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ABSTRACT 

To reduce the potential problems of window systems 
such as undesired heat gain (loss), glare, and thermal 
discomfort due to asymmetric radiation, double-skin 
systems have been introduced. The current problem 
with double skin systems is that their operation 
requires an adequate simulation model to realize 
optimal control of the system. The estimation of the 
parameters in the lumped model developed in a 
previous study (Park et al 2004a) was based on 
‘laborious’ off-line calibration procedure. This effort 
has to be repeated for every different size, different 
type, or differently oriented façade system. Different 
façade components are characterized by different 
thermal and optical properties of glazing and louvers, 
system configurations [height, width, depth], other 
simulation variables, etc. For each type the parameter 
set in the lumped model has to be established through 
a calibration procedure. In view of micro climate 
variations even same type systems within one façade 
but on different heights may have to be calibrated 
separately. In order to avoid the laborious off-line 
calibration of every single façade component, an 
online self-calibrating procedure is developed in this 
paper. The true advantage of the technique is that 
every component can be pre-wired and ready to be 
hooked to the calibration set-up when it is brought to 
the site. The paper will explain the simulation model, 
selection of calibration parameters, and the process 
of on-line self-calibration, model validation and 
application of optimal control. It is shown that the 
on-line self-calibrating simulation model far 
outperforms the off-line calibrated model. 
Consequently, the plug and play self-calibration 
technique will render the current in-situ ‘laborious’ 
off-line calibration process obsolete. 

INTRODUCTION 
Concerns about the earth’s environment such as the 
depletion of fossil fuels, global warming, and 
greenhouse gas have stimulated the effort of reducing 
building energy use. As a part of these efforts to save 
energy, there have been many studies on optimal 
HVAC system control and Building Energy 
Management System (BEMS) control (Wang et al., 
2000; Chow et al., 2001; Nassif et al., 2005; Wen et 
al, 2007). Even though these efforts help to minimize 

building energy use, they cannot lessen the excessive 
heat gain (loss) through the building envelope. 
Therefore, in order to reduce the total energy use, 
there should be a way to reduce heating/cooling load 
from the building envelope. In particular, transparent 
envelopes that should be carefully designed due to 
high U-values. A double-skin system can be a 
solution to the aforementioned issues and has already 
been applied to many buildings. 

The current problem of a double-skin system is that 
the applied control is not model-based dynamic 
control but a straightforward rule-based control 
(CIBSE 1996). The model-based dynamic control 
provides more accurate and better control since it is 
based on the predicted response of the system.  In 
order to achieve the dynamic control, a simple model 
but accurate enough is required. 

Hence, the objectives of the paper are (1) to develop 
a self-calibrating simulation model required for 
optimal control, and (2) using the model, to achieve 
the real-time optimal control of a double-skin system. 
To accomplish the aforementioned objectives, it is 
necessary to have: (1) an underlying mathematical 
model to describe the complicated physical 
phenomena, (2) an estimation of the unknown 
parameters introduced during the modeling process 
and model simplification, (3) development of a cost 
function for optimal control, and (4) solving for 
optimal control variables. 

Predictions of the system’s dynamic response are 
influenced by the following: (1) assumptions 
introduced during the modeling process, (2) 
unmodeled physical phenomena (e.g., heat transfer 
and airflow distribution in a corner of a system, 
infiltration through the ventilation dampers, etc.), and 
(3) parameters that are not observable or impossible 
to solve analytically. Park et al. (2004a) introduced 
an off-line parameter estimation technique to 
calibrate the simulation model numerically and solve 
the aforementioned problems. The ‘calibrated model 
with off-line parameter estimation’ is much more 
accurate than the ‘uncalibrated model’, but off-line 
calibration has the following problems: 

 Laborious experiments, tedious parameter 
estimation, and model validation process: 
depending on the airflow regime of the 
double-skin system, weather condition 
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(outdoor temperature, wind direction, and 
speed), and indoor condition, the three 
processes should be executed (modeling, 
parameter estimation, and validation). 

 Changes in the system configuration: the 
simulation model requires recalibration if the 
system configuration (depth and height of 
the cavity, type and thickness of glazing, 
reflectance and absorptance of louver slat, 
etc.) changes (Yoon et al., 2007). In other 
words, the process of remodeling, calibration, 
and validation is required to design and 
apply for a new system configuration. 

 Changes in physical properties over time: 
For example, in mobile robotics, wear and 
tear can change the diameter of wheels and 
loosen belts. The following physical 
properties of the system can change such as 
transmittance and reflectance of glazing, 
reflectance of louver surface due to 
accumulated dirt, and so on. To reflect such 
changes, regular model calibration and 
validation are required, which is not easy 
with off-line calibration. 

Therefore, the paper introduces a self-calibration 
technique for the simulation model. The self-
calibrating model developed in this study constantly 
updates the model based on information (input 
variables, state variables) from sensors. The paper 
compares the self-calibrating model with the off-line 
model reported in (Park et al 2004a). Furthermore, 
the result of real-time optimal control simulation 
using the self-calibrating model is also addressed in 
the paper. 

EXPERIMENTAL SET-UP 
An experimental test facility was constructed as 
shown in Figure 1. The test facility is true south 
facing, and consists of a single pane exterior glazing 
(6mm low-e), a double pane interior glazing (6 mm 
clear [outer glazing] + 12 mm air space + 6mm low-e 
[inner glazing]), an automatic rotating louver (5 cm 
wide, black PVC, centered in the cavity), and 
electrically controlled ventilation inlet/outlet dampers 
(0.25 m high, 2 m wide) at the top and bottom of 
each glazing layer (Figure 2). The test unit is 
constructed that multiple configurations of the 
system can be tested, e.g., inside window (low-e vs. 
clear), cavity depth (250 mm vs. 400 mm) and louver 
color (black, white, and ivory). 

 

 

 

 
 

         
(a) exterior                      (b) interior 

Figure 1. The test unit (installed in Sungkyunkwan 
University campus, Korea) 
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Figure 2. Elevation and section of the experiment 

unit showing the location of sensors 
 

Sensors and measuring instruments (Figure 2) 
include: an HOBO weather station (H21-001) and 
Omega T-type thermocouples to record solar 
radiation, wind velocity, and temperatures at various 
locations.  The cavity air velocity is measured with a 
TESTO hot sphere anemometer (T-06995100) 
located at a point about 100 cm above the bottom. 

MATHEMATICAL MODEL 
In order to develop the mathematical model of a 
double-skin system, the governing heat and mass 
transfer phenomena are studied: (1) direct, diffuse, 
and reflected solar radiation, (2) long wave radiation 
between surfaces, (3) convective heat transfer along 
exterior glazing, interior glazing, and louver slats, 
and (4) air movement through inlet/outlet dampers 
and the cavity.  

The system involves transient heat transfer and 
turbulent air flows in irregular 3D geometry with 

- 81 -



boundary conditions constituted by outside 
temperature and solar radiation, etc. In addition, 
while actually simulating the dynamics of the system, 
adequate optimal control actions must be determined 
in real-time, effects of which are dynamically 
coupled with the dynamics of the system of a highly 
nonlinear nature. Thus, in order to describe the 
dynamics of the system solvable with reasonable 
efforts, the lumped physical model had to be 
developed as follows: By assuming the heat transfer 
in the lateral direction to be negligible, the thermal 
behavior of the system can be reduced to a 2D model 
(Figure 3). Next, we lump the exterior glazing 
temperature, the interior glazing temperature, the 
louver temperature, and the cavity air temperature in 
the vertical direction. Although this cannot render the 
explicit vertical temperature gradients, this lumping 
is assumed to have little effect in representing the 
overall thermal characteristics of the system and on 
determining optimal control actions. This has, of 
course, to be substantiated by experiments and will 
be described later in the paper. Since the details of 
the lumped model are provided in Park et al. (2004a), 
the paper addresses it briefly as follows.   
 

1x
2x

3x
4x

5x

6x
hout

hca1

hin

hca3

hca4

hca2

1x
2x

3x
4x

5x

6x
hout

hca1

hin

hca3

hca4

hca2

 
Figure 3. Simplified system in 2D (•: state variables, 
x1=exterior glazing temperature, x2=outer glazing 
temperature of the interior double-pane, x3= inner 
glazing temperature of the interior double-pane, 

x4=louver slat temperature, x5=air temperature in 
the larger cavity, and x6=cavity air temperature in 

the interior double-pane) 
 

The simulation model consists of a thermal model 
(states variables, Figure 3) and a cavity airflow 
model. In the thermal model, we used the fictitious 
cavity suggested by Rheault et al. (1989) to formulate 
the long wave and short wave radiation between 
surfaces.  

In the modeling of the convective heat transfer, the 
six convective heat transfer coefficients (hout, hca,1, 
hca,2, hca,3, hca,4, hin) as shown in Figure 3 should be 
estimated because the literature values of those 
coefficients (ASHRAE, 2005; Clarke, 2001; 
Incropera et al., 2003; ISO, 199; McAdams, 1954) 
are empirically driven for general cases and thus, can 
significantly vary according to the wind direction and 
speed, airflow regime in the cavity, surface 
roughness, system configuration and location, 
surroundings,  micro-climate, etc.   

The remainder of this section will concentrate on the 
modeling of air movement through the inlet/outlet 
dampers. Firstly, ten possible airflow regimes have 
been selected (Figure 4). In Mode #1-2 the interior 
upper and lower dampers are open (inside 
circulation) and Mode #3-4 are reversed (outside 
circulation). For Mode #1-2, air circulation between 
the room and the cavity is driven by thermal 
buoyancy while in Mode #3-4, air circulation is 
driven by thermal buoyancy and wind pressure. 
Mode #5-8 allow a diagonal airflow either from 
inside to outside or vice versa. Mode #9 and #10, 
respectively, represent the cases where the four 
dampers are open/closed. The mathematical 
equations to express the airflow are provided in detail 
by Park et al. (2004a).  
 

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10][1] [2] [3] [4] [5] [6] [7] [8] [9] [10]  
Figure 4. Ten airflow regimes 

(louver slats not drawn for clarity) 
 

Based on what has been provided above, the 
mathematical model is expressed with a continuous 
state-space equation as shown in Equation (1).   

( , ) ( , )x A u t x b u t                                            (1) 

It should be noted that the room or the building 
model is not part of the self-calibrating model, which 
means that the double-skin facade system is treated 
as a ‘local’ system and hence, based purely on local 
state information. The benefit of isolating the self-
calibrating model is that the resulting double skin 
component with its embedded optimal control can 
become a part of any building model. If the double-
skin system needs to be incorporated into a room or a 
building model, a set of differential equations for 
other states such as door, ceiling, and walls can be 
added to Equation (1) for a simultaneous solution. 

Note that the dependency of A on u results in a 
system that is nonlinear in u. This is prohibitive to a 
numerical state space solution. By converting the 
continuous (in time) state space (1) to a discrete (in 
time) state space, Equation (2), this nonlinearity 
disappears because 

ku = constant for
1k kt t t   . 

(( 1) ) ( ) ( ) ( )x k T G T x kT H T                           (2) 

where ( ) ATG T e , 1( ) ( )ATH T A e I b   and T is the 

sampling time. 

SELF-CALIBRATION 
Modeling is the process of mathematically describing 
the physical behavior of the system (usually in the 
form of a set of differential equations). The model 
carries a set of unknown parameters that need to be 
determined such that the lumped model describes the 
real behavior as closely as possible. As discussed in 
(Park et al. 2004a), the most noticeable unknown 
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parameters in the lumped model include the 
convective heat transfer coefficients (Figure 3), the 
form loss factor (f) for Modes #1-#2 (Figure 4), the 
flow coefficient (c) and exponent (n) for Modes #5-
#8. These parameters cannot be measured directly 
and are impossible to analytically derive. For these 
reasons, a self-calibration technique is introduced. 
The self-calibration technique, one of the parameter 
estimation techniques, is the on-line real-time process 
of calculating unknown parameters for a system 
which minimize the deviation between model output 
and measurement output. This can be formulated into 
minimizing an objective function S over the 
measurement period as follows:  

1

min [ ( )] [ ( )]

. . :

z
z k T

k k i k k i
k

S Y Y

s t lb ub

    







  

 

                (3) 

Where λ is a time-varying weighting vector designed 
to give higher weight to later data values than earlier 
values. Thus, the later data has more of an impact on 
the parameter estimation. 

The real time calibration provides the reliability of 
the simulation model and accurate prediction of the 
system’s response. The unknown parameters are 
estimated as shown in Figure 5.  
 

Simulation model

Parameter estimation
(optimization algorithm)

simulated variables

error

measured variables  
(updating online)

estimated  parameters

)( buAxx 

Real System

 
Figure 5. Architecture of the Self-calibrating model  

 

The double-skin model expressed in Equation (1) is 
constructed by coupling the thermal model and 
airflow model, using the ping-pong method where 
the thermal and airflow models are run in sequence 
(Hensen, 1999) (Figure 6). 

OPTIMAL CONTROL 
The performance of a double-skin system can be 
categorized into the following elements: energy use, 
visual comfort, thermal comfort, and ventilation 
performance. In this paper, we deal with an energy 

element, and the cost function J is formulated as 
follows:   

2

1
, ,( )

t

heat cv rd sol trans air DAt
J Q Q Q Q dt               (4) 

2

1
, ,( )

t

cool cv rd sol trans air DAt
J Q Q Q Q dt                (5) 

The optimal control attempts to find the control 
variables which minimize the cost function (J) over a 
certain period of time as shown in Equation (6); 15 
minutes was used as a time horizon in this study.  

  

min ( , , )

. . 90 90

1,2,3,4,5,6,7,8,9,10

0 100(%)

J AFR OR

s t

AFR

OR



  


 

                           (6) 

Due to the nonlinearity of the system dynamics and 
additional constraints on the control variables shown 
in Equation (6), it is difficult to find the optimal 
solution. Additionally, the optimization problem 
consisting of continuous control variables ( , OR) 

and discrete control variables (AFR, Figure 4) leads 
to a combinatorial problem, which is unrealistic to 
solve (Winston, 1994). Thus, the discrete airflow 
regime (AFR) is translated as a continuous variable 
(AFR*) (Park et al., 2004b).  

Then, to perform the on-line optimal control, the VI 
‘Constrained Nonlinear Optimization’, one of the 
LabVIEW optimization routines and NI Data 
Acquisition Hardware are coupled. The VI 
‘Constrained Nonlinear Optimization’ solves a 
general nonlinear optimization problem with 
nonlinear equality and inequality constraint using a 
sequential quadratic programming method.   

RESULTS 

Self-calibration 

The airflow model experiment was done on 
December 8th-11th, 2008 with a measurement 
sampling interval of 1 minute (datapoints: 4,619). 
During the experiment, the louver angles and the 
airflow regimes were randomly changed, as shown in 
Figure 7(a). Figure 7(b) shows the cavity air velocity 
calculated from the self-calibrating model, off-line 
calibration model, with the measured one. As shown 
in Figure 7(b), the self-calibrating model proved 
surprisingly accurate. 

 

ncf ,, h

 
Figure 6.The self-calibrating process 
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Figure 7. Comparison of cavity air velocity 

 

Table 1 shows the average difference in the cavity air 
velocity between the measured data and the off-line 
calibration model and between the measured data and 
the self-calibrating model at each airflow mode 
(Figure 4). It is shown that a self-calibrating model is 
far accurate due to the following: (1) state variables 
(x1-x6, Figure 3) are updated in real-time that are used 
for the prediction of air velocity, and (2) the model 
recalibration updates the unknown parameters 
continuously. 

Table 1 

Average of difference in the cavity air velocity 

AIR 

FLOW 

REGIME 

DIFFERENCE 
BETWEEN 

MEASURED 
AND OFF-LINE 
CALIBRATION 

MODEL 

DIFFERENCE 
BETWEEN 

MEASURED 
AND SELF-

CALIBRATING 
MODEL 

AVERAGE 
OF 

MEASERED 
CAVITY 

VELOCITIY

[1] 12.71cm/s 0.50 cm/s 2.76 cm/s

[3] 11.56 cm/s 2.76 cm/s 10.16 cm/s

[5] 11.41 cm/s 3.24 cm/s 14.10 cm/s

[6] 19.21 cm/s 2.01 cm/s 5.72 cm/s
 

The thermal model experiment (thermal model) was 
conducted on the 5th-8th (closed cavity) and 8th-11th 
(open cavity) of December 2008 with a measurement 
sampling interval of 1 minute during which 4,394 
(about 3.0 days or 73.2 h) and 4,619 data points 
(about 3.2 days or 76.9 h) were obtained, respectively.  
Due to limited space, only weather and the 
simulation results of the closed cavity are shown in 
Figures 8-9, but the results of the open cavity are 
similar. It should be noted that the state variable x6, 

corresponding to the small cavity in the interior 
double-pane, was not measured.  

 

 
Figure 8. Weather during the experiment of the 

closed cavity (12/05/2008-
12/08/2008)
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Figure 9. Simulation results of state variables 

 

As shown in Figure 9, prediction by the real-time 
self-calibrating model nearly overlaps the measured 
data and can predict the system response accurately 
compared to the results of the off-line calibration 
model. Table 2 shows the average of differences 
between predictions of the simulation models (both 
off-line and on-line) and measured data, in closed 
and open cavity conditions. 

Table 2 

Average of difference in state variables 

STATE 

VARIABES 

AVERAGE 
OF 

DIFFERENC
E BETWEEN 
MEASURED 
AND OFF-

LINE 

AVERAGE OF 
DIFFERENCE 

BETWEEN 
MEASURED AND 

SELF-
CALIBRATING 

AVERAGE 
OF 

MEASURED

STATE 
VARIABLES

x1 4.75°C 0.56°C 7.52°C 

x2 1.03°C 0.39°C 14.89°C 

x3 2.34°C 0.25°C 17.70°C 

x4 4.92°C 0.51°C 17.03°C 

x5 3.24°C 0.64°C 15.00°C 

average 3.26°C 0.47°C 14.43°C 

 

Real-time optimal control  

Real-time optimal control simulation runs were 
conducted during separate winter days, totally for 50 
hours or 4 days (12/30/2008, 01/05/2009 – 
01/07/2009) as shown in Table 3. During holidays 
and nighttimes, the optimal control experiments were 
not conducted. A sampling time of 1 minute was 
used and the number of recorded data points was 

3,060. Figure 10 shows the state variables, outdoor 
temperature and solar radiation during the 
experiment.  

Table 3 

Five separate optimal control simulation runs  

 START END 
NUMBER 
OF DATA 
POINTS

1st 
Dec. 29 11:51 

A.M. 
Dec.30 7:05 P.M. 300 (6.1h)

2nd Dec.30 7:05 P.M. Dec.30 7:05 P.M. 200 (3.3h)

3rd Dec.30 7:05 P.M. Dec.30 7:05 P.M. 400 (6.6h)

4th Dec.30 7:05 P.M. Dec.30 7:05 P.M. 753 (12.5h)
 

 

 
Figure 10. Measured state variables and weather 

conditions  

Figure 11 shows the optimal control variables. Figure 
11(a) includes the optimal control louver angle ( ), 

the actual driving louver angle (  *), and solar 

altitude (sol.alt). In order to solve Equation (6), the 
louver slat angle is considered as a continuous 
control variable, but the actual louver slat installed in 
the experimental unit (Figure 1) cannot be controlled 
continuously. The possible minimum operation 
interval of the louver slat angle by an installed motor 
is 18˚. Therefore, in this study, the continuous louver 
slat angle was rounded to a nearest multiple of 18˚. 

Figure 11(b) and (c) shows the optimal airflow 
regime (AFR) and optimal opening ratio of the 
ventilation damper (OR), respectively. 
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Figure 11. Results of real-time optimal control 

simulation: heating mode (winter day) 
 

Figure 11(a) shows that the optimal louver slat angle 
keep track of the solar altitude so that it can absorb 
direct solar radiation during daytime. At nighttime, 
the louver slat angle stays at 90˚ such that it can 
reduce heat loss by long wave radiation between the 
interior glazing and the colder exterior glazing.  

In addition, the optimal louver slat angle was 
maintained at a vertical position (90˚) after sunrise 
(hours between 30 and 32, between 47 and 49 in 
Figure 11(a)) by influence of a high-rise apartment 
located east of the experiment unit. However, on the 
second day of the experiment (hours between 10 and 
27 hours), the optimal louver slat angle was 
calculated between -1.6˚ to -2˚ after sunrise (hours 
between 13 and 15). It is assumed that absorbing the 
solar radiation is better for saving energy than 
reducing the the heat loss through long wave 
radiation by maintaining a louver slat angle of 90˚. 

As shown in Figure 11(b), the optimal airflow regime 
during daytime is inside circulation (Mode 1, Figure 
4) with a clear sky and closed cavity (Mode 10, 

Figure 4) or diagonal airflow (Mode 5, Figure 4) with 
an overcast sky. It can be inferred that it reduces 
heating energy use using the hot cavity air under a 
clear sky and reduces transmission heat loss using 
exhaust air to heat the cavity under an overcast sky. 
As supply of outdoor air as well as exhaust of 
contaminated indoor air are required, exhausting the 
indoor air through the cavity can reduce both return 
air fan power and heat loss through building 
envelope.  

The optimal airflow regime at night (when solar 
altitude is 0˚ in Figure 11(a)) is similar to that of 
daytime under an overcast sky. In the second day 
simulation (hours between 10 and 27 hours), the 
operation of optimal airflow regime is clearly shown 
(Figure 11(b)). The sky condition changed from an 
overcast to a clear sky (around hour 20). At that time, 
the optimal airflow regime also changed from the 
closed cavity (Mode 10, Figure 4) to inside 
circulation (Mode 1, Figure 4) so as to use the hot 
cavity air. 

The ventilation dampers are almost fully open except 
when the airflow regime is closed to utilize the hot 
cavity air.  

CONCLUSION 
In the paper, a real-time self-calibrating model 
procedure has been developed and its role in the 
optimal control of a double skin system has been 
demonstrated. The lumped model that simplifies the 
3D physical phenomena was introduced. It contains a 
set of unknown parameters that can be calibrated real 
time, by minimizing the difference between 
measured and simulated values. Over time a 
recalibration can be done repeatedly, in the same 
manner. In this study, the on-line self-calibrating 
model proved more accurate in the prediction of 
system’s response than the off-line calibration model. 
In particular, the prediction of the self-calibrating 
model is surprisingly accurate. In addition, the real-
time optimal control based on the self-calibrating 
model determines the optimal control actions 
effectively. Based on these findings, the use of pre-
wired, plug and play façade components is a feasible 
option for the large scale application of optimally 
controlled double skin façade systems. 

Based on the results of this study, the following 
studies are on-going: (1) Performance assessment of 
thermal comfort, visual comfort, and ventilation,   (2) 
Integration of the double-skin system with a 
buildings’ HVAC system, (3) Ubiquitous web-
enabled optimal control of plug and play components 
of a double skin system. 
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NOMENCLATURE 
x   state vector 

A   state matrix 

b   load vector 

u   control or input variables 

t   time 

Yk   observation vector at time k 

ψk   predicted vector of observations 

z    number of observation 

ξ    vector of unknown parameters 

lb    vectors of lower bounds of the 
parameters 

ub    vectors of upper bounds of the 
parameters 

Jheat  cost function in heating mode 

Jcool   cost function in cooling mode 

Qcv,rd heat gain in the room space by 
convection and radiation on the interior 
glazing 

Qsol,trans   sum of transmitted direct and diffuse 
solar radiation   

Qair    heat gain the room space by beneficial 
airflow regime from the cavity to the 
room space or outside 

QDA   energy savings by daylighting 
autonomy 

   louver slat angle (0˚: horizontal, 

  (0˚~90˚: towards the sky,  

  -80˚~0˚: towards the ground) 

AFR  AirFlow Regime (Figure 4) 

OR  opening ratio of ventilation damper
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