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ABSTRACT 

Computational fluid dynamics (CFD) can provide 
detailed information of flow motion, temperature 
distributions and species dispersion in buildings. 
However, it may take hours or days, even weeks to 
simulate airflow in a building by using CFD on a 
single central processing unit (CPU) computer. 
Parallel computing on a multi-CPU supercomputer or 
computer cluster can reduce the computing time, but 
the cost for such high performance computing is 
prohibitive for many designers. Our paper introduces 
high performance parallel computing of the airflow 
simulations on a graphics processing unit (GPU). The 
computing time can be reduced by 10 - 30 times 
using the GPU. Furthermore, the cost of purchasing 
such a GPU is only $500, which is less than 2% of a 
multi-CPU supercomputer or a computer cluster for 
the same performance. 

 

INTRODUCTION 

To design a comfortable, healthy, and energy-
efficient building, it is essential to know some key 
parameters of the indoor air, such as the distributions 
of air velocity, air temperature, species 
concentrations, and pressure. Those data can be 
obtained by computer simulations (Chen 2009; 
Davidson 1989). The simulation results should be 
informative so that the designers can evaluate not 
only the macro environment in the entire building, 
but also the microenvironment in each room. The 
simulations should also be sufficiently fast to explore 
various alternatives during the design process 
(Hughes et al. 1994).  

 

By solving the Navier-Stokes equations and other 
transport equations with an enormous amount of 
computing nodes, CFD can capture the flow details 
with good accuracy (Ladeinde and Nearon 1997; 
Nielsen 2004). However, when the simulated flow 
domain is large and complex, such as flow in a 
moderate size building, CFD can be computationally 
demanding if the simulation is performed on a single 
CPU computer (Lin et al. 2005; Mazumdar and Chen 
2007). 

 

In order to accelerate the CFD simulation, many 
researchers, such as Crouse et al. (2002) and 
Mazumdar and Chen (2008), executed simulations in 
parallel on multi-CPU computers. The parallel 
computing can greatly reduce the computing time. 
However, this effort does not reduce the cost for 
equipment purchase and installation, the space for 
installing the computers, and the capacity of the 
cooling system used in the space (Feng and Hsu 
2004). Hence, the multi-CPU computing is luxury for 
building designers. It is necessary to find high-
performance and low-cost computing hardware for 
simulating flow in buildings. 

 

Recently, GPU has attracted attention for parallel 
computing. Different from CPU, GPU is the core of a 
computer graphics card, which integrates multiple 
streaming processors on a chip. The GPU structure is 
highly parallelized for high performance graphics 
processing. For example, a NVIDA GeForce 8800 
GTX GPU available in 2006 integrated 128 
processors so that its peak computing speed is 367 
GFLOPS. Comparatively, the peak performance of 
an INTEL Core2 Duo 3.0 GHz CPU available at the 
same time is only about 32 GFLOPS (Kirk and Hwu 
2008). Figure 1 compares peak performance of the 
CPU (INTEL) and the GPU (NVIDIA). The 
performance gap between the CPU and GPU has 
been expanding since 2003 (NVIDIA 2007). 
Furthermore, this trend is likely to continue in the 
future. Besides its high performance, the cost of a 
GPU is low. For example, a graphics card with 
NVIDIA GeForce 8800 GTX GPU costs only around 
$500 and it can easily be installed into a personal 
computer. 

 

CPU handles sequential jobs so that it increases the 
computing speed principally by increasing its clock 
frequency. Unlike CPU, GPU is normally used for 
graphics processing that is typically a parallel job. 
Thus, development of GPU is to increase its 
computing capacity by adding more processors to 
handle the parallel job. It is technically easy and 
economically inexpensive to integrate a large 
quantity of low frequency processors into one chip 
(Kirk and Hwu 2008). Having many low-clock-
frequency processors working in parallel, GPU can 
achieve a high computing speed. For example, 
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although the clock frequency of the NVIDIA 
GeForce 8800 GTX GPU is only 575 MHz, its 
computing speed can be as high as 367 GFLOPS 
with 128 processors. The development strategy of 
GPU makes a graphics card at low-cost and with 
high-performance. 
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Figure 1 Comparison of computing speed of GPU 

and CPU 
 
In spite of its advantages in cost and performance, 
the applications of GPU have been focused on image 
processing. The programming on GPU requires a 
deep understanding of its hardware and programming 
languages. Prior to 2006, GPU programming 
languages, such as OpenGL (Shreiner and OpenGL 
Architecture Review Board 2008) and Direct3D 
(Walsh 2006), were designed for graphics processing. 
It was difficult to use the languages for solving 
Navier-Stokes equations. Hence, only a few attempts 
were made by experts in graphics (Ho et al. 2008; 

Scheidegger et al. 2005; Wei et al. 2004). 
 
In 2006, NVIDIA (NVIDIA 2007) provided a new 
GPU programming environment, named computer 
unified data architecture (CUDA). CUDA is an 
extended C language. Like other advanced 
programming languages, CUDA allows users to 
manipulate GPU without knowing the details of the 
hardware. Furthermore, CUDA is compatible with 
the standard C language. If a flow simulation code is 
written in C, a user only needs to rewrite the parallel 
computing part in CUDA. This feature can save a lot 
of time on code development. Some researchers have 
started to use CUDA for GPU programming. For 
example, Rodrigues et al (2008) used it for molecular 
simulations and Manaveki (2007) for cryptography. 
They have made the simulations 10-20 times faster 
than those on a CPU. Thus, it is also interesting to 
perform indoor flow simulations using the FFD on 
GPU. 

IMPLEMENTATION 

Flow Model 

This investigation applied a fast fluid dynamics (FFD) 
model proposed by Stam (1999). It is a simplified 
CFD model for solving continuity equation, Navier-
Stokes equations and transport equation for energy 
and species concentrations for transient, 
incompressible fluid flow. To efficiently solve these 
partial differential equations, FFD splits them into 
many simple equations and solves the simple 
equations one by one. The current FFD model is first 
order in time and second order in space. Applying the 
FFD model, Zuo and Chen (2009) simulated different 
indoor airflows at a speed 50 times faster than a CFD 
model. This investigation used the FFD model for 
flow simulation on GPU. 
 

Software and Hardware 

The implementation used CUDA to divide a GPU 
into three levels (Figure 2). The highest level is 
“grid”. Each grid consists of multiple “blocks”, and 
every block has many “threads”. A thread is the basic 
computing unit of GPU. Mathematic and logic 
operations are performed on threads. 
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Figure 2 Schematic of parallel computing with 
CUDA 

 

This study used a NVIDIA GeForce GTX 8800 GPU. 
This GPU has 16 streaming multiprocessors (SMs) 
(Rixner 2002) and each SM can hold up to 8 blocks 
or 768 threads at one time. Thus, the entire GPU can 
simultaneously hold up to 12,288 threads. Because 
CUDA does not allow splitting a block into two SMs, 
the block assignment is crucial to realize the full 
capacity of GPU. For example, if a block has 512 
threads, then only one block can be assigned to one 
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SM and the remaining 256 threads in that SM are 
unused. If a block contains 256 threads, then three 
blocks can fully occupy all of the 768 threads of an 
SM. Theoretically, the 8800 GTX GPU can reach its 
peak performance when all 12,288 threads are 
running at the same time. Practically, the peak 
performance also depends on many other factors, 
such as the time for reading or writing data with the 
memory. 

 

Mapping Strategy 

When working in parallel, it is important to map the 
thread indices (threadID.x, threadID.y) in a block 
onto the coordinate of mesh nodes (i, j). The current 
implementation applied the following formulas: 
 

. . .i blockDim x blockID x threadID x= × + , (1) 

. . .j blockDim y blockID y threadID y= × + . (2) 

 
where blockID.x and blockID.y are the indices of the 
block for the thread. blockDim.x and blockDim.y are 
the block dimensions at x and y directions, 
respectively. Both of them are 16 in our 
implementation. 

 

SIMULATION RESULTS 

To demonstrate FFD simulations on GPU, this 
investigation calculated three airflows relevant to 
indoor environment and compared the results with 
those on CPU and the data from literature. The three 
flows were laminar and turbulent flow in a lid-driven 
cavity and natural convective flow in a tall cavity. 
The simulations used the exactly same meshes and 
numerical settings in both GPU and CPU versions. 
 

Laminar Flow in a Lid Driven Cavity (Re = 100) 

The first case was the laminar flow in a lid-driven 
cavity. Based on the length of cavity and lid velocity, 
the Reynolds number of the flow is Re = 100. This 
study used a mesh of 33 × 33 grids. The reference 
data was the high quality CFD results obtained by 
Ghia et al (1982). As shown in Figure 3, FFD on 
GPU could predict the same velocity profiles as that 
on CPU. Furthermore, the FFD results were similar 
to the reference data. Although this is a simple case, 
it proves that GPU can be used for numerical 
calculations. 
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(a) Horizontal velocity at x = 0.5 L 

 

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.2  0.4  0.6  0.8  1

V
(m

/s
)

x(m)

GPU
CPU

GHIA

 
(b) Vertical velocity at y = 0.5 L 

Figure 3 Comparison of the calculated velocity 
profiles (Re = 100) by the FFD model on CPU and 

GPU with the CFD data in a lid-driven square 
cavity  

 

Turbulent Flow in a Lid Driven Cavity (Re = 

10000) 

The second case was a turbulent flow in the lid-
driven cavity with Re = 10000. To capture the 
characteristics of the flow, this study used a very fine 
mesh of 513 × 513 grids. The same amount of mesh 
was also used by Ghia et al. (1982). Because FFD is 
the first order in time, a very small time step size 
(0.005s) was necessary to reduce the error. It is very 
time consuming to run such an unsteady simulation 
on a single CPU. Thus, this study only did the 
simulation on GPU. As shown in the Figure 4, The 
FFD model on GPU computed accurately the 
horizontal and vertical velocity profiles. The 
computed profiles agree with the reference data 
obtained by Ghia et al. (1982). 
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(b) Vertical velocity at y = 0.5 L 

Figure 4 Comparison of the calculated velocity 
profiles (Re = 10000) by the FFD model on GPU 

with the reference data in a lid-driven cavity 

 

Figure 5 shows streamlines computed by the FFD 
model on GPU for the turbulent flow. The FFD 
model on GPU can properly predict a large 
recirculation in the center of cavity. It also computed 
several secondary recirculations at low-left, low-right 
and upper-left corners. Furthermore, it captured two 
third recirculations at the low-left and low-right 
corners. The differences between the FFD prediction 
and reference data (Ghia et al. 1982) are very 
negligible. 

 

Natural Convection in a Tall Cavity 

The flows in the previous two cases were isothermal. 
The FFD model on GPU was further tested for a non-
isothermal flow. The non-isothermal flow was a 
natural convection flow in a tall cavity of 0.076 m 
wide and 2.18 m high. The left wall was cooled at 
15.1 oC and the right wall heated at 34.7 oC. The top 
and bottom walls were insulated. The corresponding 
Rayleigh number was 0.86×106. A coarse mesh of 11 
× 21 was applied to the FFD simulations on both 
CPU and GPU. The reference data was from the 
experiment performed by Betts and Bokhari (2000). 
Figure 6 depicts that the FFD model on GPU gave 
the same velocity and temperature profiles as that on 

CPU. Although the results obtained by the FFD 
model differ from the experimental data, the error 
was caused by the FFD model, not GPU. 

 

 

Figure 5 Streamlines of a turbulent lid-driven cavity 
flow (Re = 10000) computed by the FFD on GPU 
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     (a) Velocity profiles         (b) Temperature Profiles 

Figure 6 Comparison of the velocity and temperature 
profiles predicted by the FFD model on CPU and 
GPU with the experimental data 

 

DISCUSSION 

Computing Time 

To compare the FFD simulation speed on GPU with 
that on CPU, this study used the computing time for 
the lid-driven cavity flow at Re = 100 as an example. 
The CPU simulations were conducted on a HP 
workstation with an INTEL XeonTM CPU and the 
GPU simulations on an NVIDIA GTX 8800 GPU. 
The simulations were performed for 100 time steps 
but with different meshes. 

 
Figure 7 illustrates that the CPU computing time 
increased linearly with the mesh size. When the grid 
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number was smaller than 3.6×103, the FFD model on 
CPU was faster than that on GPU. Since it took time 
to transfer data during the GPU simulations, the time 
could be more significant than that saved in the 
parallel computing when the mesh size was small. 
Hence, parallel computing on GPU should be applied 
to cases with a large mesh size. 

 

 

Figure 7 Comparison of the computing time used by 
the FFD model on GPU with that on CPU 

 
It should be noted from Figure 7 that the GPU 
computing time was almost constant when the mesh 
size was less than 4×104. This is because the mesh 
size was not large enough for the GPU utilizing fully 
its capacity. When the mesh size was greater than 
4×104, the GPU computing time increased along two 
paths. Those points on the solid line were for the 
cases with a mesh size in multiplication of 256 and 
on the dashed line the mesh size not in multiplication 
of 256. As mentioned previously, each mesh node 
was assigned to one thread and a block had 256 
threads. If the mesh size was in the multiplication of 
256, all the 256 threads of every block were utilized. 
Thus, the working load among the blocks was equal. 
Otherwise, some of the threads in the block were 
rendered idle and the working load between the 
blocks was unequal. The imbalance of the working 
load can have a severe penalty on the computing 
speed. For example, the simulation with 640 × 640 
grids that was in multiplication of 256 took 9.977 s, 
but that with 639 × 639 needed 28.875 s. Although 
the latter case had fewer grids than the former, its 
computing time increased by almost two times. 
 
Nevertheless, the FFD model on GPU is still 10 
times faster than that on CPU even if the grid number 
was not in multiplication of 256. The difference 
increased to around 30 times if the grid number was 
in multiplication of 256. 
 

Impact 

This study implemented the FFD model for flow 
simulations on GPU. Since the FFD model solves the 
same governing equations as the CFD model does, it 
is also possible to implement the CFD model on GPU. 

One can also expect that the speed of CFD 
simulations on GPU should be faster than that on the 
CPU. For those CFD codes written in C language, the 
implementation will be relatively easy since only the 
parallel computing part needs to be re-written in 
CUDA. 

 

It is possible to further reduce the computing time by 
using multi-GPU clusters. For example, the NVIDA 
Tesla personal supercomputer has 4 GPUs with 960 
processors. It is about 250 times faster than a single 
CPU personal computer. 

 

CONCLUSION 

This study performed flow simulation with the FFD 
model on GPU and CPU. The FFD simulation on 
GPU is 10 – 30 times faster than that on CPU. The 
cost of a GPU is less than 2% of a supercomputer or 
computer cluster with the same performance. The 
GPU can be used also for CFD simulations and other 
scientific computing. 
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