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ABSTRACT 

Recently, a combination between simulation and 
optimisation has been important for many of HVAC 
design problems. Long execution time is usually 
needed for one simulation run; consequently huge 
time will be required for the optimisation process. 
The aim of this study is to evaluate how 
combinations between optimisation algorithms can 
achieve faster and/or better solutions for multi-
objective optimisation problems. 

Two optimisation approaches are suggested and 
tested for an HVAC-building optimisation problem. 
These approaches are based on combinations 
between two deterministic algorithms and a genetic 
algorithm using MATLAB environment. The results 
indicate that significant time could be saved by 
applying these approaches compared with using 
genetic algorithm alone.  

INTRODUCTION 
Multi-objective optimisation produces a range of 
optimal solutions that gives an opportunity for the 
decision maker to select the appropriate solution(s).   
Using multi-objective optimisation in the first stages 
of building and HVAC system design would allow 
the designer to explore some favourable concepts, 
which could be out of the traditional way of design.  
Such solutions can produce savings in a multi-
objective problem (e.g. energy consumption, 
investment cost or both) compared with a reference 
design. This is normally done by combining a 
simulation tool with an optimisation tool. One of the 
major problems that limits the use of simulation-
based optimisation is the long execution time needed 
for simulation because most of multi-objective 
optimisation algorithms need large numbers of 
evaluations (simulation-runs) to obtain feasible 
solutions. 

Most of researches focus on the optimisation process 
aiming to attain reasonable results disregarding the 
consumed time. That may be acceptable in academic 
studies. However, it does not match the practical 
implementation. It is important to create new 
generations of energy building simulation-
optimisation tools able to give a range of optimal 
solutions for designer in short time. 

The purpose of this study is to evaluate the benefits 
from combining optimisation algorithms to achieve 
faster and/or better solutions for building and HVAC 
system design problems. For this purpose, a 
combination between simulation and optimisation is 
first created by combining IDA ICE 3.0 (Building 
performance simulation program) with MATLAB 
2008a optimisation tools. Then combinations of 
deterministic and genetic optimisation algorithms are 
investigated for the quality of the results and the 
required execution time compared with using genetic 
algorithm alone. 

Various studies suggested different methods to avoid 
the need for long time in the optimisation process. 
For example, Nielsen (2002) used a simple thermal 
model instead of using building simulation program 
to perform fast yearly energy analysis and thermal 
simulations on buildings using a limited amount of 
input data describing the building constructions and 
systems.  Hasan et al. (2008) considered the detached 
house as a single zone in the simulation carried out 
by IDA ICE 3.0 (Building performance simulation 
program) reducing the time of simulation, and 
therefore, reducing the total time needed for the 
simulation-optimisation process. 

The current study proposes two combinations 
between optimisation algorithms (PR-GA and GA–
RF) attempting to reduce the time of optimisation 
process by lowering the number of simulation-runs. 
This feature allows dealing with complicated and 
detailed building design problems. 

Abbreviations 
 
dIC          Difference in the initial investment cost 

(€) 
GA_RF   Combination between optimisation   

algorithms: genetic algorithm with refine 
process. 

Gen        Generation 
Pop         Population       
Pre          Preparation 
PR_GA  Combination between optimisation 

algorithms: preparation process and 
genetic algorithm.  
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 IDA ICE – MATLAB COMBINATION 

‘’Using commercial optimisation libraries reduces 
the tedious task of testing and benchmarking of 
algorithms needed for hard-coded implementation’’ 
(Mourshed et al., 2003). MATLAB optimisation 
libraries include many effective optimisation 
algorithms. In addition, using MATLAB gives the 
designer a good opportunity to use the other features 
available in MATLAB environment such as (Excel 
Link, Database, data analysis, plotting functions, 
curve fitting functions, GUI graphical user interface, 
etc.).  

For less simulation efforts with more facilities, it is 
useful to use available building simulation tools. IDA 
ICE 3.0 is whole-building dynamic simulation 
program that makes simultaneous performance 
assessments of all issues fundamental to building 
design: shape, envelope, glazing, HVAC systems, 
controls, lighting, indoor air quality, thermal comfort, 
energy consumption, etc. IDA ICE 3.0 has been 
chosen as one of the major 20 building energy 
simulation programs, which were subjected to 
analysis and comparison in (Crawley DB et al., 
2005).  

Therefore, simulation-based optimisation is 
performed in the current study by combining IDA 
ICE 3.0 with MATLAB. 

OPTIMISATION PROBLEM 

In order to test the suggested two optimisation 
approaches, PR-GA (preparation process and genetic 
algorithm.) and GA–RF (genetic algorithm with 
refine process), a multi-objective optimisation 
problem is formulated. The aim is minimisation of 
the annual energy consumption needed for space 
heating and the difference in the initial investment 
cost (dIC) for a single-family detached house.  

Five design variables are selected to be optimised: 
three continuous variables (insulation thickness of 
the external wall, roof and floor) and two discrete 
variables (U-value of the windows and type of heat 
recovery).  

The house is considered as a single zone with initial 
U-value in accordance with the Finnish National 
Building Code (C3, 2003). There is a heating system 
in the house.  No cooling system is considered, this is 
a typical case for Finnish houses. The heating system 
is a direct electric heating system where heating 
energy is supplied by two means: electric radiators 
inside the zone and an electric heater in the air-
handling unit (AHU). The heating system is always 
ON with a set temperature of 21oC. Further details 
and descriptions of the detached house and the 
reference case can be found in (Hasan et al., 2008). 

Genetic algorithm (Deb, 2001) in MATLAB Genetic 
and Direct Search Toolbox is employed in the current 
study. GA is the core of the two suggested 

optimisation approaches (PR-GA and GA–RF). 
Furthermore, GA is used alone, for comparison 
purpose. For all studied cases presented in the current 
paper, GA is implemented with crossover fraction 0.9 
and elite count 2.  

All the optimisation algorithms (GA, Fmincon, and 
Fminimax), implemented in the current study, are 
developed to be able to deal with the two types of 
variables (discrete and continuous). Table (1) 
presents the design-variables types and their nominal, 
minimum and maximum values. 

Table (1) 
Design variables 

Design 
Variables 

Type Nominal 
value 

Min. 
Value 

Max. 
Value 

Wall Insulation 
Thickness (m) 

Continuous 0.122 0.122 0.522 

Ceiling 
Insulation 
Thickness (m) 

Continuous 0.299 0.299 0.799 

Floor Insulation 
Thickness (m) Continuous 0.165 0.165 0.565 

U-Values of the 
Windows 
(W/m2K) 

Discrete 
(two options) 

1.4 1 1.4 

Heat Recovery 
Efficiency (%) 

Discrete 
(two options) 

70 70 80 

A brute-force search method was implemented in 
(Hasan et al., 2008) to check the results obtained by 
optimisation. This brute-force is also used in the 
current study for the same purpose. The brute-force 
search is an exhaustive search that systematically 
enumerates all possible candidate solutions. In order 
to make the brute-force search feasible, the previous 
study (Hasan et at., 2008) limited the size of the 
problem using some indications from the 
optimisation results. In this way, Hasan et al. (2008) 
succeeded to obtain a feasible brute-force which 
covers the effective range of solutions (heating 
energy range was from 8340 kWh/a to 14498 kWh/a 
where the maximum and minimum corresponding 
difference in investment cost were 5548 and zero 
Euro respectively). Fig.1 presents the feasible brute-
force and the bounds of the space-solution as well as 
utopia point. This figure indicates that the investment 
to reduce the space heating energy less than 8340 
kWh/a is not effective. Therefore, the value (6000 
Euro) is considered as a maximum budget for the 
investment in the current study. 

The default Genetic algorithm (Deb, 2001) in 
MATLAB Genetic and Direct Search Toolbox 
cannot deal with constraint functions. Therefore, 
6000 Euro is used as a constraint function through 
the deterministic algorithms that are suggested to be 
combined with the genetic algorithm. Using 
constraint function through the suggested approaches 
helps to explore in restricted space of solution 
searching for an optimal or near optimal solutions. 
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The maximum and minimum values of the design 
variables (Table 1) are used as upper and lower 
bounds for the optimisation problem. These bounds 
give space-solution, which are wider than the feasible 
brute-force.   
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Figure 1: Spaces solution and brute-force 

FIRST APPROACH (PR_GA) 

Optimisation and Simulation 

In this section, PR-GA approach is introduced where 
PR denotes preparation and GA denotes genetic 
algorithm (Genetic and direct search toolbox, 
MATLAB 2008a).  

By default, the genetic algorithm creates a random 
initial population using a creation function. The next 
generation of the population is computed using the 
non-dominated rank and a distance measure of the 
individuals in the current generation. In other words, 
the next generation will track relatively the first 
generation. Random creation for the initial 
population and the dependence on this random 
behaviour usually need a large number of trials in 
order to achieve good results.  

Setting of good initial population could produce best 
fitness at each generation and little diversity for the 
algorithm. In addition, it makes the algorithm to 
focus on specified area of the space-solution, which 
is near to the optimal Pareto-front.  The main 
problem is how to prepare this initial population and 
how long time required for that. Using deterministic 
algorithm, to generate calculated initial population, 
can overcome the disadvantage in the random initial 
population of GA. Therefore, deterministic algorithm 
is proposed to run before the multi- objective genetic 
algorithm in order to prepare trusted initial 
population for the GA.  

High quality results are not instantly required in this 
stage, where the GA will complete the optimisation 
task. Stopping criterion with low quality of 
deterministic algorithm results can limit the time 
consumed in the preparation phase. Five cases are 
suggested to compare the quality of the results 
obtained by using GA with its random initial- 
population (cases 2, 3, 4, and 5) and PR_GA with its 

calculated initial-population (case 1). These cases are 
summarised in Table (2).  

Table (2) 
Optimisation algorithm settings 

No. Size No. Number of 

Pre Pop Gen Simulation Case Algorithm 

Run   Runs* 

1 PR_GA 207 36 10 567 

2 GA 0 36 16 576 

3 GA 0 20 30 600 

4 GA 0 20 55 1100 

5 GA 0 25 50 1250 
*Number of Simulation Runs = Pre + (Pop X Gen) 

PR_GA approach has been adopted in case1. In the 
first step; PR_GA algorithm calls Fmincon solver, 
from the MATLAB 2008a optimization toolbox 
(Waltz, 2006), to minimise the first objective (space 
heating energy) using the upper limit of the second 
objective as a constraint function. The upper limit of 
the dIC (second objective) corresponds to the 
maximum additional budget (6000 Euro).  In the 
second step, Fmincon is used to minimise the second 
objective (dIC) under the upper limit of the first 
objective (heating energy). The upper limit for the 
heating energy corresponds to the maximum 
requirements of the heating energy in this problem. 
Selection of a proper stopping criterion is a very 
important issue in the phase. Fast stopping criterion 
is implemented since the quality of the results is not 
the target of this step. 

Special programming code has been developed to 
record all the iterations occurred during the previous 
optimisation process. The developed code ranks the 
iterations and selects some of them to be initial 
values for Fminimax function (multi-objective 
optimisation function provided in MATLAB 2008a 
optimisation toolbox) in order to create a number of 
new optimal solutions as close as possible to the 
Pareto front. 

Fminimax function uses the two ‘’near to optimum’’ 
points, obtained in the first two steps, as an indication 
for the upper and lower bounds for the Pareto-front. 
However, that does not mean that Fminimax is 
restricted to explore in between the two mentioned 
points. These two points just help the Fminimax to 
survey in a predictable range of optimal solutions. 

Using Fmincon and Fminimax functions, as 
demonstrated above, is called preparation phase. In 
the current approach, preparation phase consumed 
207 simulation-runs. Then the developed ranking-
code picked out 36 individuals as a good initial 
population for the next phase (GA phase). After that, 
GA performed 10 generations consuming 360 
simulation-runs Table (2). In this way, 567 
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simulation-runs were needed to produce 106 optimal 
decisions on the local Pareto-front of case 1. 

On the other hand, GA performed in the next cases 2, 
3, 4, and 5 using random initial population created by 
the default creation function. The same size of 
population (36), as in case 1, was selected for case 2. 
Case 2 consumed 576 simulation-runs in 16 
generations. 600 simulation-runs (20 Pop X 30 Gen) 
were executed in case 3. Theses numbers of 
simulation-runs are close to the number of 
simulation-runs executed in case 1 (567 simulation-
runs). Therefore, it is reasonable to compare between 
the results of these first three cases; see Fig. 2. 
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Figure 2: PR_GA results compared with GA results 

using close number of simulation-runs 
 

In supplementary tests, the proposed approach (case 
1) was tested against two cases (case 4 and case 5) 
which have large number of simulation-runs; 20 Pop 
X 55 Gen = 1100 simulation-runs for case 4 and 25 
Pop X 50 Gen = 1250 simulation-runs for case 5. 
Larger number of generation and less size of 
population were implemented in the last two cases 
(case 4 and case 5) trying to limit the effect of the 
random initial population. The comparison between 
the results of suggested approach (case 1) and cases 4 
and 5 are presented in Fig.3.  

Decision and result analysis 

Fig. 2 and 3 give a visual base to judge the quality of 
the results produced in the five cases. In case 2, the 
GA used its default creation function to create the 
initial population. This function creates a random 
initial population. Furthermore the optimisation 
process is performed without constraint function. As 
a result, most iterations were out of the feasible 
brute-force area (see Fig. 4). In case 3, increasing the 
number of generations was the idea to avoid the 
above-mentioned problem. More number of 
generations was assumed in cases 4 and 5 to get 
feasible results covering the whole brute-force area.  

Final Pareto is a Pareto-front created from the 
aggregation of all obtained solutions of the five cases 
based on non-dominated sorting code. Final Pareto 

picks up the best solutions from all obtained 
decisions; see Final Pareto Fig. 5. The participation 
of the solutions in the final Pareto is proposed to be 
the numerical criterion to evaluate the capability of 
the cases to achieve good quality of results. Table 3 
shows the number of optimal solutions provided by 
each case on its local Pareto as well as how many of 
these solutions participate in the Final Pareto. 
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Figure 3: PR_GA results compared with GA results 

using higher number of simulation-runs 
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Figure 5: Final Pareto for the five cases 
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Table (3) 
Local Pareto and Final Pareto 

Case Algorithm 

The Optimum 
on the local 

Pareto 

The Optimum 
on the Final 

Pareto 
1 PR_GA 106 100 
2 GA 37 0 
3 GA 40 6 
4 GA 49 10 
5 GA 54 13 

Fig.6 shows the participation of each case in the 
Final-Pareto. Proposed approach (case 1) participated 
with the largest number of solutions in the Final-
Pareto (100 optimal decisions) although it has the 
lowest number of simulation-runs (567). Fig. 7 shows 
the execution time elapsed in each case. Fig. 6 and 7 
present the advantage of the suggested approach 
(case 1) on the other four cases (case 2, 3, 4, and 5). 

The preparation phase succeeded to suggest a proper 
population size for the second phase (GA algorithm). 
Since the combination between the preparation and 
genetic algorithm can be done automatically, the less 
expert user can use this approach without need to 
assume the size of population.  

Furthermore, the proposed approach can determine 
the minimum acceptable size of population and give 
the user the ability to select another size higher than 
the minimum, if large number of optimal solutions is 
required. That can save huge time in unacceptable 
optimisation trails.  

In Table 3, the comparison between case 1 and case 5 
indicates that 100 optimal solutions on the Final- 
Pareto come from the local Pareto of case 1 where 
only 13 optimal solutions come from the local Pareto 
of case 5. Since the elapsed time of one simulation- 
run is equal to 50 sec, using the proposed approach 
can conserve 570 (683 simulation-runs * 50 sec) 
minutes =  9.5 hours, where 683 simulation-runs is 
the difference between the required simulation-runs 
for case 5 and case 1 (1250case_5 -567 case_1).  
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Figure 7: Execution time required for cases 1, 2, 3, 4 

and 5 

SECOND APPROACH  

Optimisation and Simulation 

In this section, GA_RF approach is introduced where 
GA denotes genetic algorithm, RF denotes refine or 
improving the results.  

GA_RF is a combination between GA (Genetic and 
direct search toolbox, MATLAB 2008a) and 
sequential quadratic programming (SQP) method to 
improve or refine some of GA Pareto points as well 
as to enhance Pareto-front with additional refined 
solutions. The combination between GA and 
Fminimax (optimisation toolbox, MATLAB 2008a), 
is one example for this combination, which has been 
created through this work. It mostly provides more 
accurate results than the results produced by using 
GA alone. The main difference between GA– 
Fminimax combination (presented in this paper) and 
GA-Fgoalattain hybrid algorithm (provided in 
MATLAB toolbox) is that the former works on 
especial picked out decisions (GA Pareto decisions 
which have a significant difference in dominating for 
one of the objectives). 

Dealing with the picked out optimal decisions instead 
of all the solutions of the Pareto makes this approach 
(GA_RF) using less number of simulation-runs for 
the purpose of refine the results. In addition, this 
GA_RF attempts to generate more than one refined 
solution from each preselected optimal decision 
based on non-dominated rank for each generated 
individual. Therefore, it can be said that GA_RF 
combination not only improves Pareto solutions but 
also enhances these solutions.  Fig. 8 presents how 
this approach, presented by case 6, can improve the 
results, obtained by default GA (20Pop X 40Gen), 
and multiply the results from 38 to 120 solutions on 
the Pareto front. 

For each selected point, Function tolerance (TolFun) 
specifies the minimum tolerance for the objective 
function. After a successful poll, if the difference 
between the function value at the previous best point 
and function value at the current best point is less 
than the value of function tolerance, the algorithm 
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halts. Using a proper value for TolFun can avoid 
many un-useful simulation-runs.  For example, 
asking the optimisation algorithm for high accurate 
results could need huge number of simulation-runs. 
Since the two objectives are the dIC and energy 
consumption, it is evident that improving the results 
by saving 1 Euro or 1 kWh/a of heating energy does 
not merit consuming much long time. Many of 
simulation-runs were saved by using this option 
through employing the refine approach after GA.  
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Figure 8: GA_RF can improve the quality of the 

results 
 

This combination uses modified GA algorithm based 
on original GA algorithm provided in MATLAB 
2008a (genetic and direct search toolbox). This 
modification has been developed to enable GA and 
Fminimax to deal with both discrete and continuous 
variables. In addition, other modifications were 
required to exchange the design variables between 
two different optimisation algorithms (GA and 
Fminimax). 

Decision and result analysis 

Since the rate of improving the results decreases 
from a previous generation to a next one using GA, it 
is important to determine appropriate stopping 
criterion in order to reduce the needed number of 
simulation-runs. Actually, it is not always convenient 
to use maximum number of generation for this 
purpose. Because the appropriate number of 
generations depends on the type of the problem, the 
size of population and the quality of the random 
initial population, which is not predictable.  

On the other hand, using hybrid function with GA 
could be a good solution for a number of 
optimization problems. However, it is not 
recommended for building optimisation problems 
because it consumes large number of iterations. 

In order to test this approach, 49 solutions obtained 
by GA alone (20Pop_55Gen = 1250 simulation-runs) 
(case 7) are compared with 120 solutions obtained by 
GA_RF (case 6) where the number of iterations is 
1221 and 1250for case 6 and 7 respectively. The 

mentioned comparison is presented in Fig.9. 
Refinement process is stared from the results which 
are obtained by GA (20PopX 20 Gen = 400 
simulation-runs) followed by 821 simulation-runs for 
refine process by Fminimax. Table 4 shows the 
participation of the results of each case in the Final-
Pareto. The Final Pareto is a Pareto-front created 
from the aggregation of the obtained solutions of the 
two cases (cases 6 and 7) based on non-dominated 
sorting code.  
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Figure 9: Comparison between the results of cases 6 

and 7 
 

Table (4) 
Local and Final Pareto for case 6 and 7 

Optimal 
decisions on 

Case Algorithm 
Total No. 

Simulation 
Run local 

Pareto 
Final 
Pareto 

6 GA_RF 1221 120 114 

7 GA 1250 49 5 

Final Pareto indicates that most of the solutions come 
from GA_RF results (Fig. 10). This means the 
quality of GA_RF results is mostly higher than the 
quality of the GA’s results. Fig. 11 shows the 
execution time elapsed in case 6 and 7. In addition, 
GA_RF provide large number of solutions on its 
local Pareto (120 optimal solution) while only 49 
optimal solution are provided in case 7 using GA 
alone. 
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Figure 11: Execution time required for cases 6 and 7 

 

CONCLUSION 

Two optimisation approaches (PR_GA and GA_RF) 
are developed and tested for a two-objective 
optimisation problem. The first objective is the space 
heating energy. The second objective is the 
difference in investment cost for five design 
variables. The two objectives are considered as 
nonlinear functions. The results are verified by 
means of applying the investigation on a simple 
building-model which is studied in a recent published 
paper. The value of the current study, good quality 
optimal-solutions based on low number of simulation 
runs, can be expanded by reference to more complex 
building-models. 

The obtained results indicate that the two proposed 
approaches can be applied successfully for this type 
of problems and can also achieve more accurate 
results and/or need less time compared with using the 
default GA (provided in MATLAB 2008a genetic 
and Direct search Toolbox) alone. 

PR_GA combination is recommended to reduce the 
execution time needed for the optimisation process. 
GA_RF combination could be a good choice when 
high quality results are required. It also gives a good 
approach to stop the optimisation process according 
to a clear criterion. The two methods can be 
combined to form a PR-GA-RF approach which will 
retain the good features of the two proposed methods. 

Additional work and graphical user interface (GUI) 
are still needed to make the proposed approaches 
able to be used by engineers with no statistical 
background. 
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