
REAL CONTROLLERS IN THE CONTEXT OF FULL-BUILDING, WHOLE-YEAR

SIMULATION

Per Sahlin, Axel Bring and Lars Eriksson

EQUA Simulation AB, Stockholm, Sweden

ABSTRACT

Study of complex control strategies plays an increas-

ing role in building design. Discrepancy between the

intentions of the designer, often expressed as non-

formalized control laws, and the as-built implementa-

tion is a frequent source of malfunction and energy

waste. Two approaches to remedy this problem in the

context of equation-based, full-building, whole-year

simulation are treated: (1) The availability of Mod-

elica based libraries of functional blocks for typical

objects such as integrator, gain, PID-controller and

time-delay in a general system simulator enables off-

line testing and tuning of realistic control systems.

(2) Efficient implementation of algorithmic discrete-

time controllers enables direct simulation of complex

control algorithms described with the same source

code in the simulator as in the real controller. The

first approach is discussed and illustrated briefly.

While not available in traditional building simulation

environments, such block libraries have been availa-

ble in other simulation domains for several years

already. The second approach is treated more tho-

roughly, since special methods are needed for build-

ings, where controller sampling interval is much

smaller than the typical timescales of the equation-

based building model itself. Initial implementation

and testing of a new simulation approach is pre-

sented.

INTRODUCTION

Form and construction of building envelope is a

natural focus of the early stages of the building de-

sign process. Consequently, the first priority of main-

stream building simulation tools is support for com-

plex geometries. The ecological benefits of a cleverly

configured building shape over a simple-minded one

are obvious. However, a conventional building with

an optimal shape will only be marginally better. Im-

proved geometry and envelope will not be sufficient

to reach the environmental regulation goals that are

presently well underway, for example in terms of

requirements of zero carbon emissions from new

buildings within the next decade.

Moving to production of zero carbon buildings does

not seem possible by gradual improvement. We have

to change the way we define the concept of a build-

ing and its design process. Future buildings will by

necessity involve sophisticated combinations of new

systems for production, storage, distribution, and

emission of clean air, water, light, heat and electrici-

ty. Borehole storage, sorption cooling, controlled

natural ventilation, phase change materials and micro

CHP are just a few of a range of non-standard tech-

nologies that will have to be employed in concert.

A thorough analysis of the operation of virtually any

existing office building will reveal ample examples

of malfunction and energy waste. One will easily find

poorly designed systems without even a theoretical

possibility of efficient operation, but more common-

ly, the intentions of the designer have been poorly

described or misinterpreted in the control implemen-

tation phase and only very basic testing has been

done in the commissioning process. Anyone who has

written even a simple computer program knows that

bugs inevitably appear in the testing and the more

rigorous the testing, the more bugs will appear. Yet

control programs are often complex and tailored to

individual buildings in spite of the fact that the full

range of operating conditions will never be tested.

With a real building in the loop, time and cost will

only allow testing of a small number of possible

situations. Since the quality of control of today’s

relatively simple HVAC systems already is question-

able, it is easy to foresee the consequences on the

systems of tomorrow. Radical innovation is needed.

With a control object as costly, cumbersome, and

slow as a building, thorough testing of algorithms

with respect to a real object will never be possible. A

single seasonal storage borehole strategy, for exam-

ple, may take a few years to evaluate. The only op-

tion is to rely on a simulation model of the building

with all relevant systems that is close enough to reali-

ty to allow off-line testing of all important control

modes.

Mainstream simulation tools of today provide only

rough approximations of a limited number of control

systems and time resolution is often much too poor

for control design. Frequently, simulation algorithms

are based on the very assumption of perfect control.

For example, indoor temperature may at times be

treated as a given constant in the solution process and

the needed heat to maintain this temperature is calcu-

lated instead. In a real control scenario, a controller

will measure indoor temperature and then decide how

Eleventh International IBPSA Conference
Glasgow, Scotland

July 27-30, 2009

- 72 -

much heat to release. In order to study real control

behavior in most traditional building simulators, very

fundamental solution principles would have to be

altered.

Within an equation-based simulation framework, the

behavior of both the physical object and the control

system can be modeled with desired fidelity. Conti-

nuous-time models of all standard functional blocks

allow construction of controllers with the same to-

pology and parameters as those employed in the

physical controller. This allows realistic development

of any control strategy that can be formulated by

basic control blocks. An example of this method is

presented below.

In an equation-based environment, each simulated

object must be described by equations and functions.

Extensions to the basic mathematical repertoire allow

treatment of hysteresis and individual discontinuities,

but arbitrary “internal states” in simulated objects

that are unknown to the solution algorithm are likely

to yield poor overall efficiency and robustness. The

solver must be able to “see” every equation.

While access to a library of continuous-time func-

tional blocks allows development and tuning of most

control schemes, there are two major reasons for

simulating complete discrete-time control programs

in the context of a simulated building:

1. Some complex control schemes cannot con-

veniently be expressed exclusively by “ex-

tended” equations. Truly algorithmic de-

scriptions are sometimes needed. A drastic

example is model predictive control, where

a simulation model of the building itself is

exercised by the control algorithm in order

to find an optimal control scheme.

2. Quality control. To find practical program-

ming errors, a testing environment as close

as possible to the as-built situation is desira-

ble. In addition, effects that stem from the

limited sampling rate of the real implemen-

tation can only be investigated in the correct

time scale.

One way of studying the behavior of as-built control

programs with respect to a simulated building are

hardware-in-the-loop simulations, where a physical

controller is interacting with a simulated control

object (building). This type of study was for example

made in IEA Annex 17 (Karki 1993). In addition to

obvious practical difficulties in dealing with a physi-

cal controller, this approach may also be cumber-

some since experiments normally must be carried out

in real time.

A more attractive option is to execute the actual con-

trol code faster than real time while retaining the

realistic algorithmic and sampling behavior of the

physical controller. In its most straightforward im-

plementation, this implies simulation of both control-

ler and building at the sampling rate of the controller,

Figure 1. A selection of control blocks in IDA ICE 4.0.

- 73 -

i.e. a global simulation time step is taken for each

controller sample. For a building, this normally

yields excessive simulation times, since a typical

controller operates with an unsuitably short step (less

than a second). Below, an IDA implementation of

discrete-time controllers is presented which enables

multi-rate simulation, i.e. a short fixed time step is

used for the simulated controller, while a physically

motivated much longer (and variable) step is used for

the building. Performance comparisons between

continuous and discrete implementations of equiva-

lent controllers are presented.

MODELICA IN BUILDING SIMULA-

TION

The need to model complex and heterogeneous phys-

ical systems together with controls is of course not

specific to the building domain. Many other indus-

tries, such as automotive and chemical process, have

similar needs. Numerous attempts have been made to

extend the domain of applicability of stand-alone

simulators by co-simulation, i.e. to run several inde-

pendent solvers in parallel while simultaneously

synchronizing common variables that occur in more

than a single model. In the automotive industry, for

example, different groups have traditionally devel-

oped stand-alone simulators for the engine combus-

tion, engine motion, drive train, brake system, whole-

car dynamic motion etc. It is very natural as a first

attempt to try to run these models together rather than

to embark into the daunting effort of rewriting them

in a more general environment. However, it seems

that few truly successful co-simulation projects have

been reported and that the focus instead has shifted

towards holistic equation-based models, see e.g.

(Tiller et al. 2000).

Since the first proposal of the Modelica language in

1997 (Elmqvist et al. 1997), the previously heteroge-

neous world of equation-based simulation environ-

ments has found a focus. After several years of

proof-of-concept type projects, the Modelica com-

munity (www.modelica.org) has now moved on to

the development of large base libraries of physical

models for a variety of industrial domains. Several

international projects such as EuroSysLib and

MODELISAR have been started with a significant

share of model library development. While Dassault

Systèmes’ Dymola system is the market leader, sev-

Figure 2. A controller block diagram in the IDA based VELUX EIC tool

Flap ventilation

0.0

P-ctrl

MAX

Night

Night ventilation

Ventilation schedule

Opening for ventilation

Opening for cooling (day)

Zone
Temp

24.0

TAmb

Occupancy
schedule

MAX

P-ctrl

Night Trig

VentTr ig Vent Set

>= 0.0

VentSet.threshold 0.0 °C

Night Set

>= 23.5

NightSet.threshold 23.5 °C

NightTr igAmb
NightComp

MAX

-2.0

- 74 -

eral competing commercial Modelica implementa-

tions have been released during the last few years and

an ambitious open source effort (OpenModelica) is

underway.

Modelica has also been applied to building simula-

tion problems. Building envelope model libraries

have been described by e.g., Felger et al. (Felger et

al., 2002) and Wetter (Wetter, 2006). Since building

envelope objects also previously have been success-

fully modeled in equation-based tools, their descrip-

tion in Modelica is rather straightforward. However,

it should be noted that a first version of a model li-

brary is useful only to a Modelica expert and that

much work remains before such a library can be

made useful to the typical building simulation end-

user.

Within the IDA Simulation Environment - the base

of the recently released whole-building simulator

IDA Indoor Climate and Energy 4.0 (IDA ICE 4.0)

(EQUA, 2009) - an experimental Modelica translator

has been operational since 1999. Although the trans-

lator is still not released as a fully supported product,

this enables seamless integration of Modelica models

into the native NMF based model library. Within the

standard delivery of IDA ICE 4.0, the most obvious

trace of this is the inclusion of the standard Modelica

control block library (Figure 1).

LIBRARIES OF CONTINUOUS-TIME

CONTROL BLOCKS

The control block library in IDA ICE 4.0 has, for

example, been used in a model for the automatic

window control of the Velux EIC Visualizer

(http://eic.velux.com). In Figure 2, the editable

schematic of the actual controller is shown.

Four simultaneous window control mechanisms are

implemented in the example:

1. “Modulated” window opening to maintain

an air temperature setpoint by cooling when

the outdoor temperature is lower than the

indoor by a given number of degrees. Only

active when the building is occupied.

2. If the outdoor temperature is above a given

threshold, windows are opened for a given

period (typically 10 min), morning, midday

and evening. Only active when the building

is occupied.

3. If at 22:00, the outdoor temperature is lower

than the indoor, and the indoor temperature

is above a given threshold, roof windows are

left open between 22:00 and 07:00. Only ac-

tive when the building is occupied.

4. Ventilation flaps of roof windows are per-

manently open (for background ventilation)

when the outdoor temperature is above a

certain setpoint.

In the given example, the controller attempts to mim-

ic a usage pattern of a real occupant. Although, this

may not be the most common situation, the example

illustrates the type of complexity that is commonly

implemented in real-life controllers. It is obvious that

the full-year consequences of such an algorithm are

exceedingly difficult to predict without an appropri-

ate whole-building simulation model. Also clear is

that no matter how many hard-coded control algo-

rithms that are included in a traditional simulation

program, there will always be a good argument for

studying some non-included variant. The only viable

solution seems to be to provide the end-user with the

means of formulating arbitrary controllers.

Even if the control block library enables end-users to

experiment with real complexity controllers, this is of

little use if the implementation of the resulting

scheme in the actual building by mistake turns out to

be something different. A schematic like that of Fig-

ure 2 can easily be misinterpreted and implementa-

tion of the “typical” control functions can vary

slightly in different environments. Hence, the need to

formally generate control code based on the simula-

tion model remains.

Automatic generation of controller programs from a

simulator representation, requires that standardized

languages are used on common control platforms. In

industrial automation applications, the IEC 61131-3

language is a common standard. The SimForge

(http://trac.elet.polimi.it/simforge/) open source

graphical editor allows automatic generation of IEC

61131-3 from a Modelica-based simulation model.

Implementation of corresponding functionality in an

equation-based building simulator is straightforward.

DISCRETE-TIME ALGORITHMIC CON-

TROLLERS

Normally, when discrete-time controllers are simu-

lated within a basically continuous system simulator,

the simulation is restarted for each sample of the

controller, i.e. the (fixed) timestep of the controller is

used for all models. If the dynamics of the physical

system are such that this timestep is fairly well suited

to resolve relevant transients, this will yield accepta-

ble simulation performance. However, this is rarely

the situation for buildings. On average, a suitable

timestep for a whole-year full building simulation

will be at least a few minutes. In a variable timestep

environment, steps of several hours may be taken

during the night, when little is happening in the sys-

tem. Meanwhile, a typical PLC will repeatedly ex-

ecute its program at full speed rendering a sampling

interval on the order of seconds. Buildings and simi-

lar objects that are slow with respect to typical sam-

pling times will clearly require special methods. Such

a method has been developed for IDA and it will be

presented in the next few sections.

Solver characteristics

The experiments reported here have been made in

IDA ICE 4.0. This tool is implemented in the IDA

- 75 -

Simulation Environment, which is a general purpose

tool for differential-algebraic simulation.

The numeric solver used in IDA (Eriksson et

al.,1992) is a variable step and variable order predic-

tion-corrector solver based on the MOLCOL me-

thods (Dahlquist, 1983), a generalization of the im-

plicit BDF methods. In each normal timestep the

future development of all continuous variables is

predicted using a polynomial extrapolation. A solu-

tion of the system of equations is then calculated by a

modified Newton-Raphson method, outlined next.

Analytic component Jacobian matrices are automati-

cally calculated by differentiating the equations with

respect to all variables. Analytic Jacobians can be

used for most component models; in some cases,

however, numeric Jacobians have to be calculated by

perturbing the variables of the component.

The global system Jacobian is assembled and facto-

rized. The predicted values are inserted in the equa-

tions and residuals are calculated and used as right-

hand side when solving the linear system of equa-

tions to get a correction vector. The scheme is ite-

rated until residuals and corrections become suffi-

ciently small. Jacobians are not necessarily computed

in each timestep, just when convergence is poor.

The predictor-corrector step may fail, either due to

lack of convergence, or, because the local truncation

error of the difference approximation is deemed too

large. This error depends on timestep size and on the

order used, and can be expressed in terms of the

difference between the predicted and calculated solu-

tions. In either case, the timestep is reduced and a

new prediction is calculated. After a successful step,

the local truncation error is used to control the order

and the tentative length of the next timestep.

When the integration is started, an initial value calcu-

lation (IVC) is made to find a start solution to the

equations. An IVC will also be made when a discon-

tinuity is met in driving data or an abrupt event is

signaled by a component model.

Interface to individual sampling components

IDA solver handles component models written in

either the Neutral Model Format (NMF) or Modelica.

The models are automatically translated to Fortran or

C and linked into Windows dynamically linked libra-

ries (DLLs).

To incorporate an arbitrary discrete-time programm-

able controller in an IDA simulation, it has to meet

some basic requirements:

1. It must be written in a language that can be

translated to a Windows DLL.

2. It may have internal memory and internal

states that should be preserved between ac-

tivations. However, since the solver will

need to rerun sequences of sampling steps,

the internal states must be stored in an array

that is accessible from the solver.

The interface between solver and sampling compo-

nent has been implemented as a shell, written in

NMF or Modelica. The shell delivers inputs to, and

fetches output from the component. It also provides

memory space for the internal states of the sampling

component.

Connecting continuous and sampling components

The solver normally divides the simulated system

into three distinct sections: The central aggregate of

continuous components (equation-based), an algo-

rithmic section preprocessing input data and provid-

ing input to the continuous section, and an algorith-

mic section performing post-processing of simulation

results. In each timestep, the sections are processed

in order pre, central, post.

The components making up the system are linked

together by links (signal aggregates) that can be di-

rected (causal) or undirected (acausal). Within the

continuous section, acausal links are permitted, while

in pre and post sections all links must be causal (in-

puts of one component connected with outputs of

another).

When sampling components are added to this setup,

they change the pattern. The sampling components

will only be connected by causal links. They are

allowed to take input from pre and central sections

and to deliver output to central and post sections. The

pre and post sections will retain their positions first

and last in the processing chain, but the central sec-

tion will be interacting intimately with the sampling

components. In this interaction, the sampling compo-

nents will fetch input from the central section, and in

various ways deliver output back to the central sec-

tion. See Figure 3.

Groups of sampling components

In the current implementation, each sampling com-

ponent is connected to a clock, defining a constant

sampling rate. Several components may be combined

into a sampling group, provided that they use the

same clock, and that they are connected by causal

Figure 3. Component categories.

Continuous

component

system

Preprocessing

components

Blackbox

Sampling group

Clock

Postprocessing

components

- 76 -

links into a directed network with a defined execu-

tion order. The solver will always activate the group

as a whole.

Typical integration algorithm

The rationale behind the implementation is the possi-

bility to use multi-step integration, with the central

system taking steps much longer than the sampling

steps. This is possible if the sampling outputs during

longer periods appear as continuous, differentiable

signals.

A typical global integration step will progress as

follows (see Figure 4). A prediction is calculated for

the continuous system, including the variables that

are connected to sampling components. In a simple

case with a single controller, these variables could be

e.g. a temperature sent to the sampling component

and a control signal coming back. A more complex

case could include several sampling groups, with

possibly different sampling rates, and each having

multiple inputs and outputs.

Integration time is advanced through the global step

and the sampling groups are executed at their respec-

tive intervals. For each such sampling execution,

input signals are interpolated in the prediction. The

outputs from the sampling groups are compared with

the interpolated predictions for the receiving conti-

nuous variables. The sample stepping continues to

the end of the global step, unless a too large discre-

pancy develops underway. In the latter case, the

latest sampling execution is cancelled, and the global

step is truncated prior to the divergence.

Next, the global system is solved with a Newton

iteration, and the accuracy is checked. This scheme is

based on the assumption that, as long as the predic-

tion is good enough to provide acceptable truncation

error in the continuous equations, the sampling steps,

run against the same prediction, can also be accepted

as they are, without update to match the corrected

continuous solution. Some problems related to this

assumption appear, and the remedies taken are dis-

cussed below.

IDA Implementation

The chosen solution introduces an extra continuous

component for each sampling group. This ‘black

box’ component is described as an NMF component

and emulates the sampling group, seen from the con-

tinuous system. It partakes in all activities pertinent

for continuous components; it delivers residuals and

Jacobians, the latter obtained by numeric differentia-

tion. This makes a reliable and effective Newton

iteration possible.

The component defines one equation for each output

from the sampling group, equating this output to the

corresponding controlled variable in the continuous

system.

All sampling outputs from the group, required for

calculation of residuals in these equations, are ob-

tained concurrently by a call of a solver routine. The

id of the sampling group is provided as a parameter

together with the inputs to the sampling group. The

solver uses these data to execute the group, rerunning

the latest sampling step with sampling state memory

fetched from backup.

The black box component is only active in the solv-

ing of the continuous system. The activation of the

group when stepping through the global step is done

by the solver without reference to the black box.

Performance

The performance of the modified implementation is

illustrated by some test results presented below. The

simulated system is a single office zone with local

heating and cooling. Tests were run for a three month

summer period with observed climate data.

The cooling room unit was controlled by a PI-

controller, implemented both as a continuous model

and as a sampling discrete-time algorithm with a rate

of 1000 activations per hour. The NMF equations for

the continuous version were:

E := IF Mode < 0.5 THEN

 (SetPoint - Measure)

 ELSE

 (Measure - SetPoint)

 END_IF ;

OutSignalTemp := k * (E + Integ) ;

OutSignal = IF OutSignalTemp > hilimit THEN

 hilimit

 ELSE_IF OutSignalTemp < lolimit THEN

 lolimit

 ELSE

 OutSignalTemp

 END_IF ;

Integ' = E/ti + (OutSignal - OutSignalTemp)/tt ;

where

SetPoint Reference signal

Measure Input signal

E Control error

Integ Integrator term

Figure 4. Solution sequence.

Y

Y = Variable in continuous system, controlled by sampling components

t

XX

XX

X

X X X

X
X

X

Accepted solution

Predicted by extrapolation

Calculated by sampling component

Result of Newton iteration in new step

- 77 -

OutSignal Control signal

OutSignalTemp Control signal (temp)

k Gain parameter

ti Integration time in seconds

tt Tracking time in seconds

mode Control mode:

0= heating type control,

1= cooling type control

hilimit High limit for OutSignal

lolimit Low limit for OutSignal

In the discrete version, the differential equation for

the Integ term was instead solved locally:

IntegPrim := E/ti + (OutSignal - OutSignalTemp)/tt ;

Integ := Integ + h*IntegPrim;

where

IntegPrim Integrator derivative

h Sampling interval

In the discrete version, the Integ variable is declared

as an NMF assigned state, which means that it is

memorized between evaluations.

The cases with the sampling controllers were run

once with the global timestep equal to that of the

controller, and once with multi-step integration. The

outcome is summarized in Table 1 for the three cas-

es:

A) Continuous controller (function block)

B) Sampling controller with multi-rate integra-

tion (new method)

C) Ditto, solve global system each sampling

step (conventional discrete method)

The results show that the sampled controller

implementation is less efficient than a continuous

ditto, but the time reduction of the new method

exceeds 98%.

Figures 5 and 6 show the zone air temperatures for

Cases A and B during the last week of simulation.

The cooling setpoint, 25C˚, is not always met due to

limited cooling power. A slight ripple, reflecting the

selected tolerance, can be seen in the discrete case.

Similar tests have also been done with on-off

controllers, to investigate the performance for

discrete state control signals. These results are

equally satisfactory, actually showing even smaller

penalties for the discrete-time implementation (case

B vs. A).

Short step regime

The discussion so far focuses on the continuous be-

havior of the sampling systems. An entirely different

scenario appears, if the global timestep happens to be

shorter than the sampling steps. This may very well

happen, when an abrupt change in the central system

or in its inputs triggers fast transients.

Now, the activity of a sampling group can no longer

primarily be regarded as smoothly incorporated in a

continuous long-term progression. Rather, its discrete

Table 1. Performance tests, PI-controller

 A B C

Number of variables 2 187 2 193 2 193

Number of steps

 global successful 6 946 10 540 2 209 400

 global total tried 28 035 42 546 2 216 402

 sampling successful 0 2 208 000 2 208 000

 sampling total tried 0 2 688 241 2 209 543

Integration time [s] 11 21 1 704

Figure 5. Air temperature for Case A

Figure 6. Air temperature for Case B

AIR_TEMPERATURE

5680. 5700. 5720. 5740. 5760. 5780. 5800. 5820.

25 27 29 31 1

23.6

23.8

24.0

24.2

24.4

24.6

24.8

25.0

25.2

25.4

25.6

25.8

26.0

26.2

26.4

26.6

AIR_TEMPERATURE

5680. 5700. 5720. 5740. 5760. 5780. 5800. 5820.

25 27 29 31 1

23.6

23.8

24.0

24.2

24.4

24.6

24.8

25.0

25.2

25.4

25.6

25.8

26.0

26.2

26.4

26.6

- 78 -

nature comes to the fore. When some short global

steps have been taken, and the time to activate a

sampling group is reached, whatever output it pro-

duces will have to be accepted. If they represent a

discontinuous change, the solver will make an IVC

and then resume global integration. If they appear

small, the global integration will have opportunity to

increase step length and return to the normal long

step regime.

CONCLUSIONS AND FURTHER WORK

The impact of control design on building perfor-

mance is often underestimated. In most simulation

studies, highest priority is given to building envelope,

followed by system operation, while control perfor-

mance is normally treated with gross simplifications.

It is difficult to find other reasons for this situation

than the present capabilities of mainstream simula-

tion tools.

In an equation-based simulator, access to libraries of

continuous-time control blocks enables accurate

simulation of a large range of realistic controllers.

Modeling effort can be guided by physical motiva-

tion rather than tool capability. Code and settings for

actual physical controllers may be automatically

generated from the block diagrams and the risk of

errors in the implementation process can thereby be

reduced.

Unfortunately, block diagram based control descrip-

tions are not always practical. Complex control algo-

rithms are often more succinctly described using an

algorithmic language, i.e. by “free programming.”

Examples of constructions that are cumbersome to

realize in a block diagram setting are iterations, ex-

tensive rule based evaluation and time-averaging.

A method has been developed that allows efficient

simulation of discrete-time algorithms in an equa-

tions-based context. The method has been tested on

small but realistic examples with satisfactory results.

The next step will be to confront the new method

with more complex controllers to ensure its general

applicability. At some not too distant future, it will

also be natural to develop a simulator-based control

design environment, where actual controller code can

be developed, tested and deployed to physical devic-

es. However, the attractiveness of such a design tool

depends on the wide proliferation of non-proprietary,

standardized input description methods (languages)

such as IEC 61131-3 or BACNET.

ACKNOWLEDGEMENT

A significant part of this work has been done within

the framework of the EU-funded I3CON

(Industrialised, Integrated, Intelligent Construction)

project: 26771 (www.i3con.org).

REFERENCES

Dahlquist, G. 1983. On One-leg multistep methods,

TRITA-NA-8301, Royal Institute of Technolo-

gy, Stockholm, Sweden

Elmqvist, H., Boudaud, F., Broenink, J., Brück, D.,

Ernst, T., Fritzson, P., Jeandel, A., Juslin, K.,

Klose, M., Mattsson, S. E., Otter, M., Sahlin, P.,

Tummescheit, H., Vangheluwe, H., 1997.

Modelica
TM
 - A Unified Object-Oriented

Language for Physical Systems Modeling,

Version 1, Sept., 1997 (www.modelica.org)

EQUA Simulation AB, 2009, IDA Indoor Climate

and Energy 4.0 – User’s Guide

Eriksson, L., Söderlind, G., Bring, A., 1992. Numeri-

cal Methods for the Simulation of Dynamical

Modular Systems, ITM Report, 1992:2, Swedish

Institute of Applied Mathematics, Gothenburg,

Sweden

Felgner, F., Agustina, S., Cladera Bohigas, R., Merz,

R., Litz., L., 2002. Simulation of Thermal

Building Behavoir in Modelica. Edited by

Martin Otter. Proceedings of the 2
nd
 Modelica

conference, 147-154. Modelica Association and

Deutsches Zentrum fur Luft- und Raumfahrt,

Oberpfaffenhofen, Germany

Karki, S. (ed.)., 1993. Development of Emulation

Methods, Research Notes 1514, 1993, 134 pp. +

app., VTT, Laboratory of Heating and

Ventilation, Finland

Nytsch-Geusen, C., Nouidui, T., Holm, A., Haupt,

W., 2005. A hygrothermal building model based

on the object-oriented modeling language Mod-

elica. Proceedings of the Ninth International

IBPSA Conference, Volume 1. International

Building Performance Simulation Association

and Ecole Polytechnique deMontreal, 867–876,

Montreal, Canada

Tiller, M., P.Bowles, H.Elmqvist, D.Brück, S.

E.Mattson, A.Möller, H.Olsson and M.Otter

2000. Detailed Vehicle Powertrain Modeling in

Modelica. Modelica Workshop 2000

Proceedings, pp.169-178

Wetter, M., 2006. Multizone building model for

thermal building simulation in Modelica. Pro-

ceedings of the 4
th
 Modelica conference, Vienna,

Austria

- 79 -

