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ABSTRACT 
This paper describes a new methodology in 
calculating accurately the time series utility loads 
(energy, power, city water, hot water, etc.) in a 
dwelling. This calculation takes into account the 
behavioral variations of the dwelling inhabitants. 
The proposed method contains a procedure for 
cooling load calculations based on a series of Monte 
Carlo simulations where the HVAC on/off state and 
the indoor heat generation schedules are varied, 
time-step by time-step. A data set of time-varying 
inhabitant behavior schedules, with a 15 minute 
resolution, generated by the authors in previous 
studies and validated by a comparison analysis to 
several field measurement data sets, was integrated 
into the model. The established model, which is 
called the Total Utility Demand Prediction System 
(TUD-PS) can be applied to, for example, accurate 
estimation of an integrated space maximum 
requirement, such as the total load of a building or 
an urban area. In a series of numerical experiments, 
huge discrepancies were found between the 
conventional results and those considering the 
time-varying inhabitant behavior schedules. In 
particular, deriving the dynamic state change, of 
having the HVAC on/off from the inhabitant’s 
schedules, was found to be a significant factor in the 
maximum cooling and heating loads. 
KEYWORDS 
Total utility demand prediction, High 
time-resolution, Probabilistic inhabitants behavior 
schedule, Probabilistic HVAC turning On/Off 
events, Residential building 
 
1. INTRODUCTION 
The Co-Generation System (CGS) has been 
regarded as one of the most effective methods in 
achieving high efficiency in terms of building 
energy conservation, leading to reduce CO2 
emissions. Recent development of compact CGSs, 
such as fuel cells, encourages rapid dissemination in 
the residential building market, in systems which 
we call Home Co-Generation Systems (H-CGS). It 
is well known that a high time-resolution prediction 
is required for both power and thermal demands to 
derive the most efficient operation, and the most 
effective designs because CGS provides power and 
hot water simultaneously. In general, a residential 
space has a greater hot water demand compared to 
an office space. But actual demand varies 
substantially among different dwellings because hot 
water demand is affected by the daily schedules of 

its inhabitants, showing typical stochastic features. 
Hence, multiplying the predictions simply for a set 
of dwellings, such as a residential building, a 
residential block, or even a city area, assuming a 
“standard dwelling” and a “standard schedule” 
seems inappropriate. Such a procedure leads to 
unrealistic and over estimated peak values. 
Therefore, we have been developing a novel 
framework for predicting high-time resolution 
utility demands in a dwelling or aggregated 
dwellings, considering various stochastic processes 
such as the schedules of the inhabitants, 
meteorology, etc. Firstly, we developed a stochastic 
model to deal with the probabilistic events for 
turning the HVAC on/off, based on the Markov 
Chain Theory (Tanimoto et al., 2005). We also 
presented a time-varying raw data of the schedules 
of the inhabitants (15 minute resolution), and a 
generating algorithm that utilizes only a statistical 
database available publicly (Tanimoto et al., 2008 a, 
b, and c). The algorithm is based on the “generate & 
kill” process. This method of generating the 
behavioral schedule for each individual does not 
produce a utility demand time series directly; 
however, by defining the links between each 
behavior and an energy-consuming event (plus its 
unit demand), we can convert that into a respective 
time series for electricity, gas, water, hot-water, etc. 
This method can provide a time series for indoor 
anthropogenic heat generation in respective rooms 
of a dwelling, but fall short of obtaining the cooling 
and heating load because it requires a dynamic 
thermal load calculation that considers the thermal 
characteristics of the building and every aspect of 
the stochastic processes. We developed the Total 
Utility Demand Prediction System (TUD-PS), 
where the building thermal system model and the 
stochastic inhabitant behavior schedule model are 
considered simultaneously in the form of a dynamic 
numerical prediction system, predicting the thermal 
load, power, gas, water, hot water demand, etc., 
with a 15 minute time resolution. Using TUD-PS, 
one can predict the utility demands of any 
residential building or area accurately, superposing 
the respective dwellings through Monte-Carlo 
simulation with a high time resolution. In particular, 
this paper discusses the structure of TUD-PS, the 
results of studies of the annual aggregate, and 
maximum thermal loads of a single dwelling. The 
proposed solution constitutes an alternative to 
previous methods for thermal load calculation 
assuming constant daily and deterministic HVAC 
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operation, and indoor anthropogenic 
heat generation, although those 
assumptions are known to have a 
crucial influence on the predicted 
results.  
 
2. TUD-PS 
The TUD-PS can reproduce the 
thermal load, power demands for 
lighting, other electric household 
appliances, domestic hot water, and the 
city water demands considering the 
actual variations in the behavioral 
schedules of the inhabitants, which 
differs daily among the dwellings. The 
time resolution is 15 minutes. The 
overall structure of TUD-PS is 
schematically shown in Fig. 1 
The detail of the methodology, except 
for the thermal load calculation is 
referenced in our previous work (Tanimoto et al., 
2008 a, b, and c). The framework for the dynamic 
analysis of building thermal systems is also derived 
from our previous model (Tanimoto & Kimura, 
1990). Some fundamental equations are 
supplemented in the Appendix. Other assumptions 
are summarized in Table 1. The calculation main 
routine after the time discrete process is shown in 
Fig. 2. The data for the behavioral schedule of the 
inhabitants, prepared in advance as a data set of 105 
samples having 24 classes (eight classes for 
inhabitant attributes, such as working male, 
housewife, etc, and three classes for weekdays, 
Saturdays and holidays), is incorporated for each 
dwelling at the beginning of each day after 
importing the climate data for the entire period (15 
years, for the present cases) aggregately. At the 
commencement of the dwelling routine, standby 
power consumption is calculated based on a list of 
electric household appliances and the performance 
data for each dwelling. The imported behavioral 
schedule data determines the number of family 
members present and their activity in each room at 
any given time (the time resolution is 96 pixels in a 
day because 24 hours = 96 * 15 minutes), which 
defines the time series for electric power and gas 
demand, except for the daily demands for HVAC, 
hot water, and city water. 
Concerning HVAC thermal load calculation, two 
layers of stochastic processes are considered. The 
first layer determines the heating and the cooling 
periods. We made particular correlation functions 
between the daily heating and cooling occurrences 
and the daily minimum and maximum outdoor air 
temperature for 10 day periods from 2001 to 2003, 
in a Sigmoid-shape function based on Mizutani’s 
field measurement data (2006) acquired from 
hundreds of actual dwellings. This determines 
probabilistically whether a certain day is under a 
heating, cooling, or non air-conditioning period, but 

never indicates an actual thermal load. The second 
process is turning the HVAC on/off. This event is 
defined probabilistically after every 15 minutes by 
state transition functions P(T), as shown in Table 2, 
where T is either the indoor globe temperature or 
outdoor air temperature in case of an off -> on or on 
-> on event (i.e., the complementary event of on -> 
off). The second process determines whether an 
actual thermal load occurs in the room. 
 
3. SETTING FOR NUMERICAL 
EXPERIMENT 
The present study assumes both typical apartment 
dwellings and a typical detached house. The former 

Model for Building Thermal System  Model for Generating Raw Inhabitant’s 
Behavior Schedule. 

Based on the statistical data by NHK, the 
model generates a daily 15-minute time 
resolution behavior schedule for each 
inhabitant considering both his/her personal 
and daily classifications (24 classifications). 

- Considering family set. 
- Defining a link between each behavior and 

utility demanding action. 
- Defining the relationship between each 

utility demanding action and utility 
demand per event. 

Raw weather data. 
Expanded-AMeDAS.

Markov Model for air-conditioner’s state.

It is possible to transform HVAC thermal load to utility 
demand for a HVAC system, if the COP of the system 
is known.

Predicting high resolution time series of total utility 
demand for residential buildings or blocks.

Dynamic calculation for 
HVAC thermal load.

If an inhabitant is in a room, air-conditioner 
state transition would probabilistically occur.

Total-Utility-Demand Prediction System (TUD-PS)  

Other utility demands 
such as traffic, urban 
infrastructures.

Different presence schedule of 
inhabitants and power demand (heat 
generation) schedule for other 
electric household appliances.

Utility (electric power, gas, hot water, water) demands 
except for HVAC component is predictable in a form of a 
time series, if knowing information of family distribution 
etc for a certain residential building(s) or block(s). 

Urban Infrastructure model

The validation process comparing a real utility demand time series and a predicted 
one is required, because the principle is derived from the so-called “superposing 
method” where elemental assumptions are involved in various levels of the process. 

Figure 1.  Holistic structure of TUD-PS. 

Table 1 Assumptions for the thermal system model. 
- Time backward (implicit) Finite Difference Method (r = 1, ∆t = 

15minites; cf. Eq.(8)). 
- Air temperatures for non-air-conditioned rooms, crawl spaces 

under floor and rooms of the neighboring dwelling are given 
by ( ) routoutout TrTr −+ 1 , where rout is 0.5, 0.5, and 0.25, 
respectively. 

- Equivalent heat capacity of indoor furniture per unit room air 
volume is assumed as 1/5 of that for office spaces (cf. Eq.(5)). 

- Openings; 
When HVAC is on, a window is always closed (nr = 0.2 h−1). 
In heating period (winter), a curtain is opened if global 
horizontal solar radiation rate (GHSR) > 116 Wm−2. In cooling 
period (summer), a curtain is closed if GHSR > 116 Wm−2, 
otherwise opened. In spring or fall, a curtain is always opened.
When the HVAC is off and in winter, a window is always 
closed and a curtain is opened if GHSR > 0 Wm−2, otherwise 
closed. In spring and fall, a window is always closed and a 
curtain is always opened. In summer, a window is always 
opened (nr = 1.0 h−1) and a curtain is closed if GHSR > 116 
Wm-2, otherwise opened.  

- Convective heat transfer coefficient; hc_in = 4.7 and hc_out = 23.3 
Wm−2K−1 (cf.Eq.(3),(1))). 

- Solar absorbance and emissivity for exterior walls are 0.75 and 
0.85, respectively. Emissivity for indoor walls is 0.9. 

- Set room air temperature for both heating and cooling are 20 °C 
and 26 °C, respectively. Set relative humidity is 50%. A 
calculated sensitive thermal load is obtained disregarding 
HVAC capacity. A latent thermal load is calculated by 
assuming a room vapor mass-balance equation disregarded 
vapor absorption/ desorption at indoor walls.  
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class has nine sub types: East corner (total floor 
area is 101 m2, consisting of a living and dining 
room, kitchen, one Japanese tatami room, and three 
bedrooms), center (total floor area 80.4 m2, 
consisting of a living and dining room, kitchen, one 
Japanese tatami room, and two bedrooms) and west 
corner (total floor area 95.8 m2, consisting of a 
living and dining room, kitchen, one Japanese 
tatami room, and three bedrooms). These three 
types are located on the top, middle, and first storey 
of the apartment, respectively. A standard plan for 
the thermal system analysis authorized by 
Architectural Institute of Japan (AIJ) is assumed to 
be a detached house (two storey, total floor area 

125.9 m2, consisting of a living and dining room, 
kitchen, one Japanese tatami room, and four 
bedrooms). All dwellings face south, and the 
insulation thickness of the exterior walls is assumed 
to be 50 mm. A family consisting of a father 
(working male), mother (housewife), two children 
(junior high school and elementary school pupils), 
live in each dwelling. The location is Tokyo, and the 
meteorological condition uses the unprocessed data 
from 1981 to 1995 of the Expanded AMeDAS 
(Akasaka et al, 2000). 
We assumed four schedule settings. The default 
case is completely stochastic, where both indoor 
anthropogenic heat generation (from household 
appliances and inhabitants) and HVAC on/off 
schedules vary daily. We call this a stochastic 
schedule case. In contrast, deterministic heat 
generation assumes stochastic HVAC control, but 
deterministic anthropogenic heat generation, 
derived from the average of 105 vary in their 
schedules. Also, a deterministic HVAC schedule 
implies a stochastic anthropogenic heat generation 
but deterministic HVAC control, derived from the 
by and large assumed on/off schedule adopted in the 
previous simulation studies (SHASE Technical 
Report, 2000). In addition to these, there are two 

◆Year

◆
◆Day 

Residence (Family) 

Thermal load calculation. Room air temperature and 
humidity calculation. 

Inputting Weather Data. 

Inputting Inhabitant Behavior 
Schedule of a family. 

◆ Family member 

Daily schedules of electric household 
appliances for standby use. 

Fix whether he/ she are present in 
respective rooms, and daily 
schedules of electric household 
appliances and hot water supply. 

◆
◆Room 

∆t 

HVAC on? (referring 
State-transition-functions) 

Aggregate summary 

No Yes 

Figure 2  Main routine of TUD-PD.
Table 2  Assumed state transition functions. 

 P (T ) 
Cooling Off -> On  

T; indoor globe temperature 

850.1=a , 2.32=θ  

On-> On 
T; Outdoor air temperature 

285.1=a , 6.31=θ
Heating Off -> On 

T; indoor globe temperature 

000.2=a , 5.18=θ  

On-> On  
T; Outdoor air temperature 

000.2=a , 0.23=θ  

- Function shape is Sigmoid Function; ( ) ( )θ−−+
= Ta

TP
1

1 . 

- Cooling case is derived from Tanimoto et al (2005). Parameters 
for heating case are purely assumed based on the cooling 
results. 
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completely deterministic schedules. Both assume 
that anthropogenic heat generation and HVAC 
control schedules are deterministic. The first 
schedule particularly, which we call the completely 
deterministic schedule case #1, determines whether 
a day is in a heating, cooling or non air-conditioning 
period stochastically, through the procedure 
previously mentioned. In the second case, the 
completely deterministic schedule case #2, both 
cooling (from July to September) and heating (from 
December to March) periods are assumed 

deterministically. 
 
4. RESULTS AND DISCUSSION 
The standard case below reflects mainly that of a 
center and middle storey apartment.  
4.1. Time varying characteristics of the peak day 
Figure 3 shows result of the stochastic schedule 
when the maximum heating and cooling loads take 
place based on TAC 2.5% (overload risk 2.5%). The 
figure shows a day previous to and a following one 
to the peak load day in a time series. The varying 
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Figure 3  Time varying characteristics of the peak day for stochastic scheduling. 
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results of the indicated time are averaged over 
each hour, although TUD-PS predictions have a 
resolution of 15 minutes. 
In the heating case, TAC 2.5% maximum (71.5 
W/m2 at 12:00 Dec. 14, 1989) takes place when 
the housewife returns to the living and dining 
room for her lunch, and turns on the HVAC. In 
the cooling case, the maximum (51.8 W/m2 at 
13:00 Aug. 24, 1995) takes place when the 
housewife turns the HVAC on due to overheating 
from a large solar heat gain.  
4.2. Impact of stochastic schedules 
4.2.1. Annual aggregate load 
Figure 4 shows annual aggregated heating and 
cooling loads for all five cases that provides 
different schedule handling. Each bar indicates an 
averaged aggregate value over 15 years, and the 
numbers just above the bar indicates averaged 
aggregate heating and cooling hours. 
The effect of using stochastic schedules, for 
HVAC especially, seems obvious. Comparing 
cooling loads between the stochastic schedule 
and the deterministic HVAC schedule shows that 
the discrepancy is significant. 
It is noticeable that completely deterministic 
schedule case #2 is much larger than the 
stochastic schedule. The completely deterministic 
schedule case #2 uses almost same methodology 
that we have been assuming in practical or even 
research calculations so far. Hence, this 
comparison implies that the conventional 
calculation procedure contains huge errors vis-à-vis 
our proposed TUD-PS from the stochastic 
scheduling point of view. 
4.2.2. TAC 2.5% maximum load 
Figure 5 shows sorted one-hour average loads of the 
living-dining room, where bold gray, black, and 
solid black lines indicate the stochastic schedule, 
the completely deterministic schedule cases #1 and 
#2, respectively. Each vertical line shows an 
overload risk 2.5% point for all HVAC operating 
hours during 15 years. Note that there are 
significant discrepancies between the stochastic and 
deterministic cases. For cooling, the maximum load 
in the stochastic schedules is much larger than the 
deterministic prediction. Thus, considering a 
stochastic HVAC control schedule increases the 
maximum load, compared with the conventional, 
deterministic HVAC schedule (this result is not 
shown in Fig. 5 (b)). 
4.3. Impact of inhabitant’s tolerance to thermal 
conditions 
We investigated the sensitivity of inhabitant’s 
tolerance for thermal comfort on accumulated 
annual loads by changing parameter θ of the state 
transition functions shown in Table 2. For example, 
increasing the cooling P(T) of off ->on by +1 °C 
implies inhabitants having an energy conserving 
attitude, whereas a shift of −1 °C means that the 
inhabitants are wasting energy. 

Figure 4  Averaged annual aggregate (a) heating and 
(b) cooling loads and their averaged annual 
operating hours over 15 years. LDK, MB and 
C#1 indicate the living-dining & kitchen, main 
bed room, and children’s room, respectively. 
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In Fig. 6, (A) indicates sensitivity of θ  (by adding 
1±  to the default values of 32.3 °C (cooling) and 

18 °C (heating)) for off -> on P(T) (e.g., HVAC 
turn-on sensitivity on the living-dinning room 
thermal load), while keeping on ->off P(T) the 
default function; (B) indicates the sensitivity of θ  
for on -> off P(T) (e.g., HVAC turn-off sensitivity 
on the thermal load) while keeping off ->on P(T) 
the default function; and (C) shows sensitivity to the 
set air temperature (adding 1±  to the default 
values of 26 °C (cooling) and 20 °C (heating)), 
while assuming the default state transition functions. 
Note that maintaining an enduring and additional 
temperature of 1 oC before turning on the HVAC 
can afford a 10.4% energy conservation effect for 
cooling and 0.8% for heating, although the 
maintenance of an enduring and additional 
temperature is less influential than shifting the set 
air temperature by ±1 °C. 
Figure 7 shows whether inhabitant’s leaving the 
room or their decision makes HVAC turning off in 
the simulation.  
 In cooling case, there are almost same frequencies 
(number of actual events) between those two 
situations. In heating case, HVAC is almost 
terminated by an event where the last inhabitant 
leaves the living-dining room. In the present 
simulation, HVAC is compulsorily turned off when 
no one is in the room. This is one reason for which 
we observe an irregular sensitivity to heating in Fig. 
6 (B). 
4.4. Different dwelling types 
Tables 3 and 4 summarize the effect of stochastic 
schedules on aggregate and maximum loads for 
different dwelling types, either an apartment or a 
detached dwelling. 
In all cases, there are significant discrepancies 

between the stochastic schedule we are proposing in 
the present paper and the four deterministic cases. 
Particularly, huge differences exist between the 
stochastic schedule and completely deterministic 
schedule case #2, which may imply that the 
conventional procedure entails disagreeable errors 
in its estimated aggregate and maximum loads. 
 
5. CONCLUSION 
In order to predict the utility demands accurately 
with a high time resolution for a residential sector, 
superposing respective dwellings through the 
Monte-Carlo simulation, we established a Total 
Utility Demand Prediction System (TUD-PS). Here 
both the building thermal system model and the 
inhabitant’s stochastic behavioral schedule model 
are considered simultaneously in the form of a 
dynamic numerical prediction system, which 
enables 15 minute time resolution prediction of 
thermal load, power, gas, water, hot water demand, 
etc.  
We have shown the importance of considering the 
stochastic schedules of both indoor anthropogenic 
heat generation and HVAC control due to inhabitant 
behavior, observing a series of simulation results of 
annual aggregate and maximum thermal loads for a 
single dwelling. 
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図-5 発停状態遷移確率と設定温度の期間負荷に及ぼす感度 Figure 6 Sensitivity of aggregated annual loads by (a) off -> on P(T), (b) on -> off P(T) and (c) set air 
temperature. 

Figure 7 Event frequencies for leaving the room or inhabitants’ behavior in turning off the HVAC. 
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Table 3 Summarized result of various dwelling types for heating. 

Table 4 Summarized result of various dwelling types for cooling. 

Heating Annual aggregated load [MJ/m2] TAC 2.5% maximum load [W/m2]

Stochastic
Deterministic

heat
Deterministic

HVAC
Complete de-
terministic #1

Complete de-
terministic #2

Stochastic
Deterministic

heat
Deterministic

HVAC
Complete de-
terministic #1

Complete de-
terministic #2

East Top Whole 187.6 236.3 180.1 219.1 282.8 58.7 64.4 52.8 57.8 57.8
Corner LDK 232.7 349.6 256.5 357.0 474.2 101.0 119.2 132.5 144.4 133.8

Middle Whole 156.5 214.9 148.7 198.2 263.1 39.5 45.1 39.1 44.3 41.9
LDK 162.2 303.0 167.6 293.6 405.4 55.4 72.9 68.6 82.3 74.9

First Whole 191.3 252.2 179.9 230.8 328.6 43.8 49.2 42.9 48.0 45.6
LDK 223.7 370.5 223.2 353.7 523.8 64.1 81.9 78.7 92.2 84.1

Center Top Whole 165.7 226.1 203.4 203.7 257.6 48.9 56.6 52.5 52.1 50.7
LDK 211.0 336.7 354.9 354.0 450.8 94.6 113.9 144.5 139.8 130.7

Middle Whole 198.5 204.0 183.6 185.8 257.7 37.3 37.9 38.0 38.1 36.2
LDK 294.8 296.4 300.4 302.3 419.9 71.5 71.1 86.1 83.3 76.3
MB 156.6 162.3 120.2 119.5 151.0 111.6 114.6 138.4 136.7 125.3
C#1 265.1 290.3 194.5 203.9 257.6 128.3 135.7 156.3 160.5 156.1

First Whole 237.2 242.2 213.8 214.4 316.3 41.3 41.9 41.0 40.9 43.2
LDK 359.1 359.3 353.9 353.1 523.2 78.7 78.3 92.7 89.3 82.0

West Top Whole 188.7 236.0 187.4 225.5 292.5 60.7 66.2 56.1 61.1 60.7
 Corner LDK 266.2 382.6 291.2 393.1 523.5 123.4 140.9 158.0 170.7 224.6

Middle Whole 162.9 220.6 159.6 208.3 278.8 39.7 45.6 38.8 44.1 42.6
LDK 210.0 352.7 215.0 343.7 476.0 71.8 89.5 88.0 102.4 92.4

First Whole 194.4 252.4 187.3 237.3 338.3 43.4 49.1 42.1 47.2 45.8
LDK 263.7 408.9 262.4 395.0 583.5 78.0 96.2 94.5 109.6 99.2

Detatched House Whole 209.3 208.0 193.2 190.8 259.6 47.5 40.8 36.5 36.5 34.6
LDK 377.2 371.6 365.6 361.6 512.5 88.0 88.3 104.5 100.6 91.0

Cooling Annual aggregated load [MJ/m2] TAC 2.5% maximum load [W/m2]

Stochastic
Deterministic

heat
Deterministic

HVAC
Complete de-
terministic #1

Complete de-
terministic #2

Stochastic
Deterministic

heat
Deterministic

HVAC
Complete de-
terministic #1

Complete de-
terministic #2

East Top Whole 190.0 173.4 239.0 223.9 274.1 69.4 68.6 64.7 63.2 62.3
Corner LDK 396.1 356.9 456.6 416.3 504.6 181.5 176.6 170.8 166.5 166.0

Middle Whole 31.8 22.6 49.3 38.9 47.5 21.7 19.8 21.2 19.9 18.3
LDK 67.9 45.1 88.6 61.1 71.1 58.2 52.5 40.9 35.8 33.4

First Whole 13.4 8.6 25.3 18.9 22.0 16.1 13.6 15.1 13.7 12.7
LDK 27.9 15.2 43.1 25.6 25.4 46.5 39.8 30.4 25.2 24.0

Center Top Whole 207.4 184.7 225.7 225.6 297.8 70.9 69.5 63.7 63.6 64.0
LDK 402.6 355.4 419.7 420.5 548.6 182.0 176.7 167.0 167.8 169.4

Middle Whole 26.8 25.5 39.0 38.3 54.6 20.4 19.9 18.2 17.9 17.4
LDK 46.3 45.1 62.7 61.9 76.9 51.8 51.9 36.1 36.8 35.9
MB 6.3 5.3 19.7 20.2 26.0 64.8 61.9 49.8 51.1 47.0
C#1 20.2 15.5 38.5 34.4 44.6 88.8 82.6 81.7 77.1 75.3

First Whole 10.3 9.9 18.6 18.3 31.3 14.3 13.8 12.4 12.3 12.4
LDK 14.1 13.9 24.2 24.3 29.1 38.9 39.2 24.2 24.8 25.1

West Top Whole 187.1 170.5 236.9 222.6 270.6 69.7 68.6 64.5 63.1 61.6
 Corner LDK 411.3 369.9 472.9 433.1 520.7 192.2 186.6 179.1 174.7 173.5

Middle Whole 32.4 23.8 49.7 40.0 48.3 22.7 20.5 22.1 20.8 19.1
LDK 73.2 50.9 93.2 66.5 75.8 64.5 58.5 45.2 39.7 37.0

First Whole 14.2 9.3 26.0 19.9 23.2 16.9 15.0 15.8 14.4 13.3
LDK 30.9 17.8 46.3 28.7 28.2 51.5 45.0 33.0 27.4 25.5

Detatched House Whole 47.2 46.6 79.8 81.1 111.9 36.7 30.9 32.8 33.2 34.2
LDK 26.7 26.3 37.2 38.1 47.7 46.3 47.8 29.8 30.3 30.2
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Appendix: Fundamental mathematical equations 
Let us consider a heat balance equation at each nodal control volume after the space discrete operation.  
The heat balance of node i at an exterior wall surface is, 

( ) ( ) ( ) ( )( ) ( ) nocjbalcskyjjjskysjbalcskyjdirsjbalcjjioutoutcjiiiij RffARffRAFaATThATTCA ,,_,,_,_11, 10 −−−+−+−+−= −− ε . ･･･(1) 

Subscript i−1 indicates adjacent to the surface node i, j means the facet containing node i, and out implies the outdoor air. A; faucet 
area [m2], a; solar absorbance [ND], AFbalc; exterior wall area fraction avoided direct solar incidence by a sunshade [ND], C; heat 
conductance of the wall [Wm−2K−1], hc_out; outside convective heat transfer coefficient [Wm−2K−1], fsky; sky view factor [ND], fbalc; 
view factor from the faucet to sunshade [ND], ε; emissivity [ND], Rnoc; nocturnal radiation rate [Wm−2], Rs_dir, Rs_sky; direct and sky 
solar radiation rates [Wm−2], T; temperature [K]. 
The heat balance of node i within a wall is, 

( ) ( )iiiijiiiij
i

iij TTCATTCA
t
TCPGxA −+−=∆ ++−− 11,11,d

d .     ･･･(2) 

Subscript i+1 and i−1 mean the adjacent nodes of i, t; time [s], ∆x; discrete length [m], CPG; specific heat [Jm−3K−1].  
The heat balance of node i on an interior wall surface is, 

( ) ( ) ( ) jik,surf

fN

k
j,kkkbirj,in_cjiii,ij PTTGACTThATTCA +−+−+−= ∑

=
−−

1
110 ε .   ･･･(3) 

Tr; room air temperature [K], Tsur,k; surface temperature if faucet k [K], hc_in; interior convective heat transfer coefficient [Wm−2K−1], 
Cb; radiation constant for a black body (Stefan-Bolzmann Constant*108）[Wm−2K−4], Nf; total number of walls in the room [ND], 
Gk,j; Gebhart’s factor (absorbed ratio at faucet j to emitted radiation rate from faucet k, including the multi-reflection effect from the 
inner walls), Pj; production term at faucet j [W]. Pj relates to the radiative factor of the indoor anthropogenic heat generation and 
transmitted solar radiation rate through windows. The former is distributed by weight of the respective area, the latter is entirely 
absorbed by the floor. Infrared radiation rate emitted from a wall surface can be linearized by assuming the surface temperature 
coefficient as 1. 
Transmitted solar radiation rate through windows Rtra,j can be, 

( )jskytotaljskysjdirtotaljdirsjjtra RRAR ,_,_,_,_, ττ ⋅+⋅= ,     ･･･(4) 

here, τtotal_dir,j; overall transmittance of opening faucet j (consisting of a glazing window and a curtain) for direct solar radiation 
considering multi-reflection [ND], τtotal_sky,j; similar for sky solar radiation [ND]. Dependencies on solar incidental angle for glazing 
transmittance and absorbance are fully considered.  
The heat balance of node for room air is, 

( ) ( ) ( ) extSrroutairrr

N

k
rksurfkinck

r
furairr HPTTCPGVnTThA

t
TCPGCPGV

f

_
1

,,_d
d

−+−+−=+ ∑
=

,   ･･･(5) 

where, CPGair; specific heat of humid air [Jm−3K−1], CPGfur; equivalent specific capacity of furniture per unit room air volume 
[Jm-3K−1], nr; air change rate [s−1], Vr; air volume of room r [m3], Pr；production term at room r [W] (derived from indoor 
anthropogenic heat generation consisting of the convective elements of electric household appliances and human sensitive heat 
exhaustion), HS_ext; sensitive heat extraction rate from the room ( indicating the cooling/heating load if positive/negative) [W]. In the 
thermal load calculation mode, Tr should be assumed to be set at room air temperature Tset [K] (not only for Equation (5), but for all 
heat balance equations containing the room air node), and HS_ext must be one of the unknown variables. In the room air temperature 
calculation mode, Tr must be one of the unknown variables while HS_ext = 0.  
The water vapor balance for room air is, 

( ) lHPXXXVn
t

XV extLrroutairrr
r

airr /
d

d
_−+−= γγ ,      ･･･(6) 

where, γair; specific weight of humid air [gm−3], Xout, Xr; absolute humidity of outdoor air and room air [g/g’], Pr; water vapor 
production at room r [g/s] ( relating to the human latent heat generation and other vapor sources, such as cooking), l; latent heat of 
water [J/g], HL_ext; latent heat extraction rate from the room (positive indicates dehumidifying and negative indicates humidifying 
load) [W]. In the thermal load calculation mode, Xr = Xset (set air humidity [g/g’]) and HL_ext must be an unknown variable. Whereas, 
in the room humidity calculation mode, Xr must be one of the unknown variables while HL_ext = 0. 
Aggregating all sensitive heat transfer equations (Eq. (1) – (5)), in the dwelling, a single vector-matrix equation can be drawn. 
Namely,  

{ } { } { } { }Pxx
d

xd  o ++= oCCM
t

,       ･･･(7) 

where, M; heat capacitance matrix, C; heat conductance matrix, Co; heat capacitance matrix connecting with given temperature 
boundaries by heat transfer of either convection or air change, {x}; unknown variables vector, {xo}; vector for given temperature 
boundaries, {P}; vector for production terms. 
Equation (7) can be rewritten after time discrete operation,  
{ } [ ] ( )[ ]{ } ( ){ } { }{ } ( ){ } { }{ }{ }11oo

1
1 PP1xx1x1x ++

−
+ +−++−+−+−= mmmmmm rrrrrr oCCMCM ,   ･･･(8) 

where, subscript m indicates time step. r implies time discrete parameter (the scheme is time-forward finite difference method, 
time-backward finite difference method or Crank-Nicolson finite difference method, if r = 0, 1 or 0.5).  
Combining Equation (8) with time discrete (6) simultaneously, we can conduct a sequence of time step calculation, which leads to 
solving of unknown variables such as respective nodal temperatures, humidity, and thermal load of the room without any iterative 
procedure (because all equations have been expressed by linear forms). There are 159 unknown variables in the case of an east center 
dwelling in the middle floor of the apartment. 
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