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ABSTRACT 

Study of complex control strategies plays an increas-

ing role in building design. Discrepancy between the 

intentions of the designer, often expressed as non-

formalized control laws, and the as-built implementa-

tion is a frequent source of malfunction and energy 

waste. Two approaches to remedy this problem in the 

context of equation-based, full-building, whole-year 

simulation are treated: (1) The availability of Mod-

elica based libraries of functional blocks for typical 

objects such as integrator, gain, PID-controller and 

time-delay in a general system simulator enables off-

line testing and tuning of realistic control systems. 

(2) Efficient implementation of algorithmic discrete-

time controllers enables direct simulation of complex 

control algorithms described with the same source 

code in the simulator as in the real controller. The 

first approach is discussed and illustrated briefly. 

While not available in traditional building simulation 

environments, such block libraries have been availa-

ble in other simulation domains for several years 

already. The second approach is treated more tho-

roughly, since special methods are needed for build-

ings, where controller sampling interval is much 

smaller than the typical timescales of the equation-

based building model itself. Initial implementation 

and testing of a new simulation approach is pre-

sented. 

INTRODUCTION 

Form and construction of building envelope is a 

natural focus of the early stages of the building de-

sign process. Consequently, the first priority of main-

stream building simulation tools is support for com-

plex geometries. The ecological benefits of a cleverly 

configured building shape over a simple-minded one 

are obvious. However, a conventional building with 

an optimal shape will only be marginally better. Im-

proved geometry and envelope will not be sufficient 

to reach the environmental regulation goals that are 

presently well underway, for example in terms of 

requirements of zero carbon emissions from new 

buildings within the next decade. 

Moving to production of zero carbon buildings does 

not seem possible by gradual improvement. We have 

to change the way we define the concept of a build-

ing and its design process. Future buildings will by 

necessity involve sophisticated combinations of new 

systems for production, storage, distribution, and 

emission of clean air, water, light, heat and electrici-

ty. Borehole storage, sorption cooling, controlled 

natural ventilation, phase change materials and micro 

CHP are just a few of a range of non-standard tech-

nologies that will have to be employed in concert. 

A thorough analysis of the operation of virtually any 

existing office building will reveal ample examples 

of malfunction and energy waste. One will easily find 

poorly designed systems without even a theoretical 

possibility of efficient operation, but more common-

ly, the intentions of the designer have been poorly 

described or misinterpreted in the control implemen-

tation phase and only very basic testing has been 

done in the commissioning process. Anyone who has 

written even a simple computer program knows that 

bugs inevitably appear in the testing and the more 

rigorous the testing, the more bugs will appear. Yet 

control programs are often complex and tailored to 

individual buildings in spite of the fact that the full 

range of operating conditions will never be tested. 

With a real building in the loop, time and cost will 

only allow testing of a small number of possible 

situations. Since the quality of control of today’s 

relatively simple HVAC systems already is question-

able, it is easy to foresee the consequences on the 

systems of tomorrow. Radical innovation is needed. 

With a control object as costly, cumbersome, and 

slow as a building, thorough testing of algorithms 

with respect to a real object will never be possible. A 

single seasonal storage borehole strategy, for exam-

ple, may take a few years to evaluate. The only op-

tion is to rely on a simulation model of the building 

with all relevant systems that is close enough to reali-

ty to allow off-line testing of all important control 

modes.  

Mainstream simulation tools of today provide only 

rough approximations of a limited number of control 

systems and time resolution is often much too poor 

for control design. Frequently, simulation algorithms 

are based on the very assumption of perfect control. 

For example, indoor temperature may at times be 

treated as a given constant in the solution process and 

the needed heat to maintain this temperature is calcu-

lated instead. In a real control scenario, a controller 

will measure indoor temperature and then decide how 
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much heat to release. In order to study real control 

behavior in most traditional building simulators, very 

fundamental solution principles would have to be 

altered. 

Within an equation-based simulation framework, the 

behavior of both the physical object and the control 

system can be modeled with desired fidelity. Conti-

nuous-time models of all standard functional blocks 

allow construction of controllers with the same to-

pology and parameters as those employed in the 

physical controller. This allows realistic development 

of any control strategy that can be formulated by 

basic control blocks. An example of this method is 

presented below. 

In an equation-based environment, each simulated 

object must be described by equations and functions. 

Extensions to the basic mathematical repertoire allow 

treatment of hysteresis and individual discontinuities, 

but arbitrary “internal states” in simulated objects 

that are unknown to the solution algorithm are likely 

to yield poor overall efficiency and robustness. The 

solver must be able to “see” every equation.  

While access to a library of continuous-time func-

tional blocks allows development and tuning of most 

control schemes, there are two major reasons for 

simulating complete discrete-time control programs 

in the context of a simulated building: 

1. Some complex control schemes cannot con-

veniently be expressed exclusively by “ex-

tended” equations. Truly algorithmic de-

scriptions are sometimes needed. A drastic 

example is model predictive control, where 

a simulation model of the building itself is 

exercised by the control algorithm in order 

to find an optimal control scheme. 

2. Quality control. To find practical program-

ming errors, a testing environment as close 

as possible to the as-built situation is desira-

ble. In addition, effects that stem from the 

limited sampling rate of the real implemen-

tation can only be investigated in the correct 

time scale. 

One way of studying the behavior of as-built control 

programs with respect to a simulated building are 

hardware-in-the-loop simulations, where a physical 

controller is interacting with a simulated control 

object (building). This type of study was for example 

made in IEA Annex 17 (Karki 1993). In addition to 

obvious practical difficulties in dealing with a physi-

cal controller, this approach may also be cumber-

some since experiments normally must be carried out 

in real time.  

A more attractive option is to execute the actual con-

trol code faster than real time while retaining the 

realistic algorithmic and sampling behavior of the 

physical controller. In its most straightforward im-

plementation, this implies simulation of both control-

ler and building at the sampling rate of the controller, 

 
Figure 1. A selection of control blocks in IDA ICE 4.0. 
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i.e. a global simulation time step is taken for each 

controller sample. For a building, this normally 

yields excessive simulation times, since a typical 

controller operates with an unsuitably short step (less 

than a second). Below, an IDA implementation of 

discrete-time controllers is presented which enables 

multi-rate simulation, i.e. a short fixed time step is 

used for the simulated controller, while a physically 

motivated much longer (and variable) step is used for 

the building. Performance comparisons between 

continuous and discrete implementations of equiva-

lent controllers are presented.  

MODELICA IN BUILDING SIMULA-

TION 

The need to model complex and heterogeneous phys-

ical systems together with controls is of course not 

specific to the building domain. Many other indus-

tries, such as automotive and chemical process, have 

similar needs. Numerous attempts have been made to 

extend the domain of applicability of stand-alone 

simulators by co-simulation, i.e. to run several inde-

pendent solvers in parallel while simultaneously 

synchronizing common variables that occur in more 

than a single model. In the automotive industry, for 

example, different groups have traditionally devel-

oped stand-alone simulators for the engine combus-

tion, engine motion, drive train, brake system, whole-

car dynamic motion etc. It is very natural as a first 

attempt to try to run these models together rather than 

to embark into the daunting effort of rewriting them 

in a more general environment. However, it seems 

that few truly successful co-simulation projects have 

been reported and that the focus instead has shifted 

towards holistic equation-based models, see e.g. 

(Tiller et al. 2000). 

Since the first proposal of the Modelica language in 

1997 (Elmqvist et al. 1997), the previously heteroge-

neous world of equation-based simulation environ-

ments has found a focus. After several years of 

proof-of-concept type projects, the Modelica com-

munity ( www.modelica.org ) has now moved on to 

the development of large base libraries of physical 

models for a variety of industrial domains. Several 

international projects such as EuroSysLib and 

MODELISAR have been started with a significant 

share of model library development. While Dassault 

Systèmes’ Dymola system is the market leader, sev-

 
Figure 2. A controller block diagram in the IDA based VELUX EIC tool 
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eral competing commercial Modelica implementa-

tions have been released during the last few years and 

an ambitious open source effort (OpenModelica) is 

underway. 

Modelica has also been applied to building simula-

tion problems. Building envelope model libraries 

have been described by e.g., Felger et al. (Felger et 

al., 2002) and Wetter (Wetter, 2006). Since building 

envelope objects also previously have been success-

fully modeled in equation-based tools, their descrip-

tion in Modelica is rather straightforward. However, 

it should be noted that a first version of a model li-

brary is useful only to a Modelica expert and that 

much work remains before such a library can be 

made useful to the typical building simulation end-

user. 

Within the IDA Simulation Environment - the base 

of the recently released whole-building simulator 

IDA Indoor Climate and Energy 4.0 (IDA ICE 4.0) 

(EQUA, 2009) - an experimental Modelica translator 

has been operational since 1999. Although the trans-

lator is still not released as a fully supported product, 

this enables seamless integration of Modelica models 

into the native NMF based model library. Within the 

standard delivery of IDA ICE 4.0, the most obvious 

trace of this is the inclusion of the standard Modelica 

control block library (Figure 1). 

LIBRARIES OF CONTINUOUS-TIME 

CONTROL BLOCKS 

The control block library in IDA ICE 4.0 has, for 

example, been used in a model for the automatic 

window control of the Velux EIC Visualizer 

(http://eic.velux.com). In Figure 2, the editable 

schematic of the actual controller is shown.  

Four simultaneous window control mechanisms are 

implemented in the example: 

1. “Modulated” window opening to maintain 

an air temperature setpoint by cooling when 

the outdoor temperature is lower than the 

indoor by a given number of degrees. Only 

active when the building is occupied. 

2. If the outdoor temperature is above a given 

threshold, windows are opened for a given 

period (typically 10 min), morning, midday 

and evening. Only active when the building 

is occupied. 

3. If at 22:00, the outdoor temperature is lower 

than the indoor, and the indoor temperature 

is above a given threshold, roof windows are 

left open between 22:00 and 07:00. Only ac-

tive when the building is occupied. 

4. Ventilation flaps of roof windows are per-

manently open (for background ventilation) 

when the outdoor temperature is above a 

certain setpoint. 

In the given example, the controller attempts to mim-

ic a usage pattern of a real occupant. Although, this 

may not be the most common situation, the example 

illustrates the type of complexity that is commonly 

implemented in real-life controllers. It is obvious that 

the full-year consequences of such an algorithm are 

exceedingly difficult to predict without an appropri-

ate whole-building simulation model. Also clear is 

that no matter how many hard-coded control algo-

rithms that are included in a traditional simulation 

program, there will always be a good argument for 

studying some non-included variant. The only viable 

solution seems to be to provide the end-user with the 

means of formulating arbitrary controllers. 

Even if the control block library enables end-users to 

experiment with real complexity controllers, this is of 

little use if the implementation of the resulting 

scheme in the actual building by mistake turns out to 

be something different. A schematic like that of Fig-

ure 2 can easily be misinterpreted and implementa-

tion of the “typical” control functions can vary 

slightly in different environments. Hence, the need to 

formally generate control code based on the simula-

tion model remains. 

Automatic generation of controller programs from a 

simulator representation, requires that standardized 

languages are used on common control platforms. In 

industrial automation applications, the IEC 61131-3 

language is a common standard. The SimForge 

(http://trac.elet.polimi.it/simforge/) open source 

graphical editor allows automatic generation of IEC 

61131-3 from a Modelica-based simulation model. 

Implementation of corresponding functionality in an 

equation-based building simulator is straightforward. 

DISCRETE-TIME ALGORITHMIC CON-

TROLLERS 

Normally, when discrete-time controllers are simu-

lated within a basically continuous system simulator, 

the simulation is restarted for each sample of the 

controller, i.e. the (fixed) timestep of the controller is 

used for all models. If the dynamics of the physical 

system are such that this timestep is fairly well suited 

to resolve relevant transients, this will yield accepta-

ble simulation performance. However, this is rarely 

the situation for buildings. On average, a suitable 

timestep for a whole-year full building simulation 

will be at least a few minutes. In a variable timestep 

environment, steps of several hours may be taken 

during the night, when little is happening in the sys-

tem. Meanwhile, a typical PLC will repeatedly ex-

ecute its program at full speed rendering a sampling 

interval on the order of seconds. Buildings and simi-

lar objects that are slow with respect to typical sam-

pling times will clearly require special methods. Such 

a method has been developed for IDA and it will be 

presented in the next few sections. 

Solver characteristics 

The experiments reported here have been made in 

IDA ICE 4.0. This tool is implemented in the IDA 
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Simulation Environment, which is a general purpose 

tool for differential-algebraic simulation. 

The numeric solver used in IDA (Eriksson et 

al.,1992) is a variable step and variable order predic-

tion-corrector solver based on the MOLCOL me-

thods (Dahlquist, 1983), a generalization of the im-

plicit BDF methods. In each normal timestep the 

future development of all continuous variables is 

predicted using a polynomial extrapolation. A solu-

tion of the system of equations is then calculated by a 

modified Newton-Raphson method, outlined next. 

Analytic component Jacobian matrices are automati-

cally calculated by differentiating the equations with 

respect to all variables. Analytic Jacobians can be 

used for most component models; in some cases, 

however,  numeric Jacobians have to be calculated by 

perturbing the variables of the component. 

The global system Jacobian is assembled and facto-

rized. The predicted values are inserted in the equa-

tions and residuals are calculated and used as right-

hand side when solving the linear system of equa-

tions to get a correction vector. The scheme is ite-

rated until residuals and corrections become suffi-

ciently small. Jacobians are not necessarily computed 

in each timestep, just when convergence is poor. 

The predictor-corrector step may fail, either due to 

lack of convergence, or, because the local truncation 

error of the difference approximation is deemed too 

large. This error depends on timestep size and on the 

order used, and can be expressed in terms of the 

difference between the predicted and calculated solu-

tions. In either case, the timestep is reduced and a 

new prediction is calculated. After a successful step, 

the local truncation error is used to control the order 

and the tentative length of the next timestep. 

When the integration is started, an initial value calcu-

lation (IVC) is made to find a start solution to the 

equations. An IVC will also be made when a discon-

tinuity is met in driving data or an abrupt event is 

signaled by a component model. 

Interface to individual sampling components 

IDA solver handles component models written in 

either the Neutral Model Format (NMF) or Modelica. 

The models are automatically translated to Fortran or 

C and linked into Windows dynamically linked libra-

ries (DLLs). 

To incorporate an arbitrary discrete-time programm-

able controller in an IDA simulation, it has to meet 

some basic requirements:  

1. It must be written in a language that can be 

translated to a Windows DLL. 

2. It may have internal memory and internal 

states that should be preserved between ac-

tivations. However, since the solver will 

need to rerun sequences of sampling steps, 

the internal states must be stored in an array 

that is accessible from the solver. 

The interface between solver and sampling compo-

nent has been implemented as a shell, written in 

NMF or Modelica. The shell delivers inputs to, and 

fetches output from the component. It also provides 

memory space for the internal states of the sampling 

component. 

Connecting continuous and sampling components 

The solver normally divides the simulated system 

into three distinct sections: The central aggregate of 

continuous components (equation-based), an algo-

rithmic section preprocessing input data and provid-

ing input to the continuous section, and an algorith-

mic section performing post-processing of simulation 

results. In each timestep, the sections are processed 

in order pre, central, post. 

The components making up the system are linked 

together by links (signal aggregates) that can be di-

rected (causal) or undirected (acausal). Within the 

continuous section, acausal links are permitted, while 

in pre and post sections all links must be causal (in-

puts of one component connected with outputs of 

another).  

When sampling components are added to this setup, 

they change the pattern. The sampling components 

will only be connected by causal links. They are 

allowed to take input from pre and central sections 

and to deliver output to central and post sections. The 

pre and post sections will retain their positions first 

and last in the processing chain, but the central sec-

tion will be interacting intimately with the sampling 

components. In this interaction, the sampling compo-

nents will fetch input from the central section, and in 

various ways deliver output back to the central sec-

tion. See Figure 3. 

Groups of sampling components 

In the current implementation, each sampling com-

ponent is connected to a clock, defining a constant 

sampling rate. Several components may be combined 

into a sampling group, provided that they use the 

same clock, and that they are connected by causal 

 
 

Figure 3. Component categories. 
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links into a directed network with a defined execu-

tion order. The solver will always activate the group 

as a whole. 

Typical integration algorithm 

The rationale behind the implementation is the possi-

bility to use multi-step integration, with the central 

system taking steps much longer than the sampling 

steps. This is possible if the sampling outputs during 

longer periods appear as continuous, differentiable 

signals. 

A typical global integration step will progress as 

follows (see Figure 4). A prediction is calculated for 

the continuous system, including the variables that 

are connected to sampling components. In a simple 

case with a single controller, these variables could be 

e.g. a temperature sent to the sampling component 

and a control signal coming back. A more complex 

case could include several sampling groups, with 

possibly different sampling rates, and each having 

multiple inputs and outputs.  

Integration time is advanced through the global step 

and the sampling groups are executed at their respec-

tive intervals. For each such sampling execution, 

input signals are interpolated in the prediction. The 

outputs from the sampling groups are compared with 

the interpolated predictions for the receiving conti-

nuous variables. The sample stepping continues to 

the end of the global step, unless a too large discre-

pancy develops underway. In the latter case, the 

latest sampling execution is cancelled, and the global 

step is truncated prior to the divergence. 

Next, the global system is solved with a Newton 

iteration, and the accuracy is checked. This scheme is 

based on the assumption that, as long as the predic-

tion is good enough to provide acceptable truncation 

error in the continuous equations, the sampling steps, 

run against the same prediction, can also be accepted 

as they are, without update to match the corrected 

continuous solution. Some problems related to this 

assumption appear, and the remedies taken are dis-

cussed below. 

IDA Implementation 

The chosen solution introduces an extra continuous 

component for each sampling group. This ‘black 

box’ component is described as an NMF component 

and emulates the sampling group, seen from the con-

tinuous system. It partakes in all activities pertinent 

for continuous components; it delivers residuals and 

Jacobians, the latter obtained by numeric differentia-

tion. This makes a reliable and effective Newton 

iteration possible. 

The component defines one equation for each output 

from the sampling group, equating this output to the 

corresponding controlled variable in the continuous 

system. 

All sampling outputs from the group, required for 

calculation of residuals in these equations, are ob-

tained concurrently by a call of a solver routine. The 

id of the sampling group is provided as a parameter 

together with the inputs to the sampling group. The 

solver uses these data to execute the group, rerunning 

the latest sampling step with sampling state memory 

fetched from backup. 

The black box component is only active in the solv-

ing of the continuous system. The activation of the 

group when stepping through the global step is done 

by the solver without reference to the black box. 

Performance 

The performance of the modified implementation is 

illustrated by some test results presented below. The 

simulated system is a single office zone with local 

heating and cooling. Tests were run for a three month 

summer period with observed climate data.  

The cooling room unit was controlled by a PI-

controller, implemented both as a continuous model 

and as a sampling discrete-time algorithm with a rate 

of 1000 activations per hour. The NMF equations for 

the continuous version were: 

E := IF Mode < 0.5 THEN 

              (SetPoint - Measure) 

        ELSE 

              (Measure - SetPoint) 

        END_IF ; 

 

OutSignalTemp := k * (E + Integ) ; 

  

OutSignal = IF OutSignalTemp > hilimit THEN 

                         hilimit 

                       ELSE_IF OutSignalTemp < lolimit THEN 

                         lolimit 

                       ELSE 

                         OutSignalTemp 

                       END_IF ; 

 

Integ' = E/ti + (OutSignal - OutSignalTemp)/tt ;  

 

where 

 

SetPoint Reference signal 

Measure Input signal 

E Control error 

Integ Integrator term 

 
Figure 4. Solution sequence. 
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OutSignal Control signal 

OutSignalTemp Control signal (temp) 

k Gain parameter 

ti Integration time in seconds 

tt Tracking time in seconds 

mode Control mode: 

 

0= heating type control, 

 

1= cooling type control 

hilimit High limit for OutSignal 

lolimit Low limit for OutSignal 

 

In the discrete version, the differential equation for 

the Integ term was instead solved locally: 

 
IntegPrim := E/ti + (OutSignal - OutSignalTemp)/tt ; 

Integ := Integ + h*IntegPrim; 

 

where 

 

IntegPrim Integrator derivative 

h Sampling interval 

 

In the discrete version, the Integ variable is declared 

as an NMF assigned state, which means that it is 

memorized between evaluations. 

The cases with the sampling controllers were run 

once with the global timestep equal to that of the 

controller, and once with multi-step integration. The 

outcome is summarized in Table 1 for the three cas-

es: 

 

A) Continuous controller (function block) 
 

B) Sampling controller with multi-rate integra-

tion (new method) 

 

C) Ditto, solve global system each sampling 

step (conventional discrete method) 

 

The results show that the sampled controller 

implementation is less efficient than a continuous 

ditto, but the time reduction of the new method 

exceeds 98%. 

Figures 5 and 6 show the zone air temperatures for 

Cases A and B during the last week of simulation. 

The cooling setpoint, 25C˚, is not always met due to 

limited cooling power. A slight ripple, reflecting the 

selected tolerance, can be seen in the discrete case.  

Similar tests have also been done with on-off 

controllers, to investigate the performance for 

discrete state control signals. These results are 

equally satisfactory, actually showing even smaller 

penalties for the discrete-time implementation (case 

B vs. A). 

Short step regime 

The discussion so far focuses on the continuous be-

havior of the sampling systems. An entirely different 

scenario appears, if the global timestep happens to be 

shorter than the sampling steps. This may very well 

happen, when an abrupt change in the central system 

or in its inputs triggers fast transients. 

Now, the activity of a sampling group can no longer 

primarily be regarded as smoothly incorporated in a 

continuous long-term progression. Rather, its discrete 

 

Table 1. Performance tests, PI-controller 

 

   A B C 

Number of variables 2 187 2 193 2 193 

 

Number of steps    

 global successful 6 946        10 540 2 209 400 

 global total tried 28 035 42 546 2 216 402 

 sampling successful 0 2 208 000 2 208 000 

 sampling total tried 0 2 688 241 2 209 543 

      

Integration time [s] 11 21 1 704 
 

Figure 5. Air temperature for Case A 

 

Figure 6. Air temperature for Case B 
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nature comes to the fore. When some short global 

steps have been taken, and the time to activate a 

sampling group is reached, whatever output it pro-

duces will have to be accepted. If they represent a 

discontinuous change, the solver will make an IVC 

and then resume global integration. If they appear 

small, the global integration will have opportunity to 

increase step length and return to the normal long 

step regime.   

CONCLUSIONS AND FURTHER WORK 

The impact of control design on building perfor-

mance is often underestimated. In most simulation 

studies, highest priority is given to building envelope, 

followed by system operation, while control perfor-

mance is normally treated with gross simplifications. 

It is difficult to find other reasons for this situation 

than the present capabilities of mainstream simula-

tion tools. 

In an equation-based simulator, access to libraries of 

continuous-time control blocks enables accurate 

simulation of a large range of realistic controllers. 

Modeling effort can be guided by physical motiva-

tion rather than tool capability. Code and settings for 

actual physical controllers may be automatically 

generated from the block diagrams and the risk of 

errors in the implementation process can thereby be 

reduced.  

Unfortunately, block diagram based control descrip-

tions are not always practical. Complex control algo-

rithms are often more succinctly described using an 

algorithmic language, i.e. by “free programming.” 

Examples of constructions that are cumbersome to 

realize in a block diagram setting are iterations, ex-

tensive rule based evaluation and time-averaging. 

A method has been developed that allows efficient 

simulation of discrete-time algorithms in an equa-

tions-based context. The method has been tested on 

small but realistic examples with satisfactory results. 

The next step will be to confront the new method 

with more complex controllers to ensure its general 

applicability. At some not too distant future, it will 

also be natural to develop a simulator-based control 

design environment, where actual controller code can 

be developed, tested and deployed to physical devic-

es. However, the attractiveness of such a design tool 

depends on the wide proliferation of non-proprietary, 

standardized input description methods (languages) 

such as IEC 61131-3 or BACNET. 
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