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A-BSTRACT

Methods for determining dynamic thermal resPonse using systems identificetion

techniques are discussed. A test using a binary multi-frequenry sequence as input to
determine the response of a material sample is described. Z-trensfer function coefiì-

cients are obtained using both frequenry resPonse analysis and least squares regres-

sion in time domain.

INTRODUCTION

I¡7 Nowr-¡DGE oF THE dynamic response of building envelope com-
It\pott.nts is important in the design of thermal systems. The load cal-

culation method given in the ASHRAE Handbook [1] is based on the "z-
transfer function" method developed by Stephenson and Mitalas [2]. The

coefücients for walls and rooß are obtained either from tables contained in
the Handbook or by means of a computer Progrem [3]. In either case, these

coefücients are derived from an analytical method which assumes that the

construction consists of layers of homogenous material and that heat flow is

Reprinted from JoURNAL OF fHERIt',Al, lNsutÁrloN Volume 11-October 1987
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one-dimensional. In practice, actual walls contain heat bridges, such as studs
or structural members, and may be composed of non-homogenous materi-
als. Furthermore, the properties of the materials may be unknown or difiì-
cult to determine. Therefore, there is a need for experimental methods to de-
termine the dynamic thernial performance of components.

This paper discusses some of the procedures for determining dynamic re-

sponse, and describes a test on e sleb of homogeneous material to demon-
strate one ofthese techniques.

A complete dynamic model for heat flow through a component is com-
monly represented in the matrix notetion introduced by Pipes [4] which
relates the temperatures and heat flows at both surfaces (see Figure 1).

e, AB Ot
(1)

Q' CD Q,

The transfer function of interest for load calculations is -1l8, which re-
lates the heat flow at the inside surface, Qr, to the temperature at the outside
surface, Or, with the boundary condition òf a constant inside tempereture,
or.

It: Q,
Ot

(2)
e2: constant

In z-transfer function form this is written as
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This transfer function is used to simulate the response by calculating heat

0.00t
Frcqum, lll¡¡sl

FIGURE C3. Frcqucncy rcsponsc of:-transfòr lunctions (rr = 3, rr = 3) obtaincd frorn ticqucncy analysis
and from rimc scrics rcgrcssion of imprccisc dete. (Scc Tablcs C I and C2 for cocffrcicnts.)

grcatly from that obtaincd from thc prccisc mcesurcmcnt. Z-trznsfcr function cocflì-
cients obtained by fìtting to this frcqucncy rcsponsc arc givcn in Täblc Cl. All of
these produccd stable simulations. Figurc C2 shows thc frcqucnry rcsponsc of thc z-
transfer functions.

Regrcssion analysis was also carricd out on thc imprccisc data. Thc rcsulting z-
transfer function coeftìcicnts, givcn in Täblc C2, givc a stablc simulation. Howcvcç
as shown in Figurc C3, thc frcqucnry responsc of thc z-transfcr function from
regression is somewhat distortcd at high frcqucncics.

o
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e

FIGURE 1. Heat flow through e comporient.
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flux Qr at tirìtc I froln:¡ historr.ot-r':llucs tirr (.f,.rrrtl (),

Q,,,, = !,r,o,1r - iJ) - | t,,r¿,1, - ir¡ ({)Z-t¡ansf e¡ functlon îlsponso

0 tt.tl¡¡tl
ll.g¡tclt.l

t n.1 F,l

X ¡.e Fe

+ n¿. tsl

0.00 t
Fnequency lllgocl

0.00t
Frcqucnct lllsacl

where A is thc ti¡.¡rc intcrval fbr rhc sirnulation

SYSTEM IDENTIFICATION

The use of systcm idcntification nrcthods to dctcr¡rrinc paralnctcrs 9i r
system is well establishcd [5,6].
metical model for a systcm on th
nals. This requires both sclection
and estimation of values for thc
many different solutions for a givcn sysrcm is conrmon. Thcrc is gcncrallv a

compromise berween modelling error and complcxity. Thcrcforc, rhc sclcc-
tion of the model depends upon rhc purposc of thc idcntification and thc cx-
perience of the user. while sysrcm idcnrification tcchniqucs nray cnrproy
non-linear models, the techniques describcd in this papcr arc applicablc only
when linearity can be assumed. Both the z-transfcr function and thc Fouric.r
transform are valid only for linear systems. Heat transfcr problcms arc nor-
mally considered lineaç but this may be inappropriatc in somc cascs such as
when heat transfer is primarily by radiation or when moisturc is prcscnt in
a porous material.

Various input signals may be employed. A step input is the simplest for
the purpose of system identifìcation. This signal provides a good insighr into
the transient response of the system. For a fìrst-order system thc stcady statc
gain and time constent may easily be determined. Methods also cxist [7] to
identify higher order sysrems. Similarly, the parameters of a sysrem can be
obtained using a ramp input signal [8], since a ramp is the integral of a step
function. For a linear system, the relationship between the input, x(r), and
the output, y(t), is given by the convolution integral

y(t) = Irrr.U - u)du (s)

where h(u), the weighting function, describes the dynamic characteristics of
the system. Therefore, theoretically, a unir impulse would be the ideal input
signal since the resulting outpur would be the weighting function å (ø). ffhe
weighting function is essentially the same as the response factors referred to
by Mitalas [9].) However, in practice it is impossible to produce a true im-
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FIGURE C2. Frequenry response ofz-transfer functions obtained by fìaing ro frequenry analysis ofim-
precise data. Coeffìcients are given in Tàble C1



Determining Dynamic Thermal Response 123

pulse and difficult to achieve an approximation which has sufiìcient magni-
tude to yield a usable outpur.

Frequenry response analysis is a classical technique in control engineering
and may be used for identifìcation of systems. In its basic form, a sìnusoidal
input is applied to the system. The system response, at this frequency, can be
described by the ratio of amplitude of ourput ro inpur and thè difference in
phase between output and input. Repeating for several frequencies provides
enough information to plot the amplitude ratio and phase lag versus fre-
quency to indicate the system frequenry response. The disadvantages ofthis
procedure are that it may be diffìcult to produce a sinusoidal signal and a
series of tests takes a long time.

These disadvantages may be overcome by Fourier analysis techniques. A
periodic signal containing many frequenry componenrs is applied to the in-
put. A Fourier transform is then performed on both input and output; the
result is sufiìcient information to produce a Bode plot from a single test.

Equation (5) can be transformed to frequenry domain as

t0
t¡pFrclrr re¡sunctrnt

0.00t
fnaqu:nct ltl¡acl

0.00t
F¡a$¡¡ncl lt/¡¡cl

- sttGul¡l.l

t t ¡r¡r¡d b¡æU

+ alttrtrl
ll|er.Gr.ll

Y(<,r) = H(ø)X(t't) (6)

where

y(r) - Fourier transform of output, ir(f)
X(r) - Fourier transform of input, x(f)
H(r) - transfer function, Fourier transform of h(u)

Therefore, H(a) can be obtained from Equation (6), and an inverse Fourier
transform of .FI(<,r) will yield the describing function ft(ø).

A convenient type of input signal for Fourier analysis is a binary periodic
sequence [10]. This signal is easy to generete by simply switching berween
two states (on/off); it does not require any complex control or waveform
generator. Pseudo-random binary signals are often used when frequenry re-
sponse at many points over a wide frequency renge is required. other forms
of binary multi-frequenry signal (BMFS) have rhe characeristic that their
power is concentrated in a limited number of frequencies. while this signal
gives response information for fewer points over e smaller frequenry band-
width, it has the advantage that the amplitude of those frequãnry compo-
nents is larger and less susceprible to noise. This type of signal is well suiìed
to response evaluation of systems that have non-resonance or non-rejection
response characteristics and was, for this reason, used in the experimental
procedure to be described in the following secion.

Least squares techniques have also been employed to fit paremeter values
to a chosen transfer function model in time domain [11]. These ettempts

FIGURE.Cl. Frequency rcsponsc obteincd from tcst data m¿dc imprccisc through rounding ro nearest
degree and nearcsr 15 ilm¡ (approximatcly r00 timcs rcss prccision thìn actuar -Åur;.*).
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n m ao a1 a2 a3 a1 b1 b, b3 b1

2
2

3

3

1

2

3

4

0.0
0.0
0.0
0.0

0.210
0.213
0.201
0.208

0.210
0.190
0.074
0.080

- .140

-.098

-.580
-.659

- 1.277

- 1.246

0.062
0.426
0.568

-.015
-.227 0.095
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Table C1. Z-transfer Junction eoe;fuients Jrom Jreqtency analysß (A : 60 sec).
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The Equations (85) and (116) can be written for each frequenry for which resPonse

data is available. In addition, for the steady state condition (c,r = 0) Equation (!,3)

reduces to
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have encountered difiìculty in fìtting directly to the z-transfer coefiìcients of
Equation (4). Pedersen and Mouen [12] found the direct solution produced
meaningless response factors and chose instead to estimate velues of equiva-
lent thermophysical properties (conductivity, density and specific heat) us-

ing a stochastic gradient algorithm. Sherman et al. [13] defined a set of
simplifìed thermal paremeters and used them to characterize the thermal
performance of the wall from an arbitrary tempereture history using digital
fìlter design.

DESCRIPTION OF TEST APPARAIUS AND PROCEDURE

An experiment wes performed at the Thermal Insulation Laboretory of
the Institute for Research in Construction, National Research Council Can-
ada, to investigate test procedures for determining the dynamic heat transfer

characteristics of e slab of material. The sample chosen was a sheet of rubber
meteriel for which the thermal properties (see Appendix A) were known.

The requirements for determination of -FI are to:

o introduce a veriation in Or, the temPerature on surfece 1

. measure Qr, the heat flux at surface 2
o maintain constânt Or, the temperature of surface 2

The simple heat flow meter configuration shown in Figure 2, using a heat

flux transducer to meâsure Qr, is not satisfâctory. The problem is that a tem-
pereture drop, proportional to Qr, appears across the heat flux transducer'

e2

hot plote cold plote

heot flux tronsducer Q2

(87)

where U is the steady state U-value.
Thus, if response data for Nfrequencies is available then 2N * I equations result;

rhese can easily be solved for the coefiìcients (ao to a^ and bo to ú-) using multiple lin-
ear regression provided the numbe r of coeftìcients (n * m * 1) is less than the num-

ber of equations. Equation @7) can be given extra weight to ensure that the z-
transfer function has the correct steedy state U-value.

A complication may arise when phase lags of 1800 occur. IJnder this condition the

regression may produce negative values for a¡. This can be prevented by forcing øo to

zero in Equations (85) and (87).

APPENDIX C

Analysis Using Imprecise Data

Experience has shown that regression techniques often work well with very pre-

cise data, but fail when noise is present in the data. To examine the robustness of the

techniques employed in this paper the data was made less precise by rounding the in-
put (temperature difference) to the nearest degree Kelvin and the output (heat flow)

to the nearest watt, which corresponds to approximately 15 w/m'. This represents

approximately a hundredfold reduction in measured precision.

Frequenry response analysis'ù/as then carried out on this "corrupred" data. The re-

sponse obtained is shown in Figure Cl. While the¡e is obviously some loss of infor-
mation due to the ¡educed precision the frequenry response obtained does not differ

n ltt ao a1 a2 ar b1 b, b3

J 0.031 0.238 0.169 0.065 -.456 -.053 0.012

e.el

Table C2. Z-lransfet finctíon coefluienæ Jrom rcgtasion analysis (A' = 60 see)'

FIGURE 2. Heat flow meter appâratus.



Determining Dynamic Thermal Response

somple
somple

1,25 138 F. H¡c¡ro¡¡r AND D. M. SAND€R

APPENDIX B

Derivation of Z:lransfer Function Coefficients from
Frequency Response Data

The form of the z-transfer function rs

ol

cold plote

(sink)

Heoter A1 Heoler A2

Heoter ,

FIGURE 3. Schematic of test epparatus.

Therefore, temperature 02 varies, even though the cold plate temperature e.
is kept constant. (An additional difüculty is that the frequenry response of
the heat flux transducer must be broad enough to cover the frequencies of
the test.)

A modifrcation of the 600 mm heat flow apperetus [14], shown in Figure
3, was used. Temperature e2 is maintained constant by an electric heater and
temperature controller. This heater consists of a metering úee surrounded
by a guard area, as shown in Figure 4. The guard area is maintained at the
same temperature as the metered aree to prevent edge losses. The power in-
put, P, to the metering area is measured. Because of symmetry, if the tem-
perature Oz is maintained perfectly constant the heat flux at the surface is

(81)

whcre

ao...a,, br...b^ = cocffrcients
z-i = operator representing e time delay - i a where Â is the time intcrval for cal-

culation.

Since z = eÂ', Equetion (81) in Laplace noterion bccomes

u _ aozo * arz-, * a2z-2 + ... + a,z-"itl2r-w

(82)

Substituting jc,r for s,

P
Qz: 24 (7)

where.4 is the metered erea.

Tèmperature O, was varied by switching heaters A, and Az on and off. The
cold plates were kept at a constant temperature to serve as a sink for the heat

(83)

or, since e-i@^ - cos <,rA -j sin oA,

Ht-t =
ao * ¿r[cos (orA) - lsin (oA)ì * arfcos (2aA) - I sin (2<,rA)ì +
1 + å,[cos(rÁ) - jsin(<,rA)] * å,[cos (2or.Á) -jsin(2orA)] +

(84)
... * a"fcos (n ,ìA) - j sin (r <,rA)l

..... * ú-[cos (ma|) - j sin (øcoA)]

H is a complex value consisting of a real part HR and an imaginary part Hr. Equat-
ing the real and imaginary parts of Equation (84) yields

Hnt.t = ao + dt cos(coA) + d2 cos (2øÃ) +......a" cos(nc,rÁ)

- b,fH*,-, cos (orÁ) + H1('t) sin (orA)l - ... (85)

- b^fH^r. cos (nc,rÂ) * Hrr.r sin (røtoA)]

H,øt = -a, sin (rA) - a, sin(2lø.|) a" sin (ø<,rA)

+ btfHR@, sin(orA) - H,<-t cos(c,rA)] +... (86)

+ b^[HRt., sin (røc,rA) - H,øt cos (m oA)]

UI tlal -
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The laboratory demonstration on a small homogenous sample indicates

that testing using BMFS and frequenry analysis has promise for determining
dynamic thermal response. This technique is currently being extended, at

Concordia (Jniversity, to larger scale testing on samples of more typical wall
construction. By devising a test apparatus with appropriate boundary con-
ditions one could apply it to determination of the other functions in the

transmission matrix of Equation (1). Since this type of testing has long been

used in process industries it could be well suited to determining the dynamic
characteristics of other elements, such as HVAC system components, pro-
viding these satisfy the restriction that the systems can be considered linear.
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APPENDIX A

Description of Sample

The test sample is a rubber material. The following ProPerties were determined by
laboratory meâsurement:

126

Guord Areo

F. H¡oHroH¡r AND D. M. SANDER

Meter Areo

P

Density (q)
Specific heat (C,)
Thermal conductivity (À)

Thickness (/)

: 1252.7 kglrn'
: 1073.5 J/kgK
:0.2374 w/mK
: 0.0123 m

FIGURE 4. Schematic of measurement apperatus.

from the heaters. A computer data acquisition system recorded deta every 15

seconds.

RESUËTS

A binary multi-frequency sequence, shown in Figure 5(a), was used as the
signal to control the heaters A, and Az. This signal was obtained from the

following equation, where the heaters ere on whengO > 0 and offwhen
g(r) ' o.

g(t) : cos (<o) - cos (2c,r) f cos (4cr) - cos (8or) t cos (16<o)

- cos (32ot) t cos (64co)

where

2rt,= T

and 7 - period of the sequence. Figure 5þ) shows the amplitude of the fre-
quency spectrum ofthis signal.

The transfer function QrlQr, in Laplace transform notation, is (from Reference 4) (8)

u _ À\Æã
¡r(s) - sinh (fVs/,r)

(,\1)

(2)

where cr = \/(Gp) is the thermal diffusivity.
The theoretical frequency response is obtained by substituting jco for s:

Ht-t =
'lr\0 aia

Sinh (f\4û,/6Y)

Power
Supply

Temperolure
Conhol
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that previous experience with other forms of input signal had shown prob-
lems. This might be artributed to the much better frequency distribution
characteristics of the BMFS.

An alternative method of frtting ZTF coefftcients is to fìrst obtain the
response of the system at a number of frequencies using Fourier analysis, and
then use linear regression to fit coeftìcients to the frequency response dete.
This technique gives a much better picture of how the system responds at
different frequencies. Anomalies in the test results are much more apparent
when examining frequency response since the general form of the Bode plot
is known. This technique should be less susceptible to noise, and also per-
mits the sampling interval for the z-rransform to be different from that of
the data in the test.

Each of these methods can give a number of differenr sers of coeftìcients,
which are a good representation of the dynamic response; they tend to differ
only at the higher frequencies.

The experiment indicated that regression in both time domain and fre-
quency domain was robust when applied to data from rhe BMFS excitation.
This was tested by decreasing the resolution of input and output signals to
1oC and 15 watt/m'z respectively. Analysis of this "imprecise" data yielded
the transfer functions shown in Appendix C.
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FIGURE 5. (a) A multifrequenry
quency components ofthe signal.
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Toble 3. Frequency response of Z-tronsfer funclions compored lo meosured response
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Phose

n=2,
m=l

0.0

- r4.0
-27.7
-40.7
-52.8
-74.4
- 84.0

-93.0
-117.2
-t24.6
-131.7
- ì45.3
- t5t .8
-200.0
-239.7

n :2,
m=2

0.0

- r3.3
-26.3
- 39.0

-sr.l
-73.6
- 83.9

-93.6
- I t9.ó
-127.3
-134.6
-148.2
- | 54.6

- ì 95.8

-209.9

n=3,
m=3

0.0

-13.2
-26.2
- 38.9

-51.2
-74.1
-84.7
-94.6

-120.9
-128.6
- r35.8

- | 49.\

- r55.2

-196.2
-230.4

n:3,
m=4

0.0

- 13.3

-26.4
-39.0
-51 .1

-73.5
- 83.9

-93.9
-120.7
-128.7
-13ó.t
- 149.5

- 155.5

- 193.0

-236.5

Meosured

0.0

- r3.0
-26.9
-40.5
-53.0
-74.2
-86.4
-95.7

-ìt8.t
-128.4
- t3ó.8
- ì51 .5

-154.4
-204.O
-216.3

Amplitude

n=2,
m:I
r.004
o.992
o.957
0.905
o.844
0.718
0.ó58
0.ó04
0.467
0.430
0.39ó
0.33ó
0.3r0
0.1 54
o.o44

n=2,
m:2
r.004
0.995
0.969
0.929
o.878
0.761
0.700
0.642
0.488
0.444
0;4O4
0.334
0.304
0.r38
0.048

n=3,
m=3
t.004
0.996
0.972
0.934
0.885
0.769
0.707
0.647
o.466
o.441
0.400
o.329
o.299
0.r43
0.049

n=3,
m=4
t.004
0.995
o.967
0.927
o.876
o.763
0.705
0.648
0.49t
0.444
o.402
0.327
o.296
0.144
0.058

Meosured

r.000
t.020
0.998
o.957
0.895
0.770
0.697
0.ó5r
o.487
0.455
0.39ó
0.345
0.305
o.144
0.t02

Frequency
(h')

0.0
0.00023s
0.000470
0.000204
0.000939
0.00t 408
0.00tó43
0.00t 878
0.002582
0.0028r ó
0.003051
0.00s52ì
0.00325ó
0.005ó34
0.002512
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Tqble 2. Z-tronsfer function coefficienfs from regression ono/ysis (l^ = ó0 sec)

n m O6 O1 o2 o3 br b2 b3

3 0.023 0.232 0.243 0.044 -.233 -.328 0.1 02

Multiple linear regression was also applied directly to the time domain
data by fìtting coefiìcienrs to Equation (4). The resulting coefficients are
given in Table 2, and the frequenry response shown in Figure 10.

The results were better than expected, since both the authors had experi-
enced difticulty with direct frtting of ZTF coeffìcients to data obtained using
pulse or step signals as input. This is probably due to the much better fre-
quency distrib examine rhe susceptibility of
the analysis to were corrupted by rounding
to the nearest 2 respectively. Both time do-
main and frequenry domain analysis on this "imprecise" data were stable.
The results are given in Appendix C.

SUMMARY AND CONCLUSIONS

In general, the determination of dynamic response involves the following
steps: select the form of the model; devise e test apperetus capable of main-
taining the boundary conditions and measuring input and output variables;
excite with an input signal; fìt the model parameters to the measured data.

The application of system identification techniques was demonstrated by
the experimental deterinination of dynamic thermal response characteristics
of a small homogenous sample. The form of the model was predetermined
to be the z-transfer function expressed as a ratio of polynomials [Equation
(3)]. An experiment was devised to mainrain the boundary condition of con-
stant 02 while values of Q, and O, were measured.

A binary multi-frequency sequence (BMFS) was chosen as the input exci-
tation for O,. This type of signal has several attrecrive characteristics for sys-
tem identification. It is easy to produce, requiring no complex waveform
generator or precise control. It minimizes the disturbance to the system
under test; the mean temperature for the sample tested varied by less than
5oC. It is eftìcient at concentrating power at appropriate frequencies; a srep
input has its energy concentrated at low frequencies, while a pulse contains
the entire spectrum but at very low amplitudes. The BMFS, in combination
with Fourier analysis, takes much less time than testing with an equivalent
number of sinusoidal inputs.

Two methods were used to fit ZTF coefücients to the data. conventional
multi-linear regression in time domain gave good results, despite the fact

0.000t 0.00t
Frequencl ftlsecl

(")

0.0t
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FIGURE 7. (a) Amplirude of frequencies in the input signal, d, (degrees C); (b) amplitude of
frequencies in the output signal, Q, (w/m,).
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The resulting temperature O' and heat flow Qr, after a periodic condition
had been established (after 6 periods), are shown in Figure 6. Figure 7 shows

the results ofFourier analysis using a fast Fourier transform [15,16].
The transfer function H(c,r) was obtained from Equation (6). To reduce the

effect of noise, only frequencies at which O'(co) had a reasonably large ampli-
tude (greater than 0.1) were considered; 14 frequencies met this criterion.
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FIGURE 8. Frequenry response obtained from test measurements; theoretical calculated re-
sponse shown for comparison.
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The resulting transfer function, normalized to U-value, is shown in Figure

8. For comparison, the theoretically derived frequenry response for the slab

of rubber material is also shown.
The agreement betweenthe theoretical and experimental response is good'

Howevei, the experimental values show a slight resonance charâcteristic

which would not be associeted with the heat transfer process; the amplitude

ratio at the first harmonic is slightly greater than at steady state. Further in-
vestigation rwealed that the

tempereture e2 constant. The
displaying the resonance Phe
attributed to error introduced
hearer. This highlights the importance of good control when using this ap-

proach to measuring heat flow.
Although the frequenry response function H(c,l) is very useful, the z-

transfer function form is required for load calculations or time-domain ther-

t0
Z-transfeP functlon responso

0.00t
Fncquenct ltl¡acl

0 r¡rls34

I t¡.( Fl
XFlF¡
+ r.q Þt

mal simulation. A regression technique can be applied directly to the mea-

sured frequency response data, to fit coefücients to a transfer function of the

form given in Equation (4). In addition to one equation for steady state, two

equetlons can be written for each frequenry: one for the real component and

one for the component (see APPendix B).

4 29 equatl0ns can be written and

regressron used to solve for the coefiìcients' Täble 1 gives the coefficients ob-

tained for different numbers of terms in the numerator and denominator

Higher orders than those shown in Täble 1 resulted in unstable simulations.

Figure 9 shows the frequency response plots for these derived z-transfer

fuãctions. Täble 3 gives the response of the z-transfer functions compared to

the measured resPonse.

Toble l. Z-lronsfer function coefficienfs from frequency ønolysis (l : 60 sec)
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FIGURE 9. Frequency response ofz-transfer functions. Coeffrcients, obtained from test, ere

given in Tàble 1.
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n m o0 ol O2 A3 O1 bì b2 b3 b1

2

4

2

4

2

4

2

I

l

I

2
2
2

3

4
4

0.0
0.0
ôo
0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0

0.223
0.229
0.230
0.233
0.233
0.233

0.233
0.228
0.220
0.230
0.230

o.212
0.219
0.223
0.175
0.1 78
0.192
0.208
0.272
0.30ó
0.228
0.227

0.038
0.044

0.003
0.0ìó

0.05ó

-.040

-.001

0.002

0.005

-.112

-.5ós
-.5t5
-.497
-.700
-.625
-.626
-.579
-.308
-.227
-.494
-.498

0.107

-.098
0.072

-.043
-.210
-.748
-. ró8

-. tó5

0.062
0.074
0.348
o.162
0.ìó3

-.044
-.044


