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ABSTRACT 
This paper presents a novel approach to derive U.S. 
residential building energy load profiles. This 
approach uses bootstrap sampling method to extract 
daily activity pattern of occupants of a household 
from American Time Use Survey (ATUS) data. The 
characteristics of ATUS data, the relation between 
time-use and load-demand, and the robustness of this 
approach are discussed. Virtual experiments were 
conducted on Energy Plus platform to study the 
patterns of annual load demand distribution under 
different household composition and thermal zoning 
schemes. Simulations of average 24-hr appliance and 
lighting load profiles were also conducted. The 
simulated load profiles and those from utility 
metering studies have good agreement. This novel 
approach has versatile applications in residential 
building energy simulation. 

INTRODUCTION 
A National Time Use Survey (TUS) is a large scale 
time use survey administrated by a national 
government. Each TUS record contains 24 hour 
period of activities of an individual with this 
individual’s personal information. TUS records are 
taken from all walks of life. Scholars generally agree 
(Robinson and Godbey, 1997) that TUS data are the 
best available data that represent the time use pattern 
of a society.  
In recent years, researchers started to explore the 
application of national Time Use Survey (TUS) data 
for simulating schedules in residential building 
energy consumption calculation. The roulette wheel 
genetic algorithm (Tanimoto et al., 2008) and 
Markov Chain Monte Carlo (MCMC) techniques 
(Richardson et al., 2008) have been applied to TUS 
data for occupant and load schedule simulation with 
some success. Two main drawbacks of these 
approaches come from the methodological 
constraints that limit the extraction of detailed 
information embedded in the TUS record and the 
lack of integration between simulated schedules and 
commonly used building energy simulation tools.  
In general, three steps of data transformation are 
needed for using TUS data for residential building 
load demand estimation. The first step is to construct 
a household’s daily activity schedule from TUS data, 

one-to-many mapping is the key characteristic of this 
process. i.e., to represent the range of variation of a 
given household’s daily activity patterns, multiple 
schedules are simulated from TUS data. The second 
step is to derive the internal heat gain, lighting and 
appliance load schedules from a household’s activity 
schedules. This step involves the interpretation of the 
spatial and temporal distribution of the occupants’ 
activities and the corresponding appliance and energy 
use. The third and final step is to derive heating and 
cooling load demands from the combined inputs of 
the TUS derived occupancy, appliance and lighting 
load schedules, the configuration of the residence and 
the outdoor environmental conditions.  
This paper presents a novel approach to simulate 
occupancy and load schedules from the TUS data in 
finer details.  In constructing the household’s daily 
activity schedule, the bootstrap method (DeGroot and 
Schervish, 2002) replaces roulette wheel and MCMC 
techniques for an individual’s daily activity schedule 
simulation. Then the individuals’ household 
demography profiles are matched for household 
schedule assembly. In appliance load schedule 
simulation, both spatial and temporal dimensions of 
the occupants’ activities are referred. Human-
physical integrative household system theory 
(Hitchcock, 1993) is used to explain the association 
between the occupants’ activities and appliance load 
demand. In the calculation of heating and cooling 
load demands, Energy Plus simulation replaces the 
self-developed energy consumption estimation 
method, so the approach will be easier to propagate. 
Figure 1 illustrates the procedure of the approach.  
Using 2006 American Time Use Survey (ATUS) 
data, a series of virtual experiments are conducted to 
observe the pattern of annual load demand resulted 
from this novel approach.  
Results from virtual experiments indicate: 1.  patterns 
of annual energy load demand distribution derived 
from different batches of randomly sampled ATUS 
data are highly consistent within each type of 
household demography, 2.increasing the number of 
thermal zones has far more significant impact in 
heating and cooling load demand reduction than 
increasing building envelope thermal insulation does, 
3, the simulated 24-hr appliance and lighting load 
profiles agree with those from utility metering data.  
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Among the TUS-based residential building energy 
load schedule simulation approaches, this novel 
approach is the only one that simultaneously captures 
the dynamics of the human and physical dimensions 
in the operation of the residence. 
 

 
Figure 1 Load schedule Simulation procedure 

 

SIMULATION 
Characteristics of American Time Use Survey 
The American Time Use Survey is administrated by 
the U.S. Bureau of Labor Statistics and the U.S. 
Census Bureau. Its data are publicly available from 
the government’s website (BLS, 2008). An American 
Time Use Survey consists of approximately 13,000 
individual 24‐hour time diaries. It is conducted and 
published yearly. ATUS employs 3‐tiered activity 
coding system that categorizes daily activity into 403 
activity codes. Additional coding systems were also 
employed to indicate the “where” and “with whom” 
information of the activities (Table 1). This study 
uses 2006 ATUS data. 
 

Table 1 An ATUS time diary sample 
Start Time End Time Loc Code Act Code Activity Description Location Description

4:00:00 8:00:00 1 ‐1 10101 Sleeping Blank
8:00:00 9:00:00 2 1 20201 Food and drink preparation Respondent's home or yard
9:00:00 9:45:00 3 1 110101 Eating and drinking Respondent's home or yard
9:45:00 11:30:00 4 1 20101 Interior cleaning Respondent's home or yard

11:30:00 13:00:00 5 ‐1 10201 Washing dressing and grooming oneself Blank
13:00:00 13:45:00 6 13 180704 Travel related to shopping  Car
13:45:00 15:45:00 7 6 70104 Shopping  Grocery store
15:45:00 16:30:00 8 13 181202 Travel related to social events Car
16:30:00 17:30:00 9 3 120201 Attending or hosting social events Someone else's home
17:30:00 18:30:00 10 3 110101 Eating and drinking Someone else's home
18:30:00 19:00:00 11 3 120201 Attending or hosting social events Someone else's home
19:00:00 19:10:00 12 13 181202 Travel related to  social events Car
19:10:00 20:10:00 13 1 20201 Food and drink preparation Respondent's home or yard
20:10:00 22:30:00 14 1 120303 Television and movies (not religious) Respondent's home or yard
22:30:00 6:00:00 15 ‐1 10101 Sleeping Blank  

 
A limitation of the ATUS for household schedule 
simulation is the lack of a whole household time 
diary in its data. Thus, multiple ATUS records are 
needed to construct a household activity schedule. 
Literature (Robinson and Godbey, 1997) suggests 

that the household role has strong influence to an 
individual’s daily activity. Thus, the household 
composition of an individual can be a suitable 
criterion for representative household schedule’s 
assembly. To understand the quality of ATUS2006 
data for this purpose, the composition of the data was 
analyzed. As shown in table 2, the numbers of ATUS 
records representing individuals in categories of 
interest are sufficient and in balance. 
   

Table 2 Sample pool of ATUS 2006 data 
Bootstrap Work Status
Sampling Self‐FT Self‐FT Self‐PT Self‐FT Self‐N Self‐PT Total
Criteria* Sp‐FT Sp‐PT Sp‐FT Sp‐N Sp‐FT Sp‐PT

Male with Weekday 34 24 3 45 1 0 103
3 Children < 18 Weekend 33 32 0 53 3 1 118
Female with Weekday 41 3 28 2 52 0 121
3 Children < 18 Weekend 48 1 33 5 49 1 130

Male with Weekday 137 66 7 67 5 1 270
2 Children < 18 Weekend 114 68 3 99 5 1 281
Female with Weekday 148 4 73 9 68 3 289
2 Children < 18 Weekend 169 0 69 9 66 1 304

Male with Weekday 89 26 3 40 9 0 155
1 Child < 18 Weekend 117 36 5 46 2 1 199
Female with Weekday 124 3 34 17 42 1 200
1 Child < 18 Weekend 105 9 36 10 32 3 173

Male with Weekday 49 14 1 11 5 0 74
No Child < 18 Weekend 44 9 1 19 2 0 72
Female with Weekday 65 3 13 6 12 2 90
No Child < 18 Weekend 67 0 5 7 12 0 84
*baseline: married male and female from 30 to 65 years old in ATUS 2006 data
Children Weekday 322
<18 Weekend 355  
 
To represent the range of variation of household 
activity patterns, 30 household schedules are created 
from ATUS data for each given household 
composition. Take a 2 parents and 2 children 
household for example, one possible match of the 
parenting couples can come from a randomly drawn 
ATUS record of a full-time working married male 
with a full-time working spouse and two kids and a 
randomly drawn ATUS record of a full-time working 
married female with a full-time working spouse and 
two kids. Another possible match can be from the 
ATUS record of a full-time working male with part-
working spouse and that of part-time working female 
with a full-time working spouse (Figure 2). 
 

 
Figure 2 Multiple household activity and load 

schedules derived from ATUS 
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Three tiered energy consumption behavior 
In physical‐human integrative household system 
theory (Hitchcock, 1993), three categories of human 
energy consumption behavior from social perspective 
have been identified. They are 1.cultural and social 
determinants, 2.demographic and economic 
determinants and 3.psychological determinants. 
Cultural and social determinants are related to 
occupant’s daily activity pattern; demographic and 
economic determinants influence the tools and 
equipments chosen by the occupant to assist his or 
her daily activities; psychological determinants affect 
the way these tools and equipments are used by the 
occupant. 
 

 
Figure 3 Links between behavior determinants and 

domestic energy consumption 
 
Three categories of human energy consumption 
behavior form a tiered relation (Figure 3). Since the 
ATUS data only reflects the daily activity (time use) 
patterns, what the approach extracts from the ATUS 
is the cultural‐social determined human energy 
consumption behavior. The demographic and 
economic determined and psychological determined 
human energy consumption behaviors are treated as 
control variables (appliance energy rating and 
building operation configuration) in building energy 
simulation. For this study, a fixed relationship is used 
for the association between activity, space, appliance 
and energy load demand. Key activity-space-
appliance-energy relations are shown in table 3.    

Table 3 Key activity-space-appliance relations 

ATUS Activity Code t0101xx
t120308, 
t120313

t120303, 
t120304 t0603xx t1101xx

Activitiy Description Sleeping

Computer 
use for 
leisure

TV and 
movies

Research 
and 
homework

Eating and 
drinking

Watts per person 20 150 300 150 100
Max Watts per room 20 150 300 150 1000

Equipments
night 
lights

task lights 
and 
computer

Audio‐
video 
system

task light 
and 
computer

kitchen 
appliance

Activity location Bedroom
Office or 
Bedroom

Family 
Room

Office or 
Bedroom Kitchen  

 

Configuration of the generic house  
A generic single family house is specified as the base 
case for the integrative household energy model 
simulation (Figure 4). The north-south facing 2-story 
4-bedroom generic house, sitting in a Chicago 
suburb, is specified as 30 feet in depth and 40 feet in 
width with 8 feet ceiling height and 15% of exterior 
walls covered by windows. The generic house is 

composed of 9 functional quarters. Depend on the 
parameter setting of the virtual experiment, the 
thermal zoning of the house is either single or nine 
zones following the functional partitions; the 
building envelope thermal insulation of the house is 
either compliant to IECC 2006 standard (IECC, 
2006) or comparable to a well insulated house 
constructed in 1990s (Table 4). The lighting load per 
room is specified as 100 watts when turned on. Main 
standby/continuous loads are from AV system and 
refrigerator (Table 5).  The hourly air exchange rate 
(ACH) by infiltration is assumed to be 0.75.  

Table 4 Thermal insulation specifications  

 
 

Table 5 Lighting and standby load specifications 
Zone Lighting (w) Standby (w) comment

Foraml Living ‐home office z001 100 10 misc. standby load
Family Living Z002 100 40 AV system Standby
Kitchen Z003 100 110 Refrigerator etc
Dinning Z004 100 10 misc. standby load
Master Bedroom Suite Z005 100 10 misc. standby load
Bedoorm 1 Z006 100 10 misc. standby load
Bedroom 2 Z007 100 10 misc. standby load
Bedroom 3 Z008 100 10 misc. standby load
Entrance Foyer Z009 100 10 misc. standby load  
 

 
Figure 4 Layout of the generic 4-bedroom house 

 

Virtual experiment design 
Virtual experiment is a common approach used in 
complex system simulation. A set of simulations for 
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a fixed parameter value set is called a cell. For a 
system with stochastic elements, each cell repeats 
itself multiple times to extract the system’s stochastic 
behavior. Four virtual experiments were conducted in 
the study.  
The first virtual experiment (Table 6) contains 16 
cells. Each cell contains 30 simulation runs and 
repeats itself 10 times. When a cell is repeated, the 
household schedules are re-sampled from the ATUS 
data. This virtual experiment serves three purposes: 
1. to exam the role of household composition in the 
annual on-site load distribution patterns, 2. to 
contrast the effectiveness of building envelope 
thermal insulation improvement and thermal zone 
refinement to annual on-site heating and cooling 
loads and, 3. to verify the robustness of this load 
schedule simulation approach. 
 

Table 6 Virtual experiment I setting 

 
 
The second virtual experiment is a 4 cell design. 
Each cell also repeats 10 times and has 30 simulation 
runs per repetition. This experiment is to exam the 
impact of different activity to space mapping 
schemes to annual heating and cooling loads of a 4 
occupant household.  The 4 cells are 1. A 9 zone 
maximum space use scheme - concurrent activities 
are assumed to take place at as many different spaces 
as possible.  2. A 9 zone minimum space use scheme 
- concurrent activities are assumed to take place at as 
few different spaces as possible. 3. A 9 zone typical 
space use scheme – these activities are assumed to 
take places in common sense fashion and 4. A single 
zone space use scheme - all indoor activities take 
place in the thermal zone that covers the entire house.  
The third virtual experiment is a 2 cell design. Each 
cell repeats only once and has 100 simulation runs 
per repetition. This experiment is to exam the impact 
of the ATUS sample’s region to the resulting 24-hr 
averaged load profile of a 4 occupant family. The 
Midwest and South are the two regions being tested.  
The fourth virtual experiment is a 3 cell design. It is 
used to validate the assumption of the activity-to-
appliance load associations that is applied to this 
study. The exact same ATUS samples from virtual 
experiment 1 are used in this experiment. The 24-hr 
averaged load profile of 3, 4, and 5 occupant 
households are simulated.  

DISCUSSION AND RESULT ANALYSIS 
Annual load demand grand-sum graphs 
A Grand-sum graph is created by summing-up the 
simulation results of all sampling repetitions. Two 
sets of grand-sum graphs are generated from virtual 
experiment 1. In the grand-sum graph, each linear 
data cluster in the probability plot contains 300 data 
points (30 runs x 10 repetitions). 
The first set of grand-sum graphs are the annual 
occupant heat gain probability plot (Figure 5) and the 
annual appliance load probability plot (Figure 6). 
Heat gain of occupants is derived by assigning heat 
gain to household daily activities using the ASHRAE 
metabolic heat gain reference table (ASHRAE, 
2001). Appliance load is derived by assigning 
appliance energy loads associated with ATUS 
activities using a common sense approach (Table 3). 
Since both loads are derived directly from ATUS 
data, they are independent of the physical 
configuration of the house. 
 

 
Figure 5 Annual heat gain probability plot 

 

 
Figure 6 Annual appliance load probability plot 

 
The second set of grand-sum graphs are the annual 
on-site heating load demand probability plots. 
Heating and cooling loads are the energy the building 
environmental control system needs to deliver in 
response to the combined effect of the natural 
environment, the building’s physical configuration 
and the occupants’ activities. They are derived 
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through building energy simulation. Since Chicago is 
in heating load dominating climate, three heating 
load probability plots (Figures 7, 8, 9) are used to 
illustrate two distinctive heating and cooling load 
distribution patterns found in the virtual experiment.  
 

 
Figure 7 Annual heating load probability plot of 
single zone house with 1990s thermal insulation 

 

 
Figure 8 Annual heating load probability plot of       

9 zone house with 1990s thermal insulation 
 

 
Figure 9 Annual heating load probability plot of 

single zone house with IECC 2006 thermal insulation 
 
The first heating load probability plot (Figure 7) 
depicts the case of an infiltration dominating 
condition. In a single thermal zone house, the 
majority of the heating load is to compensate the cold 
air infiltrates from outside. Simulations indicate that 

annual heating load is of normal distribution in 
infiltration dominating condition. The slopes of the 
distribution vary slightly by household composition. 
The higher the number of occupants in a household, 
the wider the bell-shape curve is. 
The second heating load probability plot (Figure 8) 
represents the case of an occupant activity 
dominating condition. In a 9 thermal zone house 
where an HVAC system is activated only in occupied 
spaces, a majority of the heating load is to provide 
occupants thermal comfort.  
Since a larger household size means more spaces 
being occupied concurrently, the level of heating 
load demand goes up as the number of occupant 
increases. The heating load demands increases by the 
size of household. They are in the same order as 
occupant heat gain and appliance loads. Because of 
this dynamic, it is no surprise that the annual heating 
load of a 9 zone house shares the pattern of 
lognormal distribution with annual occupant heat 
gain and annual appliance load. Since the 
distributions of annual occupant heat gain and annual 
appliance load of different household compositions 
have similar slope, the slope of annual heating load is 
also indifferent to household size.  
The third heating load probability plot (Figure 9) is 
another infiltration dominating condition. 
Simulations show that improvement of the thermal 
insulation of a single zone (infiltration dominating) 
house from 1990s condition to IECC 2006 standard 
can result in average 10% to 11% of heating load 
reduction. In essence, heating load reduction is 
indifferent to household composition in single zone 
house. Utility metering studies also presented similar 
findings (Emery and Kippenhan, 2006). 
In comparison, increasing the number of thermal 
zones can achieve much higher level of heating 
energy reduction (Figures 7, 8). The effect of thermal 
zone refinement is highly sensitive to household 
composition. Best case comes at 2 occupant 
household (57.5% heating load reduction in average). 
Yet even in a 5 occupant household, average heating 
load reduction (41.2%) is still 4 times as effective as 
thermal insulation improvement (Figures 7,9). 

Robustness of the ATUS driven energy model 
The ”Mean” is the most commonly used statistical 
inference in application of any data. It gives some 
sense of the “averaged behavior” of a population and 
with simple multiplication; the total amount of a 
certain property of a population can be derived from 
it. According to the central limit theorem (DeGroot 
and Schervish, 2002), the 95% confidence interval of 
the true mean of the population falls within the range 
of “Mean plus/minus 2 Standard Error of Mean” 
from the measured means of different batches of 
samples. A quick survey of table 7 reveals that, even 
if using only the first 10 runs of the 30 runs simulated 
in each virtual experiment cell repetition, their 95% 
confidence interval of true mean in both annual 
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occupant heat gain and annual appliance load are still 
within 5.5% range of the simulation mean. 
Similar phenomena have been observed across all 
means, 17 percentiles and 83 percentiles of annual 
occupant heat gain (Table 8), appliance load (Table 
9), heating load and cooling load in all cells of virtual 
experiment. The narrow range of values of these 
statistical inferences offers strong support to the 
robustness of the ATUS-bootstrap-based residential 
building energy load schedule simulation approach.     
 

Table 7 Mean and standard error of mean of the 
measured means of annual occupant heat gain and 

appliance load from 10 cell repetitions [MBTU] 
runs People [MBTU] Appliance [MBTU]
5 Occupant Mean  SE SE/Mean Mean  SE SE/Mean
Mean of first 10 6.11 0.09 1.40% 13.30 0.15 1.15%
Mean of first 20 6.17 0.06 0.95% 13.44 0.09 0.67%
Mean of first 30 6.12 0.04 0.57% 13.39 0.06 0.42%
4 Occupant Mean  SE SE/Mean Mean  SE SE/Mean
Mean of first 10 4.80 0.06 1.19% 12.13 0.08 0.68%
Mean of first 20 4.84 0.04 0.91% 12.21 0.06 0.51%
Mean of first 30 4.87 0.04 0.76% 12.24 0.07 0.53%
3 Occupant Mean  SE SE/Mean Mean  SE SE/Mean
Mean of first 10 3.87 0.08 1.97% 11.21 0.12 1.05%
Mean of first 20 3.83 0.04 0.98% 11.20 0.07 0.63%
Mean of first 30 3.84 0.02 0.44% 11.22 0.04 0.38%
2 Occupant Mean  SE SE/Mean Mean  SE SE/Mean
Mean of first 10 2.65 0.07 2.73% 9.82 0.12 1.23%
Mean of first 20 2.63 0.05 1.94% 9.82 0.08 0.79%
Mean of first 30 2.60 0.02 0.90% 9.81 0.04 0.36%  
 
Table 8 Mean and standard error of mean of the 83 

percentile and 17 percentile values of annual 
occupant heat gain from 10 cell repetitions [MBTU] 
People [MBTU] 83 Percentile 17 Percentile
5 Occupant Mean SE SE/Mean Mean SE SE/Mean
first 10 runs 6.65 0.13 1.88% 5.55 0.10 1.88%
first 20 runs 6.83 0.08 1.14% 5.49 0.07 1.36%
first 30 runs 6.92 0.07 0.98% 5.46 0.04 0.82%
4 Occupant Mean SE SE/Mean Mean SE SE/Mean
first 10 runs 5.35 0.07 1.27% 4.28 0.06 1.52%
first 20 runs 5.50 0.06 1.16% 4.24 0.05 1.15%
first 30 runs 5.53 0.05 0.95% 4.25 0.05 1.22%
3 Occupant Mean SE SE/Mean Mean SE SE/Mean
first 10 runs 4.46 0.13 2.89% 3.34 0.06 1.70%
first 20 runs 4.52 0.07 1.48% 3.24 0.02 0.75%
first 30 runs 4.52 0.06 1.36% 3.20 0.03 0.88%
2 Occupant Mean SE SE/Mean Mean SE SE/Mean
first 10 runs 3.12 0.09 2.93% 2.20 0.06 2.85%
first 20 runs 3.15 0.08 2.55% 2.16 0.04 1.94%
first 30 runs 3.09 0.05 1.75% 2.14 0.02 1.16%  
 
Table 9 Mean and standard error of mean of the 83 

percentile and 17 percentile values of annual 
appliance load from 10 cell repetitions [MBTU] 

Appliance [MBTU] 83 Percentile 17 Percentile
5 Occupant Mean SE SE/Mean Mean SE SE/Mean
first 10 runs 14.24 0.23 1.60% 12.28 0.16 1.33%
first 20 runs 14.56 0.14 0.94% 12.23 0.15 1.20%
first 30 runs 14.60 0.10 0.67% 12.14 0.11 0.88%
4 Occupant Mean SE SE/Mean Mean SE SE/Mean
first 10 runs 13.19 0.12 0.92% 11.16 0.14 1.25%
first 20 runs 13.28 0.07 0.54% 11.12 0.11 1.02%
first 30 runs 13.31 0.08 0.64% 11.23 0.12 1.10%
3 Occupant Mean SE SE/Mean Mean SE SE/Mean
first 10 runs 12.23 0.19 1.57% 10.22 0.13 1.26%
first 20 runs 12.34 0.12 1.00% 10.17 0.08 0.83%
first 30 runs 12.29 0.09 0.77% 10.16 0.07 0.73%
2 Occupant Mean SE SE/Mean Mean SE SE/Mean
first 10 runs 10.56 0.12 1.11% 9.11 0.13 1.40%
first 20 runs 10.63 0.13 1.19% 9.07 0.09 1.05%
first 30 runs 10.58 0.07 0.61% 9.00 0.06 0.67%  

Sensitivity of activity-to-space assignment   
Four cells in this experiment represent 3 different 
types of activity-to-space association (maximum, 
minimum and typical space use) in a 9 zone 
condition and a single thermal zone condition as 
reference to the existing common practice. 
From the results of the 30 simulation runs, the annual 
average load demand can be derived from each 
repetition. The means and standard deviations of 
these “averaged” annual loads from 10 repetition of 
each cell were then calculated (Table 10).  Two 
observations can be drawn from the calculations. 
First, the type of activity-to-space association has 
little influence on the resulting annual heating and 
cooling load demands. There is less than 4% 
difference between typical activity-to-space 
association and the other two extreme cases in the 
cooling condition. In the heating condition, the 
difference among them is unnoticeable. In contrast, 
the difference of load demand between a 9 zone and 
a single zone setting are significant (88% for heating, 
130% for cooling). This analysis shows that typical 
activity-to-space association is adequate for virtual 
experiments in this study.  
Second, the standard deviations of the “averaged 
loads” in all cells are small compared to their means 
(less than 2%). Similar values of “averaged loads” 
across 10 repetitions in all cells again offer support to 
the robustness of this load simulation approach. 
 
Table 10 Sensitivity of activity-to-space assignment 
Cooling On‐Site [MBTU] Average STDEV Percentage

9 Zone Max Space 5.04 0.13 103%
9 Zone Min Space 4.66 0.09 96%
9 Zone Typical 4.88 0.12 100%
1 Zone  11.22 0.10 230%

Heating On‐Site [MBTU] Average STDEV Percentage
9 Zone Max Space 28.40 0.14 100%
9 Zone Min Space 28.33 0.16 100%
9 Zone Typical 28.35 0.16 100%
1 Zone  53.21 0.14 188%  
 

Effect of ATUS record’s region on load profile 
According to literature (Robinson and Godbey, 1997) 
geographical location has no influence on an 
occupant’s daily activity pattern. Since the reliability 
of the load schedule simulation approach depends on 
sufficient number of ATUS records in the sample 
pool, it is important to verify if ATUS records taken 
from different regions can be lumped together for 
schedule simulation purpose. In ATUS, the United 
States is divided into 4 regions (Northeast, Midwest, 
South, and West). The majority of ATUS records are 
from Midwest and South regions. Thus, records from 
the two regions are used to compare the averaged 24-
hr appliance and lighting load profile of a 4 occupant 
household in virtual experiment 3.  The experiment 
results show that load profiles (Figure 10) simulated 
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from ATUS data of Midwest and South regions in 
fact intertwine. It indicates that ATUS records from 
different regions can be merged into a common 
sample pool as literature suggests. 
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Figure 10 average 24-hr load profiles of two regions 

  

Appliance and lighting load profile validation 
Ultimately, the merit of a model depends on whether 
the model can accurately predict the real-life 
phenomena. Since most published U.S. utility 
metering studies are whole house based, the proposed 
load profile simulation approach can only be 
validated at whole house resolution at this stage. 
 

 
Figure 11 Example utility metering derived 

appliance load profile (Hendron et al., 2004, Fig. 6) 
 

 
Figure 12 ATUS data simulated appliance load 

profiles 

 
Figure 13 Example utility metering derived lighting 
load profile (Source: Hendron et al., 2004, Fig. 5) 

 

 
Figure 14 ATUS data simulated lighting load profiles  

 
Using same set of ATUS samples from virtual 
experiment 1, the averaged 24-hr appliance load 
profiles and lighting load profiles of 3, 4, and 5 
occupant households were simulated. They are 
compared to the load profile generated from utility 
metering studies (Hendron et al., 2004). The 
simulated appliance load profiles (Figure 12) and 
metering data derived profiles (Figure 11) are very 
similar both in trend and in scale. Although the 
simulated and field data derived profiles (Figures 13, 
14) are similar, for the average 24-hr lighting load, 
the simulated profiles have higher peaks in the 
morning and also shallower valleys during sleeping 
hours.  A possible explanation of this discrepancy 
comes from the modeling assumption of lighting use. 
The load generating approach assumes the light will 
be turned on in the early morning if the space is 
occupied. In reality, the use of artificial lighting in 
the morning depends on the availability of natural 
light. This interpretation is supported by figure 13 
where the morning lighting peak load decreases in 
sequence from winter to spring to summer. Overall, 
the simulated load profiles are a good representation 
of the real-life load profiles. 

CONCLUSION 
This paper presents an occupant behavior driven 
approach to derive U.S. residential building energy 
load schedules and demands. In the proposed 
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approach, current “static” standard whole-house 
schedules based on empirical utility metering data are 
replaced by multiple sets of sub-house schedules 
derived from bootstraps sampling of the American 
Time Use Survey (ATUS) data. In the bootstraps 
process, the household demography is used as the 
sampling criteria. The causal relationship between 
household demography and the residence’s energy 
consumption is established by linking occupants’ in-
residence activities, both spatially and temporally, 
with the physical and operational configuration of the 
residence in building energy simulation. Through the 
proposed approach, the dynamics between household 
demography and the energy use of the residence can 
be delineated. Because of the ability to derive sub-
house use pattern of the residence, the proposed 
approach can also be use to study the dynamics 
between local and global elements of the physical 
household system in terms of energy performance.   
The impact of design decisions which cannot be 
answered explicitly by energy simulation in the past, 
such as the global impact of energy use from the 
improvement of a local element (e.g. TV energy 
rating) or whether a system has responded to 
occupants’ actual needs, can now be addressed  
through the development of this approach.   
In the United States, the residential sector is 
responsible for about 21% of the nation’s total 
energy consumption (EIA, 2008). Among the 105 
million occupied housing units, two-thirds are single 
unit structures (U.S. Census Bureau, 2008). In these 
houses, the household demography is known, owners 
have full control of their properties and 
improvements to the building are made 
incrementally. Any building energy simulation tool 
that can inform energy efficient renovation of these 
buildings can have substantial societal impact. The 
ability to capture the dynamics of human and 
physical dimensions of residential building operation 
in sub-house resolution makes the proposed approach 
an ideal candidate to work with houses with such 
characteristics. 
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