
METHODOLOGY FOR DEVELOPING REUSABLE SCHEDULER CLASS ES
APPLICABLE FOR LONG TERM BUILDING ENERGY SIMULATION

Eisuke Togashi and Shin-ichi Tanabe

Waseda University, Dept. of Architecture, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555
E-mail : e.togashi@gmail.com http://gf.hvacsimulator.net

ABSTRACT

The aim of this study is to accelerate developments
of building simulation programs by using Object-
Oriented programming. A reusable generalised
scheduler classes and interfaces1) for defining
schedules in simulation programs were developed.
ITermStructure2) the “interface” for a term structure
was developed to make complex term structure
general. By using a “Composite-Pattern”, all the
concrete term classes that implements
ITermStructure could be integrated into a complex
tree structure. By using the “Type parameter”,
specifications of a schedule class should not be
specified until a scheduler classes is declared and
instantiated3) by a client code. Since the program
codes developed in this research and a code made by
a client were separated clearly, developed scheduler
classes were generally applicable for long-term
simulation programs. A concrete example of program,
which uses the developed scheduler classes to control
cooling tower’s operating schedules, was given. It
demonstrates that the developed scheduler classes
worked fine without any modifications by clients.

INTRODUCTION
A time scheduling is an indispensable function to
execute a simulation program, which has time
concept such as an annual building energy-
calculating program or a daily heat-load calculating
program.

As schedules have a large impact on the result of
simulation, we should configure them carefully.
However, many existing simulation software controls
schedules with a simple structure like using arrays of
numeric type object. Therefore, they cannot treat
arbitrary type of schedules, which could be more
complex and be constructed from more than one data
type. It costs too much if we make a specific
scheduler routine every time when new simulation
software is developed. However, it is not possible to

1 An interface is the collection of methods and fields that a
class permits objects of other classes to access.
2 Reserved programming keywords and names of interface,
class and method are written in italic type in this paper.
3 The instance is the actual object created at runtime.

unify them, since different simulation software needs
a different content of schedules.

Recent object oriented programming (OOP) theories
and practices might solve this problem. OOP allows
making a program abstractly to expand the versatility
of the program. Using OOP, a “concrete class” of
schedule is not necessary until a scheduler is declared
and instantiated by a client code.

The aim of this study is to present the method to
design the scheduler classes with OOP, which can be
generally applicable for various simulation programs
without modifying source code.

There have been several novel works, which try to
develop probabilistic model for occupants’ behaviour
schedules. For example, J. Page et al. developed an
algorithm for the simulation of occupant presence by
considering it as an inhomogeneous Markov chain
(2008). J. Tanimoto et al. also developed
probabilistic model for inhabitants’ behaviour
schedules and validated with actual measurements
(2008). These studies put emphasis on how the
occupants’ behaviour schedules should be
represented stochastically, but they did not mention
how to manage these schedules in the programs. The
aim of our study is not developing concrete schedules,
but to develop the scheduler that can manage various
types of schedules.

MERITS OF SOURCE CODE RE-USE
The power of object-oriented systems lies in their
promise of code reuse. The code reuse has several
advantages. The reuse of program components
speeds up software reliability and maintainability. It
also shortens the development period for programs.

Doi et al. analyzes 2732 Java programs to evaluate
relationships between class-reuse and maintainability
of programs (2005). They perform statistical analysis
concerning impacts of class-reuse on source code
changing in version-upgrades of Java software, and
observe strong correlation.

Monden et al. quantitatively analyzed the relation
between code clones (duplicated code section) and
the software reliability of twenty years old software
(2002). As a result, they found that modules having
code clones are 40% more reliable than modules
having no code clone on average.

Eleventh International IBPSA Conference
Glasgow, Scotland

July 27-30, 2009

- 631 -

Change, when requested late in a software
development project, can be more than an order-of-
magnitude more expensive than the same change
requested early (R. Pressman, 1982). If the scheduler
can be applicable without source code modification,
it has large cost reduction effect in software
development, since it is an indispensable function for
any simulation programs.

METHOD TO ACHIVE SOFTWARE
REUSABILITY
Scheduler’s primary function is to make a correlation
between a “schedule” and a “time instant”. This
function can be achieved with two-step approach.
First, find out the “term” which contains the given
“time-instant”. Second, find out the “schedule” for
corresponding “term”. Figure 1 shows functions of a
scheduler. The scheduler is chiefly composed of
three components, “time-instant”, “term” and
“schedule”. Generality of scheduler program depends
on how scheduler represents these three components.
The more abstract these three components
represented, the more general scheduler program
becomes. In this study, they were abstracted in the
following way.

Abstraction of the “time-instant”
Modern programming languages normally provide a
function to represent time instant generally.

“DateTime” class in java and C#, “Date” class in
Ruby and java script, and so on. These built-in
functions should be used instead of making a new
original time-instant class.

Abstraction of the “schedule”
Many existing simulation programs control schedules
with simple structure like using series of numeric
type object. For example, schedules are given as
single precision boundary variables in the case of the
HVACSIM+, the dynamic simulation program. Since
a schedule could be more complex and be
constructed from more than one data type, in this
study, the “type parameters” is used to control a
schedule instead.

Abstraction of the “term”
A term is a segment of time. It can be defined by
dividing whole time with a certain criterion. For
example, time can divide into 7 terms according to
the day of the week. In the same way, time can divide
into 2 terms (daytime and nighttime) based on a state
of sun. A time dividing criterion makes a set of terms.
Hereinafter we call these set of terms and the time
dividing criterion “term structure”.

As discussed above, scheduler needs to know
correspondence relationship between the “term” and
the “time-instant”. For the scheduler, it does not
matter how the term structure divide time. Therefore,

6/14

find out the "term" which contains
the given "time instant"

{
find out the "schedule" for

corresponding "term"

term A term B

time instant

term C

temporal axis

term A <=> schedule A
term B <=> schedule B
term C <=> schedule C

schedules

terms

Fig. 1 Functions of scheduler

Fig. 2 The functions of the scheduler program and the development target of this research paper

Interface for
Term Structure

Development target of this paper

Abstract Schedule

Samples of the concrete
term structures

Seasons
Days
Timeperiods

Scheduler class

Developer A

A

Developer C

Concrete
schedule class

C
Developer D

D
Developer B

Concrete term
structure class

Source code which define a
term structure for daylighting

Source code which define a
probabilistic schedule

Source code which define a
compositive schedule

B

Any developers

Any developers

Developer E

Long-term
simulation software

Client code

Client code

Client codeClient code

E

Implement

Implement

Implement

Source codes which using
the scheduler class

Decoupling program source codes
which enclosed by the heavy line

source codes which
manage abstract object

{

Concrete
schedule class

- 632 -

we define the ITermStructure interface (the interface
for term structure) to separate a term and time-instant
mapping function from a time dividing function.

WHOLE PICTURE OF SCHEDULER
CLASSES
Figure 2 shows the functions of the scheduler
program and development target of this study. The
interface for term structure and the abstract schedule
are defined in this study. In addition, some concrete
term structure classes (Seasons, Days and
TimePeriods) are defined as an example. Because the
scheduler class manages schedules by abstract term
structure and abstract schedule, the scheduler class is
structurally decoupled from concrete term structure
classes and concrete schedule classes.

Figure 3 shows UML class diagrams. We use the C#
programming language as the language of instruction.
ITermStructure is the interface and the other blocks
shows classes. The Scheduler class has an instance of
ITermStructure interface to make a correlation
between a schedule and a term. Three concrete
classes, the Seasons, the Days and the TimePeriods
implements ITermStructure interface.

DEVELOPMENT OF ITERMSTRUCTURE
INTEFACE
Figure 4 shows the source of ITermStructure
interface. Two public methods, GetTermNames and
GetTermName, were defined. The former method
returns a list of term names. The latter method
returns a single term name, which correspond to
given time instant. The time instant is given as the
DateTime object. A concrete class that implements
the ITermStructure interface can provide a function
to divide time in its own way. Three examples of
concrete term structure classes are shown below.

Seasons class
Seasons class divides whole time into a set of seasons
basing on a date. Table 1 shows some public methods
of the Seasons class. By AddSeason method, with
using a name of season and a season starting date, a
new season is defined. Figure 5 shows an example of
Seasons class object. Whole year was divided into
four parts by date (3/12, 6/20 and 10/5), and each
part has season name. Since the second part and the
fourth part of the seasons has the same name (seasons
B), they were treated as same season. As a result,
there were three seasons, season A, season B and
season C, in this seasons object.

Since Seasons class implements ITermStructure
interface, an instance of Seasons class could be
treated as ITermStructure object.

Figure 6 shows three seasons, an example of Seasons
class instance. Three seasons, “Summer”, “Winter”
and “Middle season”, were defined. In this case, if a
client call GetTermName method, the method defined
in ITermStructure interface, with DateTime object

ITermStructure

string GetTermName
(DateTime)

string[]
GetTermNames()

Seasons

Days

TimePeriods

Scheduler<T>

ITermStructure
TermStructure

1 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

/// <remarks>An interface of abstract term</remarks>
public interface ITermStructure {

/// <summary>Get ID of ITermStructure</summary>
int ID { get; }

/// <summary>Get name of ITermStructure</summary>
string Name { get; }

/// <summary>Get name list of terms</summary>
/// <returns>Name list of terms </returns>
string[] GetTermNames();

/// <summary>Get term name from DateTime</summary>
/// <param name="dateTime">Date and time</param>
/// <returns>Name of term</returns>
string GetTermName(DateTime dateTime);

}

Fig. 3 UML class diagrams

Fig. 4 The source of the ITermStructure interface

Table 1 The public methods of Seasons class
public bool AddSeason(string seasonName,

 DateTime seasonStartDTime)

=> Divide time by seasonStartDTime and

 insert new season named “seasonName” to list.

public bool RemoveSeason(int seasonIndex)

=> Remove the season from the list using the index number.

public void GetSeason(int seasonIndex, out string seasonName,

out DateTime seasonStartDTime, out DateTime seasonEndDTime)

=> Get the information of the season using the index number.

3/12 1/1

(1)
season A

(2)
season B

(3)
season C

(4)
season B

6/20 10/5 12/31

Treated as same season when name matches

Client could access season with an index number

Fig. 5 An example of Seasons class object

Winter
12/1 - 2/29

Middle season
3/1 - 5/31

9/1 – 11/30

Summer
6/1 - 8/31

Whole time

GetTermName(7/16) => “Summer”

Fig. 6 Three seasons, an example of Seasons class

Table 2 The public methods of Days class
public void ChangeTermName(DayOfWeek dayOfWeek,

 string termName)

=> Set name of term to day of week.

Public string GetTermName(DayOfWeek dayOfWeek)

=> Get name of term which related to day of week.

Public DayOfWeek[] GetDays(string termName)

=> Get lists of term names.

- 633 -

that represent July 16th as an argument, “Summer”
the season name will be returned. If a client call
GetTermNames method with no argument, 3
dimensions string array filled with “Summer”,
“Winter” and “Middle season” will be returned.

Days class
Days class divides whole time into a set of days
basing on a day of the week names. Table 2 shows
some public methods of the Days class 4). Although
concrete methods are not same as those of Seasons
class, both Seasons class and Days class can be
treated as ITermStructure object. A specific example
will be shown in later section.

TimePeriods class
TimePeriods class divides whole time into a set of
seasons basing on a time of day. Since the methods
are similar to those of Seasons class, they shall not be
described here in detail.

DEVELOPMENT OF SCHEDULER
CLASS
Scheduler class makes a correlation between a
schedule and a name of term, which would be
defined by ITermStructure object. Figure 7 shows the
extract source codes of Scheduler class. The instance
variables were defined in line 6 to 17. The instance
methods were defined in line 19 to 53. A content of
schedule was controlled by using the type parameters
to increase generality of program. A composite
pattern was used to represent a complex term
structure as simple tree structure. Detailed
description of the source codes are shown below.

Abstraction of schedule with using the “Type
parameters”
The type parameters make it possible to design
classes and methods that defer the specification of
one or more types until the class or method is
declared and instantiated by client code. The concept
of type parameters was supported by C# in version
2.0 as “Generics”.

Figure 8 is a sample program, which shows how to
use type parameters in C#. Client code can use for
type arguments when it instantiates Generics class.
By using a generic type parameter T, client code can
use without incurring the cost or risk of runtime casts
or boxing operations

In the context of scheduler class, a content of
schedule should be represented by the type
parameters. Since there could be a various kinds of a
schedule according to the client’s request, concrete
schedule class cannot be determined. In the proposed
Scheduler class, type parameter T is used to create
instance (line 9 to 17) and to define public methods
(line 19 to 46). Therefore, proposed Scheduler class

4 The entire source codes mentioned in this paper were
released under the General Public License, and could be
downloaded from our website.

could treat any schedule classes made and provided
by clients.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

///<summary>Scheduler class</summary>
///<typeparam name="T">Type of schedule</typeparam>
public class Scheduler<T> : ICloneable
where T : ICloneable
{

///<summary>Term such as seasons or days</summary>
private ITermStructure terms;

///<summary>Collections which maps term name to

content of schedule</summary>
private Dictionary<string, T> schedules =

 new Dictionary<string, T >();

///<summary>Collections which maps term name to
child scheduler</summary>

private Dictionary<string, Scheduler< T>> schedulers =
new Dictionary<string, Scheduler< T>>();

///<summary>Set content of schedule</summary>
///<param name="dateTime">Date and time</param>
///<param name="schedule">Content of schedule</param>
public void SetSchedule(DateTime dateTime, T schedule){

string sName = getTermName(dateTime);
//If child scheduler exists, delegate to child
if (schedulers.ContainsKey(sName))

schedulers[sName].SetSchedule(dateTime, schedule);
//If no child, set content of schedule directly
if (schedules.ContainsKey(sName))

schedules[sName] = schedule;
else schedules.Add(sName, schedule);

}

///<summary>Get content of schedule </summary>
///<param name="dateTime">Date and time </param>
///<param name="schedule">Content of schedule</param>
public void GetSchedule(DateTime dateTime,

 out T schedule){
string sName = getTermName(dateTime);
// If child scheduler exists, delegate to child
if (schedulers.ContainsKey(sName))

schedulers[sName].GetSchedule (dateTime, out schedule);
// If no child, get content of schedule directly
else if (schedules.ContainsKey(sName))

schedule = schedules[sName];
else schedule = defaultValue;

}

///<summary>Get name of term from DateTime</summary>
///<param name="dateTime">date and tIme</param>
///<returns>Name of term</returns>
private string getTermName(DateTime dateTime){

return terms.GetTermName(dateTime);
}

}

Fig. 7 The extract source codes of Scheduler class

Fig. 8 Sample program, which shows how to use
type parameters in C#

1
2
3
4
5
6
7
8
9

10
11
12
13

public class GenericsTest<T> { //Define type parameter T
//Declare a variable of type T
private T gValue;
//Define property of type T
public T GenericsValue {

set{
gValue = value;

}
get{

return gValue;
}

}
}

- 634 -

Building complex segment of time with using
“Composite pattern”
The composite pattern is a one of the design patterns
proposed by Gang of Four (Erich Gamma et al.,
1994). It is used when creating hierarchical object
models. The composite pattern defines a manner in
which to design recursive tree structures of objects,
and the individual objects and groups can be
accessed in the same manner.

Figure 9 shows UML class diagrams of Composite
pattern. The Composite class has method to add and
remove child components, and each of those
components could also be a composite containing its
own children. When the Operation method is called,
component find a proper child from the child list and
call its Operation method recursively.

The SetSchedule method and GetSchedule method of
Scheduler class (line 22 and 36 in Figure 7)
corresponds to the Operation method in the Figure 9.
If the child Scheduler class who can respond to the
request exists, parent Scheduler class delegate their
actual operation to the child class.

Since each Scheduler class contains ITermStructure
interface, hierarchical Scheduler classes can
represent a compositive term structure. Figure 10
shows an example of compositive term structure. The
hatched square is the union of sets “Winter” and
“Night time”. To represent this union with Scheduler
classes, select the “Night time” node in a Days object
and connect the Days object to the “Winter” node in
a Seasons object (Figure 11). This compositive term
could be used to schedule a building thermal mass
storage in winter.

The child schedulers and schedules were related to
term names with hash tables in Scheduler class (line
11 and 16 in Figure 7). If there exists a child
Scheduler object related to the given term name,
parent Scheduler object calls child method
recursively. In this way, client code can manage a
schedule with only date and time information.

SAMPLE OF SCHEDULE CONTROL
WITH SCHEDULER CLASSES
In this section, a sample program that demonstrates
how to use the proposed Scheduler class is shown. A
target of scheduling is an operation mode of a
cooling tower.

Figure 12 shows a control schedule of a cooling
tower. Three operating modes, “No free cooling”,
“Switch mode with a wet-bulb temperature” and
“Switch mode with a dry-bulb temperature” were
defined by using enumerated type (line 4 to 11 in
Figure 12). Some instance variables were defined
from line 13 to 20 to characterize the operating state
of the cooling tower. A simple public method to get
cooling water outlet temperature was also defined
(line 25 to 39). Since the CTSchedule class is a
complex class who has the enumerated type, the
instance variables and the public method, it is

Fig. 9 UML class diagrams of Composite pattern

Fig. 10 An example of compositive term structure

Winter

Summer

Middle
season

Day time
(8:00~23:00)

Night time
(23:00~8:00)

Time Period Season

Summer Winter M.Season

Night time Day time

Scheduler class containing Seasons class

Scheduler class containing Days class

this node represents night time in winter
 Fig. 11 Representation of compositive term structure with Scheduler classes

- 635 -

difficult to manage this class with old simple
scheduler programs.

Figure 13 is a sample program that makes a schedule
with Scheduler class. In this case, the free cooling
mode could be activated on the weekdays in winter.

Two kinds of schedules were created from line 3 to
12 in figure 13. A new Seasons object that has four
seasons was created from line 14 to 16. As described
above, Seasons object could be treated as
ITermStructure object, since it implements
ITermStructure interface. Therefore, Seasons object
could be used as variable argument for constructor of
Scheduler class (line 18 and 19). Similarly, Days
object was treated as ITermStructure object at line 22.

Since the name of CTSchedule class was given as a
type parameter at a constructer of the Scheduler class
(line 24 and 25), the CTSchedule objects were safely
passed as variable argument without type casting at
line 27 and 28. At line 31, winter scheduler was
related to winter node of parent Scheduler recursively.

Figure 14 is a sample program using the scheduler
object constructed at figure 13. This program
corresponds to the Client in the figure 9. The client
code can get a CTSchedule object by passing
DateTime object without understanding internal
complex structure of Scheduler object.

CONCLUSION
The aim of this study is to accelerate developments
of building simulation programs by using Object-
Oriented programming. A reusable generalised
scheduler interfaces and classes for defining
schedules in simulation programs were developed.
ITermStructure the “interface” for a term structure
was developed to make complex term structure
general. By using a “Composite-Pattern”, all the
concrete term classes that implements
ITermStructure could be integrated into a complex
tree structure. By using the “Type parameter”,
specifications of a schedule class should not be
specified until a scheduler classes is declared and
instantiated by a client code. Since the program codes
developed in this research and a code made by a
client were separated clearly, developed scheduler
classes were generally applicable for long-term
simulation programs. A concrete example of program,
which uses the developed scheduler classes to control
cooling tower’s operating schedules, was given. It

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

///<summary>Cooling tower control schedule</summary>
public class CTSchedule {
 /// <summary>Selectable mode</summary>
 public enum Mode {
 /// <summary>No F.C. (Free cooling)</summary>
 NoFreeCooling = 0,

/// <summary>Start F.C. with wet bulb temp. </summary>
 SwitchWithWBTemperature = 1,
 /// <summary>Start F.C. with dry bulb temp. </summary>
 SwitchWithDBTemperature = 2
 }

 /// <summary>Oparating mode</summary>
 public Mode OperatingMode = Mode.NoFreeCooling;
 /// <summary>Set point of outlet water temp.[C]</summary>
 public double OutletWaterTemperature = 32d;
 /// <summary>S.P. of outlet water temp. in F.C.</summary>
 public double OutletWaterTemperatureFC = 16d;
 /// <summary>F.C. starting temp. [C]</summary>
 public double FCStartTemperature = 15d;

 /// <summary>Get S.P. of outlet water temp.</summary>
 /// <param name="airState">outdoor air state</param>
 /// <returns> S.P. of outlet water temp.</returns>
 public double GetCoolingWaterTemperature(

MoistAir airState) {
 //Case 1 : Start F.C. with dry bulb temperature
 if(OperatingMode == Mode.SwitchWithDBTemperature &&
 airState.DryBulbTemperature < FCStartTemperature)
 return OutletWaterTemperatureFC;

 //Case 2 : Start F.C. with wet bulb temperature
 if(OperatingMode == Mode.SwitchWithWBTemperature &&
 airState.WetBulbTemperature < FCStartTemperature)
 return OutletWaterTemperatureFC;

 //Default : Return S.P. in normal mode
 return OutletWaterTemperature;
 }
}

Fig. 12 Control schedule of a cooling tower 1
2
3
4
5
6

public static void GetScheduleSample (
Scheduler<CTSchedule> scheduler) {

DateTime dateTime = new DateTime(1999, 12, 20);
CTSchedule ctSchedule;
scheduler.GetSchedule(dateTime, out ctSchedule);

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

public static void MakeSchedulerSample() {
 // Schedule which can operate in F.C. mode
 CTSchedule fc = new CTSchedule();
 fc.OperatingMode =

CTSchedule.Mode.SwitchWithWBTemperature;
 fc.OutletWaterTemperature = 32d;
 fc.FCStartTemperature = 13d;
 fc.OutletWaterTemperatureFC = 16d;
 // Schedule which can’t operate in F.C. mode
 CTSchedule noFc = new CTSchedule();
 fc.OperatingMode = CTSchedule.Mode.NoFreeCooling;
 fc.OutletWaterTemperature = 32d;

 //Instantiate seasons class (four seasons)
 ITermStructure terms =

new Seasons(Seasons.PredefinedSeasons.FourSeasons);
 //Create scheduler instance (parent node)
 Scheduler<CTSchedule> ctScheduler =

new Scheduler<CTSchedule>(terms);
 //Instatiate days class (week day and week end)
 terms = new

Days(Days.PredefinedDays.WeekDayAndWeekEnd);
 //Create scheduler instance for winter node
 Scheduler<CTSchedule> winterSC =

new Scheduler<CTSchedule>(terms);
 //Operate in F.C. mode on weekdays in winter
 winterSC.SetSchedule("Weekends", noFc);
 winterSC.SetSchedule("Weekdays", fc);

 //Composite term (Winter + Weekdays) : Free cooling
 ctScheduler.SetScheduler("Winter", winterSC);
 //Others : No free cooling
 ctScheduler.SetSchedule("Spring", noFc);
 ctScheduler.SetSchedule("Summer", noFc);
 ctScheduler.SetSchedule("Autumn", noFc);
}

Fig. 13 sample program that makes a schedule
with Scheduler class

Fig. 14 sample program using the scheduler object

- 636 -

demonstrates that the developed scheduler classes
worked fine without any modifications by clients.

ACKNOWLEDGEMENTS
This research was partially supported by the Ministry
of Education, Science, Sports and Culture, Grant-in-
Aid for Scientific Research (A), No.19206063, 2007.

REFERENCES
J.Page, D.Robinson, N.Morel, J.-L. Scartezzini, 2008,

A generalised stochastic model for the
simulation of occupant presence, Energy and
buildings 40, pp.83-98

Jun Tanimoto, Aya Hagishima, Hiroki Sagara, 2008,
Validation of probabilistic methodology for
accurate prediction of maximum energy
requirements, Energy and buildings 40, pp.316-
322

Akito Monden, Daikai Nakae, Toshihiro Kamiya,
2002, Software quality analysis by code clones
in industrial legacy software, Proceedings of the
8th Symposium on Software Metrics

Doi Michio, Aman Hirohisa, Yamada Hiroyuki, 2005,
A Study of Relationship between Class Reuse
Level and Maintainability, Technical report of
IEICE. KBSE, (in Japanese)

R. Pressman, 1982, Software Engineering: A
Practitioner’s approach, Third edition, McGraw-
Hill

Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, 1994, Design Patterns Elements of
Reusable Object-Oriented Software, Addison-
wesley

- 637 -

