
HIGH-PERFORMACNE AND LOW-COST COMPUTING FOR INDOOR AIRFLOW

Wangda Zuo and Qingyan Chen

National Air Transportation Center of Excellence for Research in the Intermodal Transport Environment (RITE),

School of Mechanical Engineering, Purdue University, USA

Corresponding email: yanchen@purdue.edu

ABSTRACT

Computational fluid dynamics (CFD) can provide
detailed information of flow motion, temperature
distributions and species dispersion in buildings.
However, it may take hours or days, even weeks to
simulate airflow in a building by using CFD on a
single central processing unit (CPU) computer.
Parallel computing on a multi-CPU supercomputer or
computer cluster can reduce the computing time, but
the cost for such high performance computing is
prohibitive for many designers. Our paper introduces
high performance parallel computing of the airflow
simulations on a graphics processing unit (GPU). The
computing time can be reduced by 10 - 30 times
using the GPU. Furthermore, the cost of purchasing
such a GPU is only $500, which is less than 2% of a
multi-CPU supercomputer or a computer cluster for
the same performance.

INTRODUCTION

To design a comfortable, healthy, and energy-
efficient building, it is essential to know some key
parameters of the indoor air, such as the distributions
of air velocity, air temperature, species
concentrations, and pressure. Those data can be
obtained by computer simulations (Chen 2009;
Davidson 1989). The simulation results should be
informative so that the designers can evaluate not
only the macro environment in the entire building,
but also the microenvironment in each room. The
simulations should also be sufficiently fast to explore
various alternatives during the design process
(Hughes et al. 1994).

By solving the Navier-Stokes equations and other
transport equations with an enormous amount of
computing nodes, CFD can capture the flow details
with good accuracy (Ladeinde and Nearon 1997;
Nielsen 2004). However, when the simulated flow
domain is large and complex, such as flow in a
moderate size building, CFD can be computationally
demanding if the simulation is performed on a single
CPU computer (Lin et al. 2005; Mazumdar and Chen
2007).

In order to accelerate the CFD simulation, many
researchers, such as Crouse et al. (2002) and
Mazumdar and Chen (2008), executed simulations in
parallel on multi-CPU computers. The parallel
computing can greatly reduce the computing time.
However, this effort does not reduce the cost for
equipment purchase and installation, the space for
installing the computers, and the capacity of the
cooling system used in the space (Feng and Hsu
2004). Hence, the multi-CPU computing is luxury for
building designers. It is necessary to find high-
performance and low-cost computing hardware for
simulating flow in buildings.

Recently, GPU has attracted attention for parallel
computing. Different from CPU, GPU is the core of a
computer graphics card, which integrates multiple
streaming processors on a chip. The GPU structure is
highly parallelized for high performance graphics
processing. For example, a NVIDA GeForce 8800
GTX GPU available in 2006 integrated 128
processors so that its peak computing speed is 367
GFLOPS. Comparatively, the peak performance of
an INTEL Core2 Duo 3.0 GHz CPU available at the
same time is only about 32 GFLOPS (Kirk and Hwu
2008). Figure 1 compares peak performance of the
CPU (INTEL) and the GPU (NVIDIA). The
performance gap between the CPU and GPU has
been expanding since 2003 (NVIDIA 2007).
Furthermore, this trend is likely to continue in the
future. Besides its high performance, the cost of a
GPU is low. For example, a graphics card with
NVIDIA GeForce 8800 GTX GPU costs only around
$500 and it can easily be installed into a personal
computer.

CPU handles sequential jobs so that it increases the
computing speed principally by increasing its clock
frequency. Unlike CPU, GPU is normally used for
graphics processing that is typically a parallel job.
Thus, development of GPU is to increase its
computing capacity by adding more processors to
handle the parallel job. It is technically easy and
economically inexpensive to integrate a large
quantity of low frequency processors into one chip
(Kirk and Hwu 2008). Having many low-clock-
frequency processors working in parallel, GPU can
achieve a high computing speed. For example,

Eleventh International IBPSA Conference
Glasgow, Scotland

July 27-30, 2009

- 244 -

although the clock frequency of the NVIDIA
GeForce 8800 GTX GPU is only 575 MHz, its
computing speed can be as high as 367 GFLOPS
with 128 processors. The development strategy of
GPU makes a graphics card at low-cost and with
high-performance.

 0

 50

 100

 150

 200

 250

 300

 350

 400

2003 2004 2005 2006 2007

G
F

L
O

P
S

year

GPU
CPU

Figure 1 Comparison of computing speed of GPU

and CPU

In spite of its advantages in cost and performance,
the applications of GPU have been focused on image
processing. The programming on GPU requires a
deep understanding of its hardware and programming
languages. Prior to 2006, GPU programming
languages, such as OpenGL (Shreiner and OpenGL
Architecture Review Board 2008) and Direct3D
(Walsh 2006), were designed for graphics processing.
It was difficult to use the languages for solving
Navier-Stokes equations. Hence, only a few attempts
were made by experts in graphics (Ho et al. 2008;

Scheidegger et al. 2005; Wei et al. 2004).

In 2006, NVIDIA (NVIDIA 2007) provided a new
GPU programming environment, named computer
unified data architecture (CUDA). CUDA is an
extended C language. Like other advanced
programming languages, CUDA allows users to
manipulate GPU without knowing the details of the
hardware. Furthermore, CUDA is compatible with
the standard C language. If a flow simulation code is
written in C, a user only needs to rewrite the parallel
computing part in CUDA. This feature can save a lot
of time on code development. Some researchers have
started to use CUDA for GPU programming. For
example, Rodrigues et al (2008) used it for molecular
simulations and Manaveki (2007) for cryptography.
They have made the simulations 10-20 times faster
than those on a CPU. Thus, it is also interesting to
perform indoor flow simulations using the FFD on
GPU.

IMPLEMENTATION

Flow Model

This investigation applied a fast fluid dynamics (FFD)
model proposed by Stam (1999). It is a simplified
CFD model for solving continuity equation, Navier-
Stokes equations and transport equation for energy
and species concentrations for transient,
incompressible fluid flow. To efficiently solve these
partial differential equations, FFD splits them into
many simple equations and solves the simple
equations one by one. The current FFD model is first
order in time and second order in space. Applying the
FFD model, Zuo and Chen (2009) simulated different
indoor airflows at a speed 50 times faster than a CFD
model. This investigation used the FFD model for
flow simulation on GPU.

Software and Hardware

The implementation used CUDA to divide a GPU
into three levels (Figure 2). The highest level is
“grid”. Each grid consists of multiple “blocks”, and
every block has many “threads”. A thread is the basic
computing unit of GPU. Mathematic and logic
operations are performed on threads.

Host (CPU)

Device (GPU)

Grid 1

Grid 2

Grid 3, 4, …….

Grid 1 Grid 2 Grid 3, 4, ……

Block

(2,2)

Block

(1,2)

Block

(0,2)

Block

(2,1)

Block

(1,1)

Block

(0,1)

Block

(2,0)

Block

(1,0)

Block

(0,0)

Block

(2,2)

Block

(1,2)

Block

(0,2)

Block

(2,1)

Block

(1,1)

Block

(0,1)

Block

(2,0)

Block

(1,0)

Block

(0,0)

Block(0,0)

…………

Thread

(2,2)

Thread

(1,2)

Thread

(0,2)

Thread

(2,1)

Thread

(1,1)

Thread

(0,1)

Thread

(2,0)

Thread

(1,0)

Thread

(0,0)

Thread

(2,2)

Thread

(1,2)

Thread

(0,2)

Thread

(2,1)

Thread

(1,1)

Thread

(0,1)

Thread

(2,0)

Thread

(1,0)

Thread

(0,0)

Block(1,0)

…………

Block

(2,2)

Block

(1,2)

Block

(0,2)

Block

(2,1)

Block

(1,1)

Block

(0,1)

Block

(2,0)

Block

(1,0)

Block

(0,0)

Block

(2,2)

Block

(1,2)

Block

(0,2)

Block

(2,1)

Block

(1,1)

Block

(0,1)

Block

(2,0)

Block

(1,0)

Block

(0,0)

Thread

(2,2)

Thread

(1,2)

Thread

(0,2)

Thread

(2,1)

Thread

(1,1)

Thread

(0,1)

Thread

(2,0)

Thread

(1,0)

Thread

(0,0)

Thread

(2,2)

Thread

(1,2)

Thread

(0,2)

Thread

(2,1)

Thread

(1,1)

Thread

(0,1)

Thread

(2,0)

Thread

(1,0)

Thread

(0,0)

Figure 2 Schematic of parallel computing with
CUDA

This study used a NVIDIA GeForce GTX 8800 GPU.
This GPU has 16 streaming multiprocessors (SMs)
(Rixner 2002) and each SM can hold up to 8 blocks
or 768 threads at one time. Thus, the entire GPU can
simultaneously hold up to 12,288 threads. Because
CUDA does not allow splitting a block into two SMs,
the block assignment is crucial to realize the full
capacity of GPU. For example, if a block has 512
threads, then only one block can be assigned to one

- 245 -

SM and the remaining 256 threads in that SM are
unused. If a block contains 256 threads, then three
blocks can fully occupy all of the 768 threads of an
SM. Theoretically, the 8800 GTX GPU can reach its
peak performance when all 12,288 threads are
running at the same time. Practically, the peak
performance also depends on many other factors,
such as the time for reading or writing data with the
memory.

Mapping Strategy

When working in parallel, it is important to map the
thread indices (threadID.x, threadID.y) in a block
onto the coordinate of mesh nodes (i, j). The current
implementation applied the following formulas:

. . .i blockDim x blockID x threadID x= × + , (1)

. . .j blockDim y blockID y threadID y= × + . (2)

where blockID.x and blockID.y are the indices of the
block for the thread. blockDim.x and blockDim.y are
the block dimensions at x and y directions,
respectively. Both of them are 16 in our
implementation.

SIMULATION RESULTS

To demonstrate FFD simulations on GPU, this
investigation calculated three airflows relevant to
indoor environment and compared the results with
those on CPU and the data from literature. The three
flows were laminar and turbulent flow in a lid-driven
cavity and natural convective flow in a tall cavity.
The simulations used the exactly same meshes and
numerical settings in both GPU and CPU versions.

Laminar Flow in a Lid Driven Cavity (Re = 100)

The first case was the laminar flow in a lid-driven
cavity. Based on the length of cavity and lid velocity,
the Reynolds number of the flow is Re = 100. This
study used a mesh of 33 × 33 grids. The reference
data was the high quality CFD results obtained by
Ghia et al (1982). As shown in Figure 3, FFD on
GPU could predict the same velocity profiles as that
on CPU. Furthermore, the FFD results were similar
to the reference data. Although this is a simple case,
it proves that GPU can be used for numerical
calculations.

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

y
(m

)

U(m/s)

GPU
CPU

GHIA

(a) Horizontal velocity at x = 0.5 L

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

V
(m

/s
)

x(m)

GPU
CPU

GHIA

(b) Vertical velocity at y = 0.5 L

Figure 3 Comparison of the calculated velocity
profiles (Re = 100) by the FFD model on CPU and

GPU with the CFD data in a lid-driven square
cavity

Turbulent Flow in a Lid Driven Cavity (Re =

10000)

The second case was a turbulent flow in the lid-
driven cavity with Re = 10000. To capture the
characteristics of the flow, this study used a very fine
mesh of 513 × 513 grids. The same amount of mesh
was also used by Ghia et al. (1982). Because FFD is
the first order in time, a very small time step size
(0.005s) was necessary to reduce the error. It is very
time consuming to run such an unsteady simulation
on a single CPU. Thus, this study only did the
simulation on GPU. As shown in the Figure 4, The
FFD model on GPU computed accurately the
horizontal and vertical velocity profiles. The
computed profiles agree with the reference data
obtained by Ghia et al. (1982).

- 246 -

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

y
(m

)

U(m/s)

GPU
GHIA

(a) Horizontal velocity at x = 0.5 L

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

V
(m

/s
)

x(m)

GPU
GHIA

(b) Vertical velocity at y = 0.5 L

Figure 4 Comparison of the calculated velocity
profiles (Re = 10000) by the FFD model on GPU

with the reference data in a lid-driven cavity

Figure 5 shows streamlines computed by the FFD
model on GPU for the turbulent flow. The FFD
model on GPU can properly predict a large
recirculation in the center of cavity. It also computed
several secondary recirculations at low-left, low-right
and upper-left corners. Furthermore, it captured two
third recirculations at the low-left and low-right
corners. The differences between the FFD prediction
and reference data (Ghia et al. 1982) are very
negligible.

Natural Convection in a Tall Cavity

The flows in the previous two cases were isothermal.
The FFD model on GPU was further tested for a non-
isothermal flow. The non-isothermal flow was a
natural convection flow in a tall cavity of 0.076 m
wide and 2.18 m high. The left wall was cooled at
15.1 oC and the right wall heated at 34.7 oC. The top
and bottom walls were insulated. The corresponding
Rayleigh number was 0.86×106. A coarse mesh of 11
× 21 was applied to the FFD simulations on both
CPU and GPU. The reference data was from the
experiment performed by Betts and Bokhari (2000).
Figure 6 depicts that the FFD model on GPU gave
the same velocity and temperature profiles as that on

CPU. Although the results obtained by the FFD
model differ from the experimental data, the error
was caused by the FFD model, not GPU.

Figure 5 Streamlines of a turbulent lid-driven cavity
flow (Re = 10000) computed by the FFD on GPU

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

V
(m

/s
)

x(m)

y=0.218m

y=1.090m

y=1.926m

0

0

0

0

0

0

GPU
CPU

Experiment

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

T
(o

C
)

x(m)

y=0.218m

y=1.090m

y=1.926m

15.1

15.1

15.1

34.7

34.7

34.7

GPU
CPU

Experiment

 (a) Velocity profiles (b) Temperature Profiles

Figure 6 Comparison of the velocity and temperature
profiles predicted by the FFD model on CPU and
GPU with the experimental data

DISCUSSION

Computing Time

To compare the FFD simulation speed on GPU with
that on CPU, this study used the computing time for
the lid-driven cavity flow at Re = 100 as an example.
The CPU simulations were conducted on a HP
workstation with an INTEL XeonTM CPU and the
GPU simulations on an NVIDIA GTX 8800 GPU.
The simulations were performed for 100 time steps
but with different meshes.

Figure 7 illustrates that the CPU computing time
increased linearly with the mesh size. When the grid

- 247 -

number was smaller than 3.6×103, the FFD model on
CPU was faster than that on GPU. Since it took time
to transfer data during the GPU simulations, the time
could be more significant than that saved in the
parallel computing when the mesh size was small.
Hence, parallel computing on GPU should be applied
to cases with a large mesh size.

Figure 7 Comparison of the computing time used by
the FFD model on GPU with that on CPU

It should be noted from Figure 7 that the GPU
computing time was almost constant when the mesh
size was less than 4×104. This is because the mesh
size was not large enough for the GPU utilizing fully
its capacity. When the mesh size was greater than
4×104, the GPU computing time increased along two
paths. Those points on the solid line were for the
cases with a mesh size in multiplication of 256 and
on the dashed line the mesh size not in multiplication
of 256. As mentioned previously, each mesh node
was assigned to one thread and a block had 256
threads. If the mesh size was in the multiplication of
256, all the 256 threads of every block were utilized.
Thus, the working load among the blocks was equal.
Otherwise, some of the threads in the block were
rendered idle and the working load between the
blocks was unequal. The imbalance of the working
load can have a severe penalty on the computing
speed. For example, the simulation with 640 × 640
grids that was in multiplication of 256 took 9.977 s,
but that with 639 × 639 needed 28.875 s. Although
the latter case had fewer grids than the former, its
computing time increased by almost two times.

Nevertheless, the FFD model on GPU is still 10
times faster than that on CPU even if the grid number
was not in multiplication of 256. The difference
increased to around 30 times if the grid number was
in multiplication of 256.

Impact

This study implemented the FFD model for flow
simulations on GPU. Since the FFD model solves the
same governing equations as the CFD model does, it
is also possible to implement the CFD model on GPU.

One can also expect that the speed of CFD
simulations on GPU should be faster than that on the
CPU. For those CFD codes written in C language, the
implementation will be relatively easy since only the
parallel computing part needs to be re-written in
CUDA.

It is possible to further reduce the computing time by
using multi-GPU clusters. For example, the NVIDA
Tesla personal supercomputer has 4 GPUs with 960
processors. It is about 250 times faster than a single
CPU personal computer.

CONCLUSION

This study performed flow simulation with the FFD
model on GPU and CPU. The FFD simulation on
GPU is 10 – 30 times faster than that on CPU. The
cost of a GPU is less than 2% of a supercomputer or
computer cluster with the same performance. The
GPU can be used also for CFD simulations and other
scientific computing.

ACKNOWLEDGEMENT

This project was funded by U.S. Federal Aviation
Administration (FAA) Office of Aerospace Medicine
through the National Air Transportation Center of
Excellence for Research in the Intermodal Transport
Environment (RITE) Cooperative Agreement 04-C-
ACE-PU-002. Although the FAA has sponsored this
project, it neither endorses nor rejects the findings of
this research. The presentation of this information is
in the interest of invoking technical community
comment on the results and conclusions of the
research.

REFERENCES

Betts, P.L. and Bokhari, I.H. (2000) "Experiments on
turbulent natural convection in an enclosed
tall cavity", International Journal of Heat
and Fluid Flow, 21, 675-683.

Chen, Q. (2009) "Ventilation performance prediction
for buildings: A method overview and
recent applications", Building and

Environment, 44, 848-858.

Crouse, B., Krafczyk, M., Kuhner, S., Rank, E., and
Van Treeck, C. (2002) "Indoor air flow
analysis based on lattice Boltzmann
methods", Energy and Buildings, 34, 941-
949.

Davidson, L. (1989) Numerical simulation of

turbulent flow in ventilated rooms, Ph. D.
Thesis, Chalmers University of Technology,
Goeteborg, Sweden.

Feng, W. and Hsu, C. (2004) "The origin and
evolution of green destiny", In: Proceedings
of IEEE Cool Chips VII: An International

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Number of Grids

C
o
m
p
u
ti
n
g
 T
im
e

GPU

CPU

- 248 -

Symposium on Low-Power and High-Speed

Chips, Yokohama, Japan.

Ghia, U., Ghia, K.N., and Shin, C.T. (1982) "High-
Re solutions for incompressible flow using
the Navier-Stokes equations and a multigrid
method", Journal of Computational Physics,
48, 387-411.

Ho, T.Y., Lam, P.M., and Leung, C.S. (2008)
"Parallelization of cellular neural networks
on GPU", Pattern Recognition, 41, 2684-
2692.

Hughes, J., King, V., Rodden, T., and Andersen, H.
(1994) "Moving out from the control room:
Ethnography in system design", In:
Proceedings of the 1994 ACM Conference

on Computer Supported Cooperative Work,
Chapel Hill, North Carolina, pp. 429-439.

Kirk, D. and Hwu, W.-M.W. 2008. Lecture notes of
programming massively parallel processors:
University of Illinios, Urbana-Champaign.

Ladeinde, F. and Nearon, M.D. (1997) "CFD
applications in the HVAC&r industry",
ASHRAE Journal, 39, 44-48.

Lin, C., Horstman, R., Ahlers, M., Sedgwick, L.,
Dunn, K., and Wirogo, S. (2005)
"Numerical simulation of airflow and
airborne pathogen transport in aircraft
cabins - part 1: Numerical simulation of the
flow field", ASHRAE Transactions, 111.

Manavski, S.A. (2007) "CUDA compatible GPU as
an efficient hardware accelerator for aes
cryptography", In: Proceedings of 2007

IEEE International Conference on Signal

Processing and Communications (ICSPC

2007), Dubai, United Arab Emirates.

Mazumdar, S. and Chen, Q. (2007) "Impact of
moving bodies on airflow and contaminant
transport inside aircraft cabins", In:
Proceedings of ROOMVENT 2007, Helsinki,
Finland, pp. 13-15.

Mazumdar, S. and Chen, Q. (2008) "Influence of
cabin conditions on placement and response
of contaminant detection sensors in a
commercial aircraft", Journal of

Environmental Monitoring, 10, 71-81.

Nielsen, P.V. (2004) "Computational fluid dynamics
and room air movement", Indoor Air, 14,
134-143.

NVIDIA. (2007) NVIDIA CUDA compute unified
device architecture-- programming guide

(version 1.1), Santa Clara, California,
NVIDIA Corporation.

Rixner, S. (2002) Stream processor architecture,
Boston & London, Kluwer Academic
Publishers.

Rodrigues, C.I., Hardy, D.J., Stone, J.E., Schulten, K.,
and Hwu, W.-M.W. (2008) "GPU

acceleration of cutoff pair potentials for
molecular modeling applications", In:
Proceedings of the 2008 International

Conference on Computing Frontiers, New
York, pp. 273-282.

Scheidegger, C.E., Comba, J.L.D., Da Cunha, R.D.,
and Corporation, N. (2005) "Practical CFD
simulations on programmable graphics
hardware using SMAC", Computer

Graphics Forum, 24, 715-728.

Shreiner, D. and OpenGL Architecture Review
Board. (2008) OpenGL programming guide:
The official guide to learning OpenGL

(version 2.1) (6th ed.), Upper Saddle River,
New Jersey, Addison-Wesley.

Stam, J. (1999) "Stable fluids", In: Proceedings of
26th International Conference on Computer

Graphics and Interactive Techniques

(SIGGRAPH’99), Los Angeles, pp. 121-128.

Walsh, P. (2006) Advanced visual effects with

Direct3D, Boston, Massachusetts, Course
Technology.

Wei, X., Li, W., Mueller, K., and Kaufman, A.E.
(2004) "The Lattice-Boltzmann method for
simulating gaseous phenomena", Ieee

Transactions on Visualization and

Computer Graphics, 10, 164-176.

Zuo, W. and Chen, Q. (2009) "Real-time or faster-
than-real-time simulation of airflow in
buildings", Indoor Air, 19, 33-44.

- 249 -

