a practical and politically acceptable 
framework for fair comparisons of numerical 
performance, that takes into account at least the 
physical phenomena modelled, the level of ambition 
of the physical models, the level of numerical 
accuracy obtained and the time resolution obtained, 
does not exist (Shalin et al., 2004). 
To give a first quantitative impression of the 
differences among these tools Shalin et al., 2004, 
made some comparisons between IDA ICE and 
EnergyPlus. An experiment where EnergyPlus was 
run with six timesteps per hour, led to 17,712 steps 
and an execution time of 250 s for a 4 month summer 
simulation. Running IDA ICE with a maximum 
timestep of 1,5 h and an adjusted tolerance of 0,015 
gave 17,755 steps and an execution time of 127 s. 
Conversely, comparisons without natural ventilation 
have shown that EnergyPlus was faster. 
Other comparisons between multizone building 
models developed with Modelica and TRNSYS, in 
term of development and computational times, have 
been presented by Wetter & Haugstetter, 2006. The 
authors compare the model development time for 
their Modelica model with the multizone thermal 
building model BuildOpt (giving a time estimate for 
the TRNSYS building model was quite impossible). 
They have concluded that using Modelica lead to a 
five to ten times reduction in development time 
compared to using C/C++ languages and in a four 
times smaller code’s size. However, TRNSYS was 
faster than Dymola and some convergence problems 
have been noticed with Dymola and Simulink. 
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Nevertheless, since authors did not explore ways to 
improve Modelica model’s numerical performance, 
they concluded that a longer computation time might 
not be an inherent feature of equation-based 
simulation environments. 

The Matlab/Simulink environment 
The Matlab/Simulink environment has been recently 
used to implement BPS (El Khoury et al., 2005; 
Kalagasidis et al., 2007). As a matter of fact, it 
allows to define models whose hypothesis are well 
known by the user, to use the drag and drop 
functionality offered by Simulink and to be able to 
use the huge library of numerical and statistical 
methods implemented in Matlab. However, some 
drawbacks of such approach have been recently 
highlighted by some publications (Zupančič & Sodja, 
2008). Simulink: 1) imposes the development of 
procedural models; 2) assumes that a system can be 
decomposed into block diagram structures with 
causal interactions, leading to significant analytical 
transformation’s efforts to prepare the problem in this 
form; 3) is a “signal-oriented” environment, that 
often lead to algebraic loops whose numerical 
resolution might be risky; 4) imposes a modelling 
structure that might forbid the subdivision of models 
in modules with physical meanings, causing the 
spread of parameters of singular components in 
mixed model expressions. In addition, developing 
something in this context implies the cost of the tool. 

The “remote procedure” approach 
Going back to the physics of buildings, another tool 
named PsiGene14, models building’s components 
(wall, windows, air volumes, radiators, etc.) as 
autonomous objects that have topological and 
aggregation relations and that interact 
asynchronously by messages, exchanging value 
(surface temperatures, radiation, etc.), only when 
necessary (Zimmermann, 2001). Within autonomous 
objects, physical effects are modelled in classical 
ways by solving the physical equations numerically. 
No global system of equations is solved at run-time. 
For example, a room object collects all the heat-flows 
from its neighboring objects (walls, heating 
installations, sun, etc.) and uses these values together 
with the elapsed time interval to compute its air’s 
temperature. It doesn’t have to know how those heat 
flows are calculated. To allow this approach, the 
interfaces of the objects and the data they exchange 
are declared by predefined design patterns which 
provide the “glue” between objects or between partial 
models (Schütze et al., 1999). 
A similar approach is that of agent oriented 
engineering. This paradigm aims at reaching an 
object-aware rather than object-oriented model, by 
using agents, i.e. “encapsulated computer system 
situated in some environment and capable of flexible, 
autonomous action in that environment in order to 
                                                           
14 http://wwwagz.informatik.uni-kl.de/projects/psigene.html 

meet its design objectives” (Wooldridge, 1997). 
Further work should help to understand if and how 
such construct might help BS model’s development. 
However, even if the PsiGene’s approach closely 
resembles reality, it might lead to numerical 
problems. In this case, the implementation of airflow 
models in free spaces and in HVAC systems seems to 
be still an open problem (Zimmermann, 2001). 

CONCLUSION 
BSs and society’s evolutionary nature imposes that 
the development process of BPS tools follows the 
approach described by the SER model. Furthermore, 
since BPS is an interdisciplinary and heterogeneous 
subject, a collaborative environment should be 
enabled and encouraged. However, we have derived 
that different modelling and simulating activity 
generates different model’s levels, thus it is 
necessary to analyse the nature and the implication of 
each of them to set the right recommendations. 
All these considerations lead us to underline the 
importance of attaining an “enriched” modularity 
during the model development process, as previously 
defined. Indeed, without this characterization, 
modularity has been interpreted in different ways 
leading to different approaches to M&S. For 
example, to fulfil flexibility’s requirements, 
autonomous objects (AO) that interact when 
necessary (PsiGene) have been developed. To free 
developers from numerical problems, tools that 
accept differential-algebraic equations (DAE) as 
input for the simulation (Dymola), have been 
implemented. To allow new interactions, maintaining 
the robust and efficient previous structure (Esp-r, 
EnergyPlus), co-simulation (CS) has been pursued. 
These different approaches lead to different 
implications. The first approach (AO) might result in 
an extensive “atomization” of the calculation, leading 
to difficulties in reaching a convergent and reliable 
solution. The second approach (DAE) might result in 
low numerical resolution efficiency and in debugging 
difficulties. The third approach (CS) would be 
difficult to maintain and extend. Each of such 
approaches, while trying to reach some specific 
goals, does not succeed in addressing also the others. 
The above-mentioned considerations aim at showing 
that a full-enriched modular BPS tool is not yet ready 
and that a technology driven research should be 
pursued to develop it. Starting from perceived 
problems and ambitions and seeking appropriate 
technological means, different concepts derived by 
Information Technology should be further analyzed 
to understand if similar formalization might lead to a 
renewed modelling, simulating and validating 
methodology. It can be concluded that, thanks to 
current IT facilities and to new knowledge 
formalization derived from other fields, a reseeding 
phase might lead to a more functional approach to 
model development and BPS tools use, more focused 
and oriented towards their evolutionary growth. 
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