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ABSTRACT 

In the current context of energy crisis and with the 

debate on climate change, low-energy buildings are 

required. Designers have to come to a compromise 

between the energy consumption, the economic cost, 

the comfort and the environmental impact of the 

building.  

In this article, we focus on the development of an 

optimization method dealing with these objectives. 

The method, based on genetic algorithms, takes into 

account the multicriteria aspect of the building 

refurbishment. 

We discuss the pertinence of the method, its 

robustness and the part of simulations through its 

application on the refurbishment of school building 

in France. We suggest improvements for the 

optimization method. 

INTRODUCTION 

In the current context of energy crisis and with the 

debate on climate change, low energy buildings are 

required. Designers have to deal with heating but also 

with air conditioning and specific uses of electricity. 

The weight of these spending categories increases 

strongly. Designing low energy buildings is not 

enough: it is necessary to take into account the 

economic and environmental aspects of building and 

also the thermal and visual comfort. 

In our work, we choose a global approach to 

optimize the building. This article presents the 

development of a multicriteria optimization method 

for tertiary building. We use genetic algorithms to 

reach an optimized choice for building 

refurbishment.  

There are three parts in this article. In the first one, 

we review the existing optimization methods and we 

explain the reasons why we choose genetic 

algorithms. In the second part, we describe the 

method we develope. In the last part of the article, we 

focus on the implementation of the method and on 

the results obtained. 

CHOICE OF OPTIMIZATION METHOD 

In order to develop our optimization method, we 

were interested in various existing methods and 

applications found in the literature.  

Vocabulary 

This type of method permits to solve an 

“optimization problem”, it allows finding at least one 

solution that minimizes or maximizes a particular 

criterion. This criterion is often represented by an 

objective function or a fitness function (Barichard, 

2003). This fitness function depends on variable 

parameters that describe the solutions. The variable 

parameters can be continuous or discrete (Nielsen, 

2002). 

The distinction between monocriteria optimization 

and multicriteria optimization is based on the nature 

of the objective function: when it corresponds to a 

unique criterion, we speak of monocriteria 

optimization, when it deals with several objectives, 

we speak of multicriteria optimization (Mansilla-

Pellen, 2006). 

In our case, the problem is to optimize refurbishment 

scenarios: the variable parameters are the 

characteristics of the measures included in the 

refurbishment scenarios and the objective functions 

are linked with energetic consumption, 

environmental impact of the building, economics and 

comfort. 

Various optimization methods 

Optimization methods can be classified into three 

groups (Goldberg, 1989): enumerative, calculus-

based, and random.  

• Enumerative methods 

The principle of enumerative search method is 

simple. Within a finite search space, or a discretized 

infinite search space, the algorithm assesses the 

fitness function at every point in the space, one at a 

time. In spite of its simplicity of implementation, this 

method suffers from a lack of efficiency. This 

method cannot be used with large search spaces. 

Consequently, this method is not convenient for our 

problem. 

• Calculus-based methods 

The calculus-based methods are sometimes called 

systematic (Nielsen, 2002) or exact methods 

(Bourazza, 2006). These methods are based on a 

rigorous mathematical expression of the objective 

function or of its gradient. 

There are two classes of systematic search methods: 

direct and indirect. Indirect methods try to find local 
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optima by solving the set of equations resulting from 

setting the gradient of the objective function equal to 

zero. Direct search methods seek local extrema by 

hooping on the function and moving in a direction 

related to the local gradient (Goldberg, 1989). 

Several authors (Göktun et al., 2001; Kilkis, 2006) 

used these methods to optimize heating and cooling 

systems. Bouchlaghem (Bouchlaghem et al., 1990) 

used a calculus-based method called simplex to 

improve the efficiency of low energy buildings. 

These methods have two main limits. First of all the 

convergence of these methods depends on regularity 

hypotheses of the objective function. We have to 

know an explicit expression of the function and 

sometimes, the function must be continuous or admit 

derivatives. Furthermore, these methods are local 

search methods. They converge on the global 

optimum only if the starting point of the algorithm is 

in the neighbourhood of this optimum. In the case of 

objective function with several local optima, the 

implementation of theses methods become laborious. 

• Random methods 

The random or stochastic methods are based on a 

random evolution of the solutions. These methods 

have often been developed by analogy to other 

phenomena. We can list several methods: simulated 

annealing, taboo search, ant colony algorithm, 

genetic algorithm… 

Simulated annealing is based on thermodynamics and 

can be compared to the physical annealing process 

where a molten material with a high temperature is 

slowly cooled and forms crystals. The objective 

function is represented by the internal energy and the 

algorithm seeks minimal energy state. Nielsen 

(Nielsen, 2002) developed his own optimization 

method based on simulated annealing. With this 

method, he tried to design building with optimized 

life cycle analysis. 

Taboo search uses a memory of past moves to 

diversify the search and avoid becoming trapped in 

local minima (Barichard, 2003). 

The ant colony algorithm permits to solve problems 

that can be reduced to finding good paths through 

graphs. It works like a colony of insect looking for 

food and is based on collective intelligence (Dietz, 

2004). 

Genetics algorithms are evolutionary algorithms, 

using an analogy with the mechanisms of natural 

selection and genetic concepts (Goldberg, 1989). The 

method uses a population of solutions. Each iteration 

involves a competitive selection to remove poor 

solutions. After several iterations, the final 

population consists of improved solutions. 

Genetic algorithms are used to optimize various 

aspects of the building. Lu (Lu et al, 2005) uses 

genetic algorithms to minimize energy consumption 

of a set of HVAC systems and Chow (Chow et al. 

2002) carries on a detailed optimization of an 

absorption chiller system. In the field of architectural 

design, genetic algorithms help sometimes the choice 

of building shape. For instance, Caldas (Caldas and 

Norford, 2002) uses them to define an optimal sizing 

of the windows, through the study of the thermal and 

visual performances. Some recent research works use 

genetic algorithms for the energy design of the 

building. Wang (Wang et al, 2005) uses them to 

optimize the design of “Green Buildings” and 

Charron (Charron et al, 2006) improves the energy 

consumption of “net-zero energy solar homes”. 

Multicriteria optimization 

In the previous paragraphs, we attempted to describe 

monocriterion problems of optimization. However, in 

most of the real cases, we have to optimize 

simultaneously several objective functions. 

Moreover, these functions are often contradictory. 

At the end of the XIXth century, an economist named 

Pareto developed a optimum concept for multi-

objective problems (Dietz, 2004). This concept treats 

all objectives independently of others during the 

optimization and deduces the compromise between 

objectives by determining the non-dominated 

solutions. 

A solution is non-dominated or “Pareto optimal” 

when no other feasible solution exists that decreases 

one objective without causing simultaneously an 

increase in at least one other objective. When the 

problem treats two objectives (for example financial 

cost and energy consumption), the result of the 

optimization is a curve of non-dominated solutions, 

called the Pareto curve (Wang et al, 2005; Verbeeck, 

2007). 

Figure 1 presents an example of Pareto curve for an 

optimization problem with two objectives. 
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Figure 1 – An example of Pareto curve 

 

For an optimization with three objectives, the result 

consists of a Pareto surface. For more than three 

objectives, Pareto optimization can be done but no 

direct visualization is possible.. 

With the Pareto method, the objectives are treated 

independently during the optimization. The different 

objectives are identified as independent fitness 

functions. Some methods by-pass the multi-objective 

aspect of the problem and consider an objective as a 

constraint. In other methods, like the aggregation 

method, the balanced sum of the different objective 

functions is defined as the new objective function. 

The Pareto concept allows to obtain a set of 

improved solutions among which we can establish 

preferences. 
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Characteristics of our optimization method 

We try to optimize refurbishment scenarios of 

buildings, dealing with energy consumption, 

economic cost, comfort or environmental impact. 

The problem we consider is multi-objective. 

The nature of the objective functions can guide the 

choice of optimization method. To assess the energy 

consumption of a building, we can use a simplified 

method or dynamic thermal simulations. When we 

use dynamic simulations, we do not have any 

rigorous and explicit expression of the objective 

function. We have no idea about the regularity of the 

function. Consequently, in order to preserve our 

choice of tools for the assessment of energy 

consumption or comfort, the optimization method 

must admit irregular objective functions. 

The variable parameters of the problem represent the 

characteristics of the refurbishment scenarios. These 

parameters may be continuous like a U-value or 

discrete like a type of isolation material. Therefore, 

the optimization method has to deal with several 

types of variable parameters. 

The problem we consider is complex. The objectives 

are sometimes contradictory and many local optima 

could exist. Thus, the optimization method must 

conduct global search. 

Considering the previous remarks, we can already 

direct our choice of optimization method. Our search 

domain corresponds to the refurbishment scenario 

possibilities. This search domain is too large for 

using enumerative methods. We have no idea about 

the form of objective functions; it seems difficult to 

implement calculus-based methods. We choose 

consequently to work with random methods. 

Among the stochastic methods, the genetic 

algorithms seem to be the most used for the 

optimization in the building sector. According to 

literature (Dietz, 2004; Wright et al., 2005; Bourazza, 

2006; Znouda et al., 2006), this method has several 

advantages: 

- It is very robust; the choice of the algorithm 

parameters does not influence the quality of the 

solutions; 

- The implementation of this method requires no 

knowledge on the mathematical structure of the 

problem; 

- The genetic algorithms seek solutions in the 

whole search domain and random transition rules 

permit to find global optimum; 

- At the end of the optimization process, we obtain 

a population constituted by good optimized 

solutions. This variety of solutions seems more 

interesting than a unique solution, especially 

within the framework of a multicriteria 

optimization. 

The advantages of the genetic algorithms seem to 

correspond to our expectations and to the specificities 

of our problem. We thus choose to use genetic 

algorithms to optimize the refurbishment scenarios of 

buildings.  

SIMULATIONS – IMPLEMENTATION 

OF THE OPTIMIZATION METHOD 

In this part, we describe an example of the 

implementation of genetic algorithms for the 

optimization of refurbishment scenarios. 

Principles 

As explained previously, the use of genetic 

algorithms is based on the evolution of a population 

of individuals, each individual being a solution of the 

optimization problem. In our case, an individual 

corresponds to a building on which a refurbishment 

scenario was implemented. 

A chromosome represents every individual. The 

genes of this chromosome corresponding to 

characteristics of the individual. When a scenario 

deals with wall insulation or heater efficiency, the 

chromosome contains genes related to each of these 

characteristics. The figure below (Figure 2) presents 

this principle. 
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Figure 2 – A solution represented by a chromosome 
 

In this article, we study the implementation of the 

method on the refurbishment of school building in 

France. Consequently, we define variable parameters 

and objective functions adapted to our example. 

Initial characteristics of the building 

In this example, we consider the refurbishment of a 

particular type of school. The plan of this school was 

defined from a typology of the French building stock 

(OPTISOL, 2008). It is thus representative of 

existing school buildings. The figure below 

(Figure 3) presents a simplified plan of the studied 

school. 
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Figure 3 – Simplified plan of the school 
 

From this building model and with the optimization 

tool (OPTISOL, 2008), we are able to give leads for 

the refurbishment of this type of school. 

Definition of the variable parameters 

For this example, we consider the following variable 

parameters. The last one is a discrete parameter. The 
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others are continuous; they can vary in their 

definition domain. For instance, Uwall can take all 

values between 0,15 W/m².K and 1,6 W/m².K 

- Uwall, thermal transmittance of the walls 

(W/m².K) [0,15 ; 1,6]; 

- Uwind, thermal transmittance of the windows 

(W/m².K) [1,2 ; 4,5]; 

- GR, glazing ratio (glazing area / façade area) 

[25% ; 75%]; 

- SF, solar factor of the windows [0,1 ; 0,9]; 

- Uroof, thermal transmittance of the roof (W/m².K) 

[0,1 ; 1,3]; 

- AT, air tightness of the building envelope 

(m
3
/h.m² under 4 Pa) [1,2 ; 3]; 

- LP, artificial lighting power W [8 ; 20]; 

- LS, lighting regulation [switch, occupancy 

sensor, daylight sensor]. 

Definition of the objective functions  

From the variable parameters defined above, we can 

form an initial population of solutions. To estimate 

these solutions and keep those that have high fitness, 

we define objective functions. 

For this example, we consider three objective 

functions. The first one is linked with energy through 

the energy consumption, the others are linked with 

the financial costs : the financial investment and the 

economic global cost. 

• Objective function linked with energy 

The first objective function “energy” deals with the 

global yearly energy consumption of the building: 

heating, ventilation, lighting, other use of 

electricity…These consumptions are estimated in 

kWh of final energy per m². 

The objective function representing the energy 

consumptions is a polynomial function drawn up 

with the design of experiments method (Filfli, 2006, 

Chlela, 2008, OPTISOL, 2008). The function 

“energy” depends on the parameters defined 

previously. With this polynomial function, we can 

estimate the consumption without using dynamic 

thermal simulation. On the other hand, a polynomial 

function is adapted to one unique building in a 

specific climate. 

• Objective functions linked with financial 

costs 

The second objective function “invest” represents the 

investment cost linked with the refurbishment of the 

building. This function is drawn up using prices 

databases (OPTISOL, 2008). This function depends 

on the parameter defined for the scenarios: Uwall, 

AT...etc. 

The third objective function assesses the economic 

global cost “GC”. It is the sum of the initial 

investment cost, the yearly energy cost and the yearly 

maintenance cost. The estimation of these costs is 

done with prices databases and hypotheses on the 

energy cost, the inflation rate and the discount rate. 

Optimization process 

Thanks to the objective functions, we can assess the 

initial population and determine the best solutions 

according to energy and economic aspects of the 

problem. The best solutions are the “parents” of the 

following generation. 

The “children” are defined by recombination of the 

parents’ chromosomes. We use two genetic 

operators: crossover and mutation. Chromosomal 

crossover is the process by which two chromosomes 

pair up and swap part of their genes. Mutation is a 

random alteration of a gene. Figure 4 presents these 

genetic operators. 
 

crossover
parent a

parent b

child 1

child 2

parent c mutation
child 3

crossovercrossover
parent a

parent b

child 1

child 2

parent c mutationmutation
child 3  

Figure 4 – Crossover and mutation operators 
 

After the chromosomal recombination, we obtain 

“children” solutions that form a new generation, 

which is assessed. Individuals with the highest fitness 

are selected as parents for the next round of 

recombination. This process is iterative and stops 

after a fixed number of generations. The final 

population contains optimized solutions. 

Three types of optimization 

With the objective functions defined above, we can 

imagine three types of optimization: 

- An optimization with an energetic target: the 

fitness function is the investment cost and we 

consider a requirement in term of energy 

consumption; 

- An optimization with an investment target: the 

fitness function is the energy consumption and 

we consider a requirement in term of investment; 

- A global optimization: we minimize the 

economic global cost. 

The optimization with a target is a method for 

bypassing the multicriteria aspect of the problem: one 

of the two objective functions becomes a constraint. 

There is only one function to optimize. 

In the global optimization, we use the “aggregation 

method”. The objective function is the balanced sum 

of two functions: energy consumption and 

investment. 

For this example, at the end of the optimization, the 

optimization tool suggests then a unique optimized 

scenario. Indeed, with a monocriteria objective 

function, the optimum concept has a real sense. 

The parameters of the optimization method 

The tool used for this example has been developed 

based on the algorithm proposed by Turkkan “Real-

Coded Genetic Algorithm, GenetikSolver V4.1” 

(Turkkan, 2006). 
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In this example, we chose parameters for the 

implementation of genetic algorithms: 

- the number of individuals in a population is 

fixed and equal to 200; 

- the crossover probability is 0,85; 

- the mutation probability is 0,05; 

- the algorithm stops after 3000 generations. 

For this example, we set the inflation rate at 0,03 and 

the discount rate at 0,06. For the evaluation of the 

economic global cost, the time period used for 

calculation is 15 years. 

For the simulations of this example, certain variable 

parameters are fixed: the glazing ratio is 50 %, the 

power installed for artificial lighting is 8 W/m² and 

the lighting is regulated through switches. 

RESULTS, ANALYSIS, DISCUSSIONS 

In this article, we present the results of the 

implementation of the optimization method. We 

study the refurbishment of a school. In the first series 

of simulations, we focus on the leads given for 

school refurbishment: how good they seem and the 

problems we discover. In the second series of 

simulations, we focus on the three different types of 

optimization and the multicriteria aspect of the 

problem. 

First series of simulations – Leads for school 

refurbishment 

• Presentation 

In the first series of simulations, we seek leads for 

school refurbishment and we study the robustness of 

the method. We consider the school described above 

and located in Trappes, a town near Paris (Figure 5). 
 

TRAPPES

AGEN

TRAPPES

AGEN

 
Figure 5 – Map of France 

 

A gas boiler and radiators provide the heating. 

Ventilation with mechanical extraction guarantees 

the indoor air quality and there is no cooling system. 

The initial characteristics of the school are presented 

in the column “initial” in Table 1. Before the 

refurbishment, the energy consumptions of the school 

are 86,1 kWh(final energy)/m² or 132 kWh(primary 

energy)/m². 

• Results 

The optimization method we choose is optimization 

with energy target. We seek a scenario for which the 

energy consumption of the refurbished building will 

not exceed an energy target. We choose three nearby 

energy targets around 70 kWh(fe)/m². These targets 

correspond to the global yearly energy consumption 

of the refurbished building and represent a decrease 

of 20% according to initial consumption. 

We compare the optimized solutions. As the energy 

targets are nearby, if the solutions tally, it allows 

underlining interesting actions. The incoherences 

emphasize the limits of the method developed. 

Table 1 presents the optimization results. 
 

Table 1 

Optimized results for a school in Trappes 
 

 initial opt. A opt. B opt. C 

Energy target 

(kWhfe/m²) 
- 68 70 72 

Uwall (W/m².K) 0,57 0,37 0,69 0,81 

Uwind (W/m².K) 3,55 1,2 1,38 1,99 

SF 0,6 0,86 0,75 0,80 

Uroof (W/m².K) 0,35 0,12 0,15 0,21 

AT (m3/h/m² 

under 4 Pa) 
1,7 1,2 1,2 1,2 

Investment (k€) - 809 703 571 

Global cost (k€) - 954 853 723 
 

These results give leads for the refurbishment of the 

scholar building stock. First, we can notice that for 

the three optimisations, the optimized scenario 

contains a significant improvement of the parameters 

Uwind and Uroof. The thermal transmittance of the 

windows and of the roof is in average divided by two 

with regard to the initial situation. The air tightness 

of the building envelope is improved too: from 

1,7 m
3
/h.m² under 4 Pa to 1,2 m

3
/h.m² under 4 Pa. 

The results show an increase of the solar factor for 

the optimized scenarios. On the other hand, except 

for the optimization A that corresponds to the most 

demanding energy target, the thermal properties of 

the walls are not improved. 

We can thus consider that for schools similar to the 

example studied (similar shape, similar climate), the 

first refurbishment steps to limit the energy 

consumptions with the slightest cost are the 

insulation of the roof and the replacement of the 

windows. For more ambitious energy objectives, then 

it will be necessary to increase the insulation of the 

walls. 

Finally, we can note that the investment bound to the 

refurbishment scenarios evolves in inverse proportion 

to the energy target: the weaker the energy target is, 

the more important the investment necessary for the 

refurbishment is. 

• Discussion 

Through this example of implementation of the 

optimization method, we discover the possibilities 

offered by this tool but also some of its limits. 

The results obtained allowed us to answer our initial 

problem: the definition of refurbishment scenarios 
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reducing the energy consumptions with a controlled 

investment. This method suggests steps and could 

help building stock administrators to implement 

building refurbishment. 

To use this method for a specific project, we have to 

go further in the results analysis to suggest products 

for the refurbishment. For instance, in the 

optimization B, the final thermal transmittance of the 

windows is 1,38 W/m² and the solar factor is 0,75. A 

double glazing window in PVC with a low-energy 

layer has a U-value of 1,4 W/m².K. On the other 

hand, the solar factor of this type of window is close 

to 0,42, which does not correspond to the value 

obtained with the optimization B. 

Thus, the optimization method does not supply 

results corresponding to existing products. It can 

even end up in incoherence when the characteristics 

of a product influence parameters distributed on 

several genes. 

For instance, in the optimization A, B and C, the 

Uwind-values are strongly reduced while the solar 

factors increase. These results do not take into 

account the fact that, for a given glazing, a decrease 

of U-value tends to lead to a decrease of the solar 

factor and not to a strong increase. This incoherence 

underlines a lack of robustness of the optimization 

method. 

To limit this type of problem, it could be interesting 

to consider discrete variable parameters 

corresponding to existing products or coherent 

systems rather than to use continuous variables. 

With this example, we can study one aspect of the 

refurbishment of building: the envelope. The variable 

parameters correspond indeed to the characteristics 

of the building envelope. To take into account other 

characteristics of the building, we have to add new 

variable parameters. For instance, we can consider 

the type of heating or the set temperature for the 

cooling. 

Through the application example of the optimization 

method, we evaluate the scenarios from the point of 

view of the investment and the energy consumptions. 

Without cooling system, the result analysis of the 

energy consumptions does not give any information 

about the possible overheating of the building. To 

this aspect into account, it would be necessary to add 

a new objective function dealing with the thermal 

comfort. 

Moreover, to carry on a systemic vision of the 

building and to suggest pertinent refurbishment, it 

would be necessary to introduce objective functions 

related to the environmental impact or to the visual 

comfort  

To estimate the environmental impact of a 

refurbishment, we can base our study on the life 

cycle analysis of the products suggested by the 

scenario. The life cycle analysis is standard for 

existing product but it is more difficult for product 

described by thermal properties like the U-value. 

Consequently, the introduction of new objective 

functions gives new arguments for the discrete 

variable parameters representing existing products.  

As mentioned previously, the objective function 

“energy” arises from the design of experiments 

method. This method allows establishing polynomial 

functions estimating a given criterion depending on a 

fixed number of parameters. The interest of this 

method is the speed of the calculations once the 

function is established. 

However, the obtained function is adapted to a 

specific building in a given climate. To study a 

building with a different shape or in an other climate, 

it is necessary to establish a new function adapted to 

this new case. The design of experiments method 

requires an expertise and its implementation leans on 

hypotheses. The generalization of an optimization 

method based on the design of experiments method is 

thus not simple. 

To avoid these difficulties and allow a generalization 

of the developed method for any type of building, it 

can be interesting to associate the optimization 

algorithm with software of dynamic thermal 

simulation like TRNSYS (Klein, 2005). 

The optimization method would then be applicable to 

any type of building and all the climates without 

supplementary development and without taking into 

account new hypotheses. Furthermore, when the 

optimization method uses software of dynamic 

thermal simulation rather than a simplified method, it 

is not necessary to verify the thermal calculations. 

Second series of simulations – Optimization 

methodology 

• Presentation 

In the second series of simulations, we focus on the 

different types of optimization and on the 

multicriteria aspect of our optimization problem. 

For these simulations, we consider a school located 

in Agen (Figure 5). The heating and ventilation 

systems and the initial characteristics are the same 

than in the previous simulations 

Before the refurbishment, the energy consumptions 

of the school are 65,3 kWh(final energy)/m² or 

109,3 kWh(primary energy)/m². 

• Results 

We want to compare the results obtained with the 

three types of optimization. We consider five 

optimization processes: 

- Opt. D is an optimization with an energy target 

of 54 kWh final energy/m²; 

- Opt. E is an optimization with an investment 

target of 551 k€, this target corresponds to the 

investment linked with opt. D; 

- Opt. F is a global optimization, the objective 

function is the economic global cost; 

- Opt. G is an optimization with an energy target 

of 69,4 kWhfe/m², this target corresponds to the 

energy consumption found with opt. F; 
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- Opt. H is an optimization with an investment 

target of 336 k€, this target corresponds to the 

investment found with opt. F. 

Table 2 displays the results. 
 

Table 2 

Optimized results for a school in Agen 
 

 opt.D opt.E opt.F opt.G opt.H 

Optimization 

type* 
“en” “inv” GC “en” “inv” 

Target 

54,0 

kWh 

/m² 

551 

k€ 
- 

69,4 

kWh/

m² 

336 

k€ 

Uwall (W/m².K) 0,74 1,25 1,53 1,03 1,58 

Uwind 

(W/m².K) 
2,08 1,98 4,50 2,26 4,49 

SF 0,86 0,51 0,90 0,53 0,68 

Uroof (W/m².K) 0,23 0,23 1,30 0,57 1,30 

AT (m3/h/m² 

under 4 Pa) 
1,2 2,2 1,2 1,2 1,9 

Investment 

(k€) 
551 551 336 429 336 

Global cost 

(k€) 
672 685 482 579 491 

Energy 

consumption 

(kWh/m²) 

54,0 59,6 69,4 69,4 73,7 

*“en”: optimization with an energy target 

“inv”: optimization with an investment target 

“GC”: optimization with the global economic cost as 

objective function 

• Comparison between opt. D and opt. E 

Opt. D and opt. E lead to the same investment by two 

different ways. In opt. D, the investment is an 

objective function and in opt. E, it is a constraint. 

Opt. D leads to better results than opt. E for the 

energy consumption and the economic global cost. 

The optimized scenarios present some similar items 

like the decrease of Uwind and Uroof. There are also 

differences between the two refurbishment scenarios. 

The Uwall-value and the air tightness for opt. D are 

smaller than for opt. F. Moreover, the solar factors 

are different. 

• Comparison between opt. F, G and H 

Opt. F and opt. G lead to the same energy 

consumptions and opt. F and opt. H lead to the same 

investment. The objective function of opt. F is like a 

balanced sum of the objective functions of opt. G and 

opt. H. 

The scenarios obtained for the same investment (opt. 

F and H) present similar refurbishment steps but we 

can notice a difference between the energy 

consumptions. This result reveals the predominance 

of the investment over the energy consumption in the 

economic global cost. Even if the energy 

consumptions change, with a fixed investment, the 

scenarios do not vary so much. 

With the same energy consumptions, opt. F and opt. 

G lead to two different optimized scenarios. The 

refurbishment steps change a lot between the 

scenarios and the costs are high in opt. G. 

• Discussion 

The three types of optimization methods 

implemented in this example try to deal with 

multicriteria problem through monocriterion 

objective functions. They use objective functions 

with penalty or constraint or balanced sum of 

objective functions. 

With the simulations (opt. D and E) we can notice 

that the obtained results differ, depending whether a 

criterion is considered as an objective or as a 

constraint. The optimization method with target is 

thus not very robust, since with the same investment, 

a variation in the nature of the target involves an 

important change in the optimized scenario. In this 

case, it is difficult to validate the optimization 

methodology. 

The simulations F, G and H underline an other limit 

of the implemented methodology. The definition of 

an objective function that depends on the other 

functions (aggregation method) does not seem to 

report the reality of the treated problems. Indeed, we 

saw that the scenarios obtained at the end of the 

optimization (F, G and H) differ. Nevertheless, the 

opt. F should report the two different objectives: 

energy and investment. 

The validation of this methodology is all the more 

difficult that the studied optimization process leads to 

a unique solution. It would be easier to discuss the 

robustness of the method when it suggests a set of 

good solutions. It is more relevant to compare two 

groups of solutions than two isolated solutions. 

In order to by-pass these difficulties and to deal with 

the multicriteria aspect of the problem, the Pareto 

concept seems to be a solution. This concept allows 

to treat equally the different objectives during the 

whole optimisation process. With genetic algorithm, 

it could lead to a set of optimized solutions. 

Moreover, a set of optimized solutions suits better the 

problem of the building refurbishment. Indeed, today 

the actors of the project work on several variants. 

With this optimization method, they can discuss 

some optimized solutions. 

It does not seem relevant to develop a method 

suggesting a unique solution. We consider too many 

and varied objectives. The compromise is difficult to 

achieve, and especially since certain preferences are 

difficult to quantify as the aesthetics or the 

integration of the building in a town. 

CONCLUSION 

In this article, we present the development of an 

optimization method on the refurbishment of tertiary 

buildings. The method is based on genetic 

algorithms. It deals with the steps that constitute a 

refurbishment scenario. We have a global approach 

of the building. 
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The implementation example presented in this article 

constitutes a first stage in the development of the 

optimization method. It allows underlining the 

advantages and the limits of the method. Through the 

results of the two simulations series, we can already 

list some possible improvements for the optimization 

method: 

- consider discrete parameters representing 

existing products or coherent systems; 

- consider parameters that characterize the 

building envelope, the HVAC systems and the 

regulation strategies; 

- introduce objective functions linked with 

environmental impact, financial costs, energy, 

visual and thermal comfort; 

- use dynamic thermal simulation instead of 

simplified method to evaluate the energy 

consumption and the thermal comfort; 

- use the Pareto concept to classify the solutions; 

- present a set of optimized refurbishment 

scenarios as final solution. 

To carry on our research, we will improve the 

optimization methodology and test it on an effective 

refurbishment project. 
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