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ABSTRACT 
This paper presents Artificial Neural Network 
(ANN)-based predictive and adaptive thermal 
control strategies for residential buildings designed 
to advance thermal comfort. For residential 
buildings, we developed a thermal control strategy 
framework, with four thermal control logics therein, 
including two predictive logics with ANN models 
incorporating the Neural Network (NN) toolbox in 
MATLAB. Using computer simulation with 
International Building Physics Toolbox (IBPT), a 
typical two-story single-family home in the U.S. 
was modelled for testing each logic’s performance. 
Through analysis, we found that application of 
ANNs in thermal control of single-family homes 
has potential for enhancing thermal comfort with 
increased comfort period and reduced over and 
undershoots. 

INTRODUCTION 
Historically, application of thermal control systems 
to residential buildings has been simplistic. The 
thermostat has been the principal control system 
because, at least prima facie, homeowners did not 
see sophisticated control systems as economically 
worthwhile. However, such perceptions have 
changed. Increasing consciousness of quality of life 
has led homeowners to want thermal conditions in 
their homes conducive to improved comfort and 
health (Parsons, 2003). In addition, as energy costs 
increase significantly, home energy efficiency 
acquires economic importance.  Simultaneously, the 
emergence of the home office concept has made 
productivity become an important economic factor 
(Harper, 2003). Accordingly, new residential 
buildings demand advanced climatic control 
strategies providing comfort, health, productivity 
and energy efficiency. 

ANN application to thermal control in buildings 
Artificial-Neural-Network (ANN) increasingly has 
been applied for advanced thermal control of 
buildings. Analogous to the human brain and its 
learning process, ANN utilizes connectivity and 
transfer functions between input, hidden, and output 
neurons, and successfully has been applied to non-
linear systems or systems with unclear dynamics. In 
particular, different from mathematical models such 

as regression models or proportional-integral-
derivative (PID) controllers, ANN models have 
adaptability through a self-tuning process, so can 
decide accurately  without outside expert 
intervention when unusual perturbations, 
disturbances, and/or changes in building 
background conditions occur. Studies proved ANN-
based predictive control strategy has advantages as 
a thermal control method over mathematical 
strategies in terms of the accurate thermal control 
with reduced overheating and overcooling, and the 
improved energy efficiency (Gouda et al.,  2006, 
Ruano et al., 2006, Loveday, 1992). 
ANN models were applied to determine optimal 
start and stop times for heating systems. These 
studies used the predicted values from ANN in the 
algorithms: the turning on time of the heating 
system for restoring the interior temperature to the 
comfortable level at the start of business hours; and 
the amount of time for interior temperature to drop 
down to the lower limit of comfort range. This 
predictive control improved thermal comfort and 
energy efficiency (Yeo et al., 2003, Yang et al., 
2000). A similar study was conducted for optimal 
start of A/C systems employing ANN for predicting 
end-of-setback moment; in these, the ANN-based 
predictive control proved accurate and easy to use 
(Ben-Nakhi et al., 2002).  
ANN application to hydronic heating of solar 
building by prediction of outdoor temperature, solar 
radiation, indoor temperature, and supply 
temperature showed  significant energy savings 
(Argiriou et al., 2004). In addition, residential water 
heating systems and radiant floor heating systems 
were controlled effectively by predictive control 
methods (Morel et al., 2001, Lee et al., 2002). As a 
more advanced method, ANN was used to control a 
radiant heating device in conjuction with Fuzzy 
logics. The predicted indoor air temperature by 
ANN and its difference from the setpoint 
temperature were used as inputs for the Fuzzy 
controller. Reduction of overshoots and energy 
consumption was remarkable compared to the PI 
control (Gouda et al., 2006). Studies on the ANN 
application to cooling systems were conducted also. 
The adaptive model with sliding window data sets 
proved more effective in controlling cooling 
systems with better temperature regulation and 
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energy saving than did the fixed model or state-of-
the-art physical models (Ruano et al., 2006). 

Limitations of Existing ANN Models 
To date, in most residential buildings, optimization 
of thermal comfort and energy consumption is not 
achieved. The currently-widespread thermal control 
method, thermostat-dependent, creates thermal 
discomfort due to time-lag of heating or cooling 
equipment and late thermal response of the space. 
Recently developed predictive control strategies 
with ANN have  improved this undesirable situation 
by creating comfortable air temperature condition. 
Previous studies, however, regarded indoor air 
temperature as the only control variable, while 
other important thermal factors such as humidity 
and PMV rarely were considered. Therefore, it is 
beneficial to develop control strategies that are 
capable of regulating building thermal systems 
based on factors consisting of thermal comfort 
including humidity and PMV. At the same time, the 
control strategies with ANN models need to test 
their perfornance and adaptability for a change of 
environmental requirements (e.g., application of 
setback), which may cause inaccuracy in an ANN 
prediction.  

Objectives 
This study aimed to develop an advanced 
residential thermal control strategy. In order to 
achieve this objective, 
1. ANN-based predictive thermal control methods 

are developed, which control overall thermal 
conditions including not only air temperature, 
but also humidity or PMV. In particular, PMV 
is calculated using six parameters: air 
temperature, humidity, mean radiant 
temperature (MRT), air velocity, metabolic rate 
(MET), and clothing level (CLO). 

2. The adaptability of predictive methods is tested 
by application of two cases: non-application of 
setback and application of setback. 

3. The energy efficiency of ANN-based 
predicitive control strategies is comparatively 
investigated with non-predictive strategies.  

To this end, a framework of control logic, with five 
steps therein, were developed.  

DEVELOPMENT OF CONTROL LOGIC 
In the development phase of control logic, an 
overall framework of control logic and four 
component control logics were developed using 
MATLAB and its Neural Network (NN) toolbox. 
Figure 1 shows the control logic framework. In Step 
one, climatic conditions and personal conditions 
transfer to the control panel. Sensors and user input 
are required in this step. In Step two, thermal 
comfort range, users set system operating ranges, or 
the logic recommends them for proper home 

climate control devices such as heating, cooling, 
humidifying and dehumidifying systems. In Step 
three, energy, users decide on a setback value and a 
period. Or the control system recommends them to 
reduce energy consumption. In Step four, decision 
of system operation, the control algorithm decides 
the operation of environmental control devices. 
Previously acquired information, such as current 
and past climatic conditions, personal conditions, 
operating range, and setback is utilized in this step. 
In particular, ANN models were applied in the logic 
to predict future thermal conditions of air 
temperature, humidity, and PMV. In Step five, 
operation of control devices, the control devices 
such as heating, cooling, humidifying, and 
dehumidifying systems work for improving thermal 
conditions based on the signals decided in the 
previous control logic. 
Four different thermal control logics were 
employed in system operation decision: (1) 
temperature and humidity control without ANNs as 
with conventional strategy, (2) temperature and 
humidity control with ANNs, (3) PMV control 
without ANN, and (4) PMV control with ANN. The 
last three logics are regarded as alternative new 
control logics. Among these, two predictive control 
logics with ANN models (2 and 4) employed the 
predicted future indoor air temperature, humidity, 
or PMV values in the algorithms. 
 

 
Figure 1 Framework of the thermal control logic 

 

Air temperature profiles of a conventional logic and 
a predictive logic are compared conceptually in 
Figure 2. While the conventional logic creates 
overshoot and undershoot by a time lag between the 
operation of environmental control devices (a 
heater for instance) and building response, the 
predictive logic better stabilizes air temperature 
within the designated range because it predictively 
operates heating and cooling devices before room 
air temperature reaches designated boundary 
conditions. Such early decision is possible by the 
predictive nature of ANN models. A maximum 
amount of temperature rise or drop is predictively 
determined when the current operating mode of 
control device is changed. For example, in the 
heating season, ΔTemperature is the maximum rise 
of temperature after stopping the currently working 
heating device (Yang et al., 2003). 

- 65 -



Figure 2 Comparison of air temperature profile 
between a conventional and a predictive logic 
 

Figure 3 shows the structure of ANN models for 
predicting air temperature, humidity, and PMV. 
Three identical feed-forward and back-propagation 
ANN models were applied. Eight-input neurons 
were assigned to the input layer: i) exterior air 
temperature, ii) exterior air temperature change 
from the preceding hour, iii) exterior humidity, iv) 
exterior humidity change from the preceding hour, 
v) interior air temperature, vi) interior air 
temperature change from the preceding ten minutes, 
vii) interior humidity, and viii) interior humidity 
change from the preceding ten minutes. 
Since there is not a fixed scientific solution for the 
design of optimal ANN model, this study employed 
the empirical solutions used in the previous studies 
for ANN model design. One layer was used for the 
hidden layer, thus total three layers consisted of the 
ANN model including one input and one output 
layer. Seventeen neurons were used in a hidden 
layer based on Equation 1 (Yang et al., 2005, Datta 
et al., 2000). Output of each ANN model was 
generated at every minute for ΔTemperature, 
ΔHumidity, and ΔPMV, respectively. One hundred 
and sixty training data sets were prepared for each 
model based on the Equation 2 (Kalogirou et al., 
2000). Training data sets were collected from a pre-
simulation which used non-application of setback 
as variable for first five days of 2007. ANN models 
adopted a sliding window method, so the new data 
set at the system on/off moment was added to the 
training data sets, replacing the oldest. 
 

Nh = 2×Ni + 1                                        (Equation 1) 
Nd = (Nh –1/2×(Ni + No))2                     (Equation 2) 
Where, 
Ni: number of input neurons 
Nh: number of hidden neurons 
No: number of output neurons 
Nd: number of data sets 

 

Based on previous research conducted by Yang et 
al. for predicting thermal conditions in the building, 
training goals (MSE (mean square error)) for air 
temperature was set to 0.1°C, humidity to 0.1% and 
PMV to 0.1 with maximum 1,000 times epoch, 0.75 
learning rate, and 0.9 momentum (Yang et al., 
2003). In addition, Levenberg-Marquardt algorithm 
was used as a training method considering training 
speed and accuracy (Mathwork, 2005). 
 

Figure 3 Structure of ANN models 
 

SIMULATION 
The performance of developed control logics was 
tested through computer simulation. Using 
computer simulation, identical climatic conditions 
such as exterior air temperature and humidity could 
be applied to each simulation run. In addition, tests 
for diverse cases such as application of setback 
could be easily  conducted. For the simulation, two 
major means were incorporated: International 
Building Physics Toolbox (IBPT) and MATLAB. 
The IBPT was used for (1) modelling building 
components and related features (e.g., envelopes, 
control devices, ventilation rate, internal load, 
initial thermal conditions, and import of weather 
data), and (2) calculating interior thermal 
conditions: air temperature and humidity. Using 
these calculated air temperature and humidity 
values, MATLAB was utilized for (1) calculating 
interior PMV, (2) predicting air temperature, 
humidity, and PMV using ANN models, and (3) 
deciding operation of control devices based on 
current and predicted values. This decision was fed 
into the IBPT for system operation, and new 
interior thermal conditions as a result of system 
working were used in MATLAB iteratively (IBPT, 
2008, MathWorks, 2005). 

Target building 
Based on the American Housing Survey (U.S. 
Census Bureau, 2005), a typical two-story detached 
residential house was modelled as a test building 
with 184.4 m2 (≈2,000 ft2) area. Envelopes consist 
of R3.346 (R19 U.S.) walls, R6.692 (R38 U.S.) 
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roof, R3.698 (R21 U.S.) floor, R0.606 (R3.44 U.S.) 
windows, and R0.215 (R1.22 U.S.) doors. Surface 
heat transfer coefficient was taken into account, 
also. The window wall ratio (WWR) was 0.15 on 
average (0.24 for south, 0.08 for north, 0.14 for 
east, 0.13 for west) (Figure 4). 
Hourly-weighted heat and moisture gains for a 
family of four people were considered as internal 
load (ASHRAE, 2004, McArthur et al., 2004). A 
ventilation rate of 0.3 ACH was assumed 
constantly. Initial interior thermal conditions were 
23°C for air temperature and 45% for humidity. In 
addition, it was assumed that MRT of space was the 
same as air temperature, air velocity was 0.0m/s, 
activity level was 1.0MET, and clothing level was 
1.0 and 0.5CLO for winter and summer, 
respectively.  
Convective heating (9,000 Watt heat supply) and 
cooling (10,000 Watt heat removal) as well as 
humidifying (1.41 Kg/hr moisture supply) and 
dehumidifying (2.36 Kg/hr moisture removal) 
devices were equipped for controlling thermal 
conditions. TMY2 data for Detroit, Michigan, were 
used as weather data. 
 

 
Figure 4 View of a target building 

 

Schedule and variables 
Control logic was tested for two seasons: winter 
and summer. Six days were simulated for each 
season: Jan. 27~Feb. 01, 2007 for winter; July. 
03~08, 2007 for summer. Each period represented 
peak days of heating and cooling. Analysis was 
conducted for the last five days after trimming 
away the first day. 
Control logic was tested for two cases: non-
application and application of setback. Non-
application of setback specified comfort ranges for 
temperature, humidity and PMV as below: 

• Air Temperature: 20~23°C for heating,  
23~26°C for cooling 

• Humidity: 30~45% for humidifying, 
45~60% for dehumidifying 

• PMV: -0.5~0.0 for PMV increasing, 
0.0~0.5 for PMV decreasing 

Application of setback employed day- and night-
time setback modes. Figure 5 shows the application 
of setback modes for a day.  

 

 

Figure 5 Application of setback 
 

DISCUSSION AND RESULT 
ANALYSIS 
Simulation results were analyzed for the percentage 
of periods within specified ranges; magnitude of 
overshoots and undershoots out of specified range; 
and energy consumption. 

Percentage of periods within specified ranges 
The percentages of periods when indoor conditions 
(air temperature, humidity or PMV) are within 
specified ranges were calculated. 
1. Non-application of setback 
Control logic with ANN models created the more 
comfortable thermal conditions (Table 1). 
Compared to the conventional logic, i.e. 
temperature and humidity control without ANNs, 
using temperature and humidity control with ANNs, 
the percentage of period when air temperature is 
within specified ranges increased 4.2% in winter 
and 3.9% in summer; and humidity control 
improved 0.1% in winter and 0.7% in summer . 
Periods when PMV is within the specified ranges 
improved by 9.0% in winter and by 3.9% in 
summer using PMV control with ANN as compared 
to PMV control without ANN. These improvements 
using the predictive logic were due to the 
reductions of overshoot and undershoot out of 
specified range. In addition, control logic having 
PMV as a control variable had a higher PMV 
comfort period. This indicates the potentials of the 
PMV-based control method in improving thermal 
comfort in residential buildings. 
2. Application of setback 
When day- and night-time setback modes were 
applied, ANN-based predictive controls improved 
thermal comfort (Table 2).  Period when air 
temperature is within the specified ranges increased 
by 2.6% in both seasons. In specific, using the 
temperature and humidity control with ANNs, 
percentages of period in normal period (20~23°C) 
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and setback period (15~18°C) in winter, and in 
normal period (23~26°C) and setback period 
(25~28°C) in summer were improved by 3.1, 2.4, 
5.0, and 1.1%, respectively. In addition, period 
when humidity is within the specified ranges 
increased by 0.8% in winter and 2.6% in summer. 
By PMV control with ANN, period when PMV is 
within the specified ranges improved 6.8% in 
winter and 6.4% in summer. Each percentage in 
normal period (-0.5~0.0) and setback period (-2.0~-
1.5) in winter, and in normal period (0.0~0.5) and 
setback period (0.5~1.0) in summer were improved 
by 6.4, 7.0, 14.9, and 1.1%, respectively. 
Based on comparisons of percentage of periods for 
non-application and application of setback, it can be 
concluded that the predictive control logics with 
ANN would control indoor thermal conditions 
better within the user specified ranges, and, thus, 
would make occupants feel more comfortable. 

Magnitude of overshoots and undershoots out of 
specified ranges 
The magnitude of a control system overshoots or 
undershoots can be measured by a combination of 
two factors: the duration time (t) and the degree (Δ) 
of overshoots or undershoots. The multification of 

these two factors (Δ × t) will indicate the magnitude 
of over- or under-shoots as in Equation 3. Figure 6 
exemplifies it for overshoot of air temperature using 
the shadowed area. The magnitude of shoots out of 
specified range by each control logic was compared 
for air temperature, humidity, and PMV. Units were 
°C×minutes, %×minutes, and PMV×minutes, 
respectively.  
 

S = ∑(Δ × t)                                           (Equation 3) 
Where, 
S = magnitude of over or undershoots 
Δ = degree of over or undershoots out of specified 
range 
t = duration time of over or undershoots 
 

 
Figure 6 Magnitude of Overshoot of Air 

Temperature
 

Table 1 
Percentage of Periods (%) within Specified Ranges: non-application of setback 

 

SEASON SPECIFIED RANGES 
TEMP/HUMID 

CONTROL  
W/O ANNS 

TEMP/HUMID 
CONTROL 

WITH ANNS 

PMV 
CONTROL 
W/O ANN 

PMV 
CONTROL 
WITH ANN 

Winter 
Air Temperature (20~23˚C) 95.8 100.0 73.8 99.9 

Humidity (30~45%) 99.9 100.0 0.4 0.0 
PMV (-0.5~0.0) 53.5 42.9 89.5 98.5 

Summer 
Air Temperature (23~26˚C) 96.1 100.0 32.2 38.8 

Humidity (45~60%) 99.2 99.9 61.2 48.7 
PMV (0.0~0.5) 4.8 0.0 75.1 79.0 

 

Table 2 
Percentage of Periods (%) within Specified Ranges: application of setback 

 

SEASON SPECIFIED RANGES 
TEMP/HUMID 

CONTROL  
W/O ANNS 

TEMP/HUMID 
CONTROL 

WITH ANNS 

PMV 
CONTROL 
W/O ANN 

PMV 
CONTROL 
WITH ANN 

Winter 

Air 
Temperature 

15~18 (°C) 75.0 77.4 75.7 76.6 
20~23 (°C) 70.9 74.0 66.9 78.9 

Overall 73.5 76.1 72.4 77.5 
Humidity 30~45 (%) 98.5 99.3 0.0 0.0 

PMV 
-2.0~-1.5 54.3 66.8 64.2 71.2 
-0.5~0.0 35.4 21.4 58.2 64.6 
Overall 47.2 49.8 61.9 68.7 

Summer 

Air 
Temperature 

25~28 (°C) 77.3 78.4 81.2 94.6 
23~26 (°C) 94.7 99.7 28.8 25.8 

Overall 83.8 86.4 61.4 68.7 
Humidity 45~60 (%) 94.3 96.9 69.1 67.6 

PMV 
0.5~1.0 18.7 5.6 53.3 54.4 
0.0~0.5 11.8 0.7 75.9 90.8 
Overall 16.1 3.8 61.9 68.3 
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1. Non-application of setback 
The total over or undershoots of air temperature 
controlled by the ANN predictive logic were all 
zero, which means that air temperature always 
stayed within the specified ranges. On the other 
hand, summations of shoots by the logic without 
ANN showed a certain amount of over and 
undershoots of air temperature by heating and 
cooling operations. Similarly, summations of shoots 
of humidity were reduced significantly by the 
predictive logic. In addition, summations of shoots 
of PMV by the PMV control with ANN were less 
than that of a logic without (Table 3).  
2. Application of setback 
Similar to the cases with non-application of 
setback, the magnitudes of over or undershoots of 
air temperature and humidity were both reduced by 
the predictive logic. Likewise, those of PMV also 
decreased by the PMV control logic with ANN 
(Table 4). 

Reduction of overshoots and undershoots by the 
predictive logic for non-application and application 
of setback indicates that a predictive logic with 
ANN models would maintain thermal conditions 
more stably within the user specified ranges. This 
has a thread of connection with the increased 
comfort period by the predictive logic. 

Energy consumption 
As a way of measuring energy consumption by 
climate control equipments controlled by different 
control logics, amounts of heat supply by a heater, 
heat removal by an air-conditioner, moisture supply 
by a humidifier, and moisture removal by a 
dehumidifier were calculated and compared for 
each control logic. The actual energy consumption 
by those climate control equipments can be 
determined by applying their energy efficiencies. 
1. Non-application of setback 
The predictive logic saved energy in most device 
operations. However, there were exceptional cases 

 

Table 3 
Summation of shoots out of specified ranges: non-application of setback 

 

SEASON 

SYSTEM 
OPERATIONS 

(UNIT OF 
SUMMATION) 

TYPES OF 
SHOOTS 

TEMP/HUMID 
CONTROL 
W/O ANNS 

TEMP/HUMID 
CONTROL 

WITH ANNS 

PMV 
CONTROL 
W/O ANN 

PMV 
CONTROL 
WITH ANN 

Winter 

Heating 
(˚C×minutes) 

Overshoots 3.96 0.00 - - 
Undershoots -6.10 0.00 - - 

Humidifying 
(%×minutes) 

Overshoots 0.19 0.00 - - 
Undershoots -0.11 0.00 - - 

PMV increasing 
(PMV×minutes) 

Overshoots - - 5.78 0.00 
Undershoots - - -9.11 -0.65 

Summer 

Cooling 
(˚C×minutes) 

Overshoots 5.41 0.00 - - 
Undershoots -7.07 0.00 - - 

Dehumidifying 
(%×minutes) 

Overshoots 31.67 0.22 - - 
Undershoots -1.10 -0.21 - - 

PMV decreasing 
(PMV×minutes) 

Overshoots - - 14.10 1.65 
Undershoots - - -23.51 -8.81 

 

Table 4 
Summation of shoots out of specified ranges: application of setback 

 

 SEASON 

SYSTEM 
OPERATIONS 

(UNIT OF 
SUMMATION) 

TYPES OF 
SHOOTS 

TEMP/HUMID 
CONTROL  
W/O ANNS 

TEMP/HUMID 
CONTROL 

WITH ANNS 

PMV 
CONTROL 
W/O ANN 

PMV 
CONTROL 
WITH ANN 

Winter 

Heating 
(˚C×minutes) 

Overshoots 1.89 0.00 - - 
Undershoots -7.35 -6.66 - - 

Humidifying 
(%×minutes) 

Overshoots - - - - 
Undershoots - - - - 

PMV increasing 
(PMV×minutes) 

Overshoots - - 3.98 2.51 
Undershoots - - -7.54 -0.46 

Summer 

Cooling 
(˚C×minutes) 

Overshoots 5.31 0.00 - - 
Undershoots -7.67 0.00 - - 

Dehumidifying 
(%×minutes) 

Overshoots 49.46 1.79 - - 
Undershoots -0.04 0.00 - - 

PMV decreasing 
(PMV×minutes) 

Overshoots - - 12.95 1.11 
Undershoots - - -24.82 -9.02 
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such as humidifying in winter and cooling in 
summer by the temperature and humidity control 
with ANN. In these cases, 3.0% more moisture was 
supplied and 0.1% more heat was removed 
compared to the logic without ANN. It indicates 
that the energy efficiency using predictive control 
method would not improve for the control devices 
having less time-lag such as humidifier and air-
conditioner. In other cases, control logic with ANN 
models saved from 0.3% for cooling and 
dehumidifying (for PMV decreasing) by the PMV 
control with ANN in summer to 2.5% for 
dehumidifying by the temperature and humidity 
control with ANN in summer (Table 5). 
2. Application of setback 
The predictive logic reduced the amount of device 
operation in both seasons (Table 6). The amount of 
reduction ranged from 0.4% for cooling and 
dehumidifying (for PMV decreasing) by the PMV 
control with ANN in summer to 2.4% for 
dehumidifying by the temperature and humidity 
control with ANN in summer. 
The PMV-based control logics consumed more 
energy in winter while less energy in summer 
compared to the temperature- and humidity-based 
control logics. The increase in winter was due to the 
higher specified range for PMV than those for 
temperature and humidity. Thus, PMV control 
logics consumed more heating and humidifying 
energy than temperature and humidity control 
logics. On the contrary, PMV control logics 
consumed less cooling and dehumidifying energy 
compared to the temperature and humidity control 
logics in summer. This is also due to the higher 
specified range for PMV in summer, therefore, less 
cooling and dehumidifying were required by PMV 
control logics. 

Based on the analysis of the amount of device 
operations for non-application and application of 
setback, it is concluded that generally some savings 
of energy would result via predictive control logic; 
however, its amount was not as significant as 
expected. This was due to the time compensation 
between operating and non-operating time. For 
example, in a cycle, operating time of a heating 
device by the predictive logic is shorter than that of 
the non-predictive logic because the predictive 
logic turned off a device earlier than the non-
predictive logic. And, non-operating time is also 
shorter by the predictive logic. Thus, the frequency 
of device’s on and off was higher by the predictive 
logic. Therefore, the amount of energy consumption 
by the predictive logic, which decreased by the 
shorter operating time but increased by the higher 
frequency of device’s on and off, showed similar 
results with that of the non-predictive logic. 

CONCLUSIONS 
This study aimed at developing advanced thermal 
control strategies for residential buildings. A 
framework for incorporating ANN in home climatic 
control was developed. Four control logics, which 
included one conventional and three proposed 
logics, were examined. Their performance test 
using computer simulation was conducted for two 
cases: non-application and application of setback. 
Findings from this study are: 
1. ANN-based predictive control methods 

demonstrated that they could predict indoor 
temperature and humidity with a high 
accuracy, and that they were more 
advantageous in controlling home climate 
control devices in achieving user spcified 
conditions than conventional thermostat 
control. 

 

Table 5 
Amount of system operation: without of setback 

 

SEASON SYSTEM 
OPERATIONS 

TEMP/HUMID 
CONTROL 
W/O ANNS 

TEMP/HUMID 
CONTROL  

WITH ANNS 

PMV 
CONTROL 
W/O ANN 

PMV 
CONTROL 
WITH ANN 

Winter Heating (KWh) 691.2 684.8 702.8 693.2 
Humidifying (Kg) 13.3 13.7 110.1 108.6 

Summer Cooling (KWh) 287.3 287.7 255.0 254.3 
Dehumidifying (Kg) 151.4 147.6 60.2 60.0 

 

Table 6 
Amount of system operation: with setback 

 

SEASON SYSTEM 
OPERATIONS 

TEMP/HUMID 
CONTROL  
W/O ANNS 

TEMP/HUMID 
CONTROL  

WITH ANNS 

PMV 
CONTROL 
W/O ANN 

PMV 
CONTROL 
WITH ANN 

Winter Heating (KWh) 582.5 571.8 577.1 574.5 
Humidifying (Kg) 0.0 0.0 90.4 90.0 

Summer Cooling (KWh) 272.0 266.3 236.2 235.3 
Dehumidifying (Kg) 118.4 115.6 55.7 55.5 

- 70 -



2. Control logic having PMV as the control 
variable showed an improved PMV comfort 
period compared to ones having air temerature 
and humidity. In addition, ANN-based PMV 
control logic conditioned the indoor PMV 
better within the specified range compared to 
the PMV control logic without ANN model.  

3. Two predictive control logics incorporating 
ANN models reduced magnitude of overshoots 
and undershoots out of specified ranges for air 
temperature, humidity, and PMV. 

4. Two predictive control logics reduced energy 
consumption for many cases although not as 
significant as expected. 

In conclusion, the proposed thermal control 
strategy, i.e., a framework of control logic and 
predictive control embedded therein, has substantial 
potential for enhancing thermal comfort but does 
not have the significant energy efficiency for 
single-family homes. 
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