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ABSTRACT 

 
This study aims to develop and evaluate an advanced control method for acceptable indoor air quality 

(e.g., particulate matter and CO2) with low energy consumption in a residential space. A ventilation system, an air 

purifier, and a kitchen hood system are installed in the testbed to maintain a healthy IAQ. To accomplish the 

objective, we use a double deep Q-network (DDQN) which is one of the reinforcement learning. This study utilizes 

a co-simulation platform with EnergyPlus and Python. The optimal control model was trained for 5 days to 

represent various outdoor conditions and indoor living contexts in residential buildings by introducing emission 

rates of the indoor fine particles according to occupant’s activities. The evaluation of the suggested optimal control 

was performed by comparison with a simple on/off method for environmental devices. As a result, the DDQN 

control showed an improvement of 2.5% (PM 2.5) and 0.6% (CO2) of healthy air ratio while reducing 45.5% of 

energy consumption. 
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1 INTRODUCTION 

 

As most people in developed nations spend more than 90% of their time indoors, indoor air 

quality (IAQ) has an important role in and a huge impact on protecting occupants’ health, 

morale, working efficiency, productivity, and satisfaction. We can use a ventilation system, an 

air purifier, and a kitchen hood, etc. in a residential environment to improve and maintain 

acceptable IAQ (PM 2.5 and CO2). Earlier studies showed control methods for environmental 

devices, which could maintain favourable conditions in terms of IAQ (Kim et al., 2020). 

However, this method used a simple on/off control to maintain the indoor concentration of fine 

particulates (PM 2.5) and CO2 within a defined upper limit. This simple control method can 

cause inefficient building operation because it does not reflect the changes of indoor–outdoor 

environmental conditions, the operation status of the environmental devices, and occupants’ 

activities. To overcome these limitations, we suggested a new advanced control method with a 

double deep Q-network (DDQN), which uses a data-driven approach to find the optimal control 

of several environmental control devices to maintain IAQ with low energy consumption. 

 

2 INDOOR AIR QUALITY GUIDELINES 

 

Pollutants affecting IAQ can be divided into 15 substances such as carbon dioxide, carbon 

monoxide, formaldehyde, radon, ozone, and particulate matter (Jones, 1999). In this study, 

particulate matters and CO2 were used as IAQ indicators. The guideline for particulate matters 

varies according to the institutions and countries. As shown in Table 1, to maintain healthy IAQ, 

the US Environmental Protection Agency (EPA) suggests that PM 10 should be under 



150µg/m3 and PM 2.5 is under 35µg/m3 on the 24-hour average (US. EPA, 2013). Also, the 

World Health Organization (WHO) suggests that PM 10 is under 50µg/m3 and PM 2.5 is under 

25µg/m3 on the 24-hour average (WHO, 2005). In this study, we set a limitation of indoor 

particulate matter as 25 µg/m3 for PM 2.5 to satisfy both guidelines. 

 

Table 1: Guidelines for indoor particulate matter 

Institution PM 10 PM 2.5 

US EPA ≤150μg/m3 ≤35μg/m3 

WHO ≤50μg/m3 ≤25μg/m3 

 

The acceptable level of indoor CO2 concentration varies from 700 ppm to 5000 ppm depending 

on the country, standards, buildings, and standards (Lowther et al., 2021). As shown in Table 

2, our study selects 1000 ppm as an acceptable level of indoor CO2 concentration, because this 

value has no adverse effect on the occupant’s health and serves as a standard for adequate 

ventilation of the room.  

 

Table 2: Guidelines of indoor CO2 concentrations 

CO2 Guideline 

concentration 
Country Standard Description 

1000ppm 

UK British Standard (BS EN 16798-1:2019) 

Good indoor air quality 

(residential and non-

residential) 

US 
US EPA Facilities Manual Vol 2: Architecture 

and Engineering Guidelines 
8 h average 

China 
GB/T 18883-2002, Indoor air quality standard. 

Standards Press of China 

24 h average (0.1% CO2 

= 1000 ppm) 

Korea 

Korea Occupational Safety and Health Agency 

(KOSHA), Guideline development for evaluation 

and management of office air quality (II) 

8 h average (office) 

 

3 INDOOR AIR QUALITY CONTROL ALGORITHM 

 

3.1 Rule-based control scheme  

 

Figure 1 is a flowchart of a control scheme including indoor particulate matter and CO2 

guidelines to maintain acceptable IAQ. The control scheme uses the simple on/off method based 

on an upper limit of indoor PM 2.5 and CO2 concentrations. When indoor CO2 concentration 

exceeds the acceptable level (1000 ppm), the ventilation system is operated to decrease the 

indoor CO2 concentration. The rule-based control scheme operates the ventilation system, air 

purifier, and kitchen hood to remove indoor particulate matter when indoor PM 2.5 

concentration exceeds the acceptable level of 25µg/m3. Finally, if both concentrations of CO2 

and PM 2.5 satisfy the criteria, all environmental devices are turned off.  

 

3.2 Advanced optimal control (Double Deep Q-network) 

 

The indoor environment is affected by various influencing factors, such as outdoor conditions, 

the operation status of indoor environmental devices, occupants’ activities, and many others 

(Frontczak and Wargocki, 2011). However, simple rule-based control cannot reflect the 

complexity of influencing factors (Shaikh et al., 2014). To overcome this limitation, we 

developed an optimal control by employing Double Deep Q-network (DDQN).  

DDQN is derived from Deep Q-network (DQN). DQN combines reinforcement learning with 



 

Figure 1: Flowchart of the rule-based control scheme 

 

a class of artificial neural networks known as deep neural networks. The Q-network is updated 

to minimize the mean square error with maximum value from the target Q-network by using 

Equation (1). 

 

 L��θ�� �  �	�r � γ max�� ��s�, a�; θ��� � ��s, a; θ����� (1) 

 

However, DQN were found to overestimate the action value, leading to poorer policies (Van 

Hasselt, 2011). To overcome this limitation, van Hasselt et al. proposed the DDQN algorithm 

(Van Hasslet, Guez, and Silver, 2016). In DDQN, the current Q-network is used to select the 

next greedy action, and the target network evaluates the selected action. The loss function of 

DDQN can be described by Equation (2).  

 

 L��θ�� �  �	�r � γ��s�, arg max�� ��s�, a�; θ��� � ��s, a; θ���� � (2) 

 

To train optimal control by employing DDQN, we selected states, actions, and rewards as 

shown in Table 3. In this study, 12 states were selected to describe the indoor environment, 

outdoor environment, occupant’s activities, and the operation statuses of indoor environmental 

devices. We could select the control action for the ventilation system, the air purifier, and the 

kitchen hood. There are 4 possible actions for the ventilation system and the air purifier, and 

three for the kitchen hood.  

 

Table 3: State, actions, reward for DDQN 

State Action(m3/min) Reward 

Date(-) 
Ventilation 

system 

(flowrates) 

0, 2.5, 3.4, 4.2 

rEC, Energy consumption (kWh) 

 

rPM, Indoor concentration of PM 

2.5(μg/m3) 

 

rCO2, Indoor concentration of CO2 (ppm) 

Time(-) 

Occupancy activity(-) 

Outdoor concentration of PM 2.5(μg/m3) 

Indoor concentration of PM 2.5(μg/m3) 

Air purifier 

(flowrates) 
0, 2.5, 3.2, 4.8 

Emission rate of PM 2.5(μg/min) 

Outdoor concentration of CO2(ppm) 

Indoor concentration of CO2(ppm) 

Emission rate of CO2(m3/s) 

Kitchen hood 

(flowrates) 
0, 2.7, 3.3 

Air flow rate of ventilation 

system(m3/min) 

Air flow rate of kitchen hood(m3/min) 

Air flow rate of air purifier(m3/min) 



As shown in Equation (3), three reward factors, rEC, rPM and rCO2, are used to consider IAQ and 

energy consumption at the same time. Equations (4) and (5) represent the rewards for indoor 

concentration of PM 2.5 and CO2. If each IAQ factor is below an acceptable level, a positive 

reward of 1 is provided because healthy IAQ was achieved. On the contrary, when an each IAQ 

factor is over the acceptable level, a reward of −1 is provided to impose a penalty. The reward 

for energy consumption (rec) includes the electrical energy used by the ventilation system, air 

purifier, and kitchen hood. This reward is provided as a penalty in r'  to minimize energy 

consumption.  

 

 rt= rEC + rPM + rCO2 (3) 

 

 rPM= (�1 *+ ,-.//0 12 2.5 5/-56-7087,/- ,9 :6;/< 25μg/m?  
�1 *+ ,-.//0 12 2.5 5/-56-7087,/- ,9 /@60 25μg/m?  (4) 

 

 rCO2= (�1 *+ ,-.//0 AB� 5/-56-7087,/- ,9 :6;/< 1000 ppm  
�1 *+ ,-.//0 AB� 5/-56-7087,/- ,9 /@60 1000 ppm  (5) 

 

The timestep for the EnergyPlus simulation was set to 60 per hour or one-minute steps. This 

means 1440 simulations were performed on EnergyPlus per one day. In this study, EnergyPlus 

running for five days was regarded as one episode, and 3000 episodes were iterated to explore 

the optimal DDQN policy.  

 

4 METHOES 

 

4.1 Building Integrated Control Testbed (BICT) 

 

In this study, a simulation model was created for the building-integrated control testbed (BICT) 

at Dankook University in Yongin, Korea. The BICT is an experimental chamber that consists 

of an air conditioner, a ventilation system, an air purifier, a kitchen hood, a humidifier, various 

sensors to monitor the indoor and outdoor environmental conditions, and meters to measure 

energy consumption as well. The exterior of the BICT and environmental control devices are 

shown in Figure 2. Table 4 shows the construction and configuration of the BICT, along with 

detailed information on the environmental control systems. 

 
 

 

Figure 2: Floor plan of the BICT and indoor environmental control devices. 

 



Table 4: Virtual testing system configurations 

BICT 

Envelope 

Size 4.0 m × 5.0 m × 2.4 m 

Materials 

Laminate floor on concrete and urethane layers 

Urethane panel with gypsum lapping 

Double-glazed window with 5 mm glass panes and 5 mm air cavity 

Environmental 

Control Systems 

Ventilation system 

Supply airflow rate(Max flow rate) 0.07 m3/s 

Exhaust airflow rate(Max flow rate) 0.07 m3/s 

Rated power 400 W 

Air purifier 
Clean airflow rate(Max flow rate) 0.08 m3/s 

Rated power 30W 

Kitchen hood 
Exhaust airflow rate(Max flow rate) 0.06 m3/s 

Rated power 50W 

 

4.2 Co-simulation platform 

 

As shown in Figure 3, the suggested control algorithms were constructed and evaluated in a co-

simulation platform between the EnergyPlus and the Python. The EnergyPlus was utilized to 

simulate indoor CO2 concentrations and energy consumptions according to occupancy activities 

and the operation statues of the ventilation system and the kitchen hood. However, there is no 

module to simulate the concentrations of indoor particulate matters in the EnergyPlus. Thus, 

the Nazaroff equation was implemented using the python language to calculate the 

concentrations of indoor particulate matters. The Python module ‘eppy’ was utilized to connect 

the control actions for the DDQN algorithm and the EnergyPlus building simulation program 

(Philip, 2019). Also, the DDQN was implemented on the library Keras. When the current state 

values simulated from the EnergyPlus are transferred to the Python, the DDQN factors derive 

the optimal control actions that satisfies IAQ with low-energy consumption based on the input 

state. 

 

 

Figure 3: Co-simulation platform with EnergyPlus and Python 

 

4.3 Dynamics of Indoor Particulate Matters 

 

In this study, we utilized an indoor particle dynamic to calculate indoor particulate 

concentration as shown below (Nazaroff, 2014).  

 

 d�C�V�/dt � E � CH	QJ�1 � ηL � QM � QNP�� � C�	QOηO � βV � �QJ � QM � QN � QQ��  (6) 

 

The equation (6) is to calculate indoor concentrations of fine particulate in an enclosed space.  

In this equation, the E(µg/min) is an emission rate of indoor fine particulates. The emission rate 



varies widely according to occupancy activities; thus, two typical behaviors have been selected 

in this study to calculate indoor fine particulate concentrations: Vacuuming, and Cooking 

(Oven/Grilled/Fried). V(m3) is the volume of the room. Co (µg/m3) is an outdoor air 

concentration of the particulate matter. An outdoor particulate matter enters the room by three 

pathways: mechanical supply, Qs (m
3/min); natural ventilation, QN (m3/min); and infiltration, 

QL (m3/min).  ηS is a filter efficiency which located in mechanical supply path. QF and QH 

(m3/min) are an additional flow path. In this study, QF is flow rate of an air purifier which passes 

through filter with efficiency ηF, and QH is exhaust air from the room by kitchen hood. P(-) is a 

fraction of particles in the infiltration flow path. Finally, β(-) is the deposition rate onto the 

room surfaces. Table 5 shows the selected values of each parameter in our study for calculation 

of fine particulate concentrations. We studied references to set the value of emission rates(E) 

(He et al., 2004; Hu et al., 2012), fraction of particles(P) and deposition rate(β) (Kim, 2018). 

Other values were acquired directly from the BICT. 

 

Table 5: Input value for concentration of fine particulate (PM 2.5) 

E(µg/min) 
V 

(m3) 

CO 

(µg/m3) 

QS 

(m3 

/min) 

ηS 

(-) 

QF 

(m3/

min) 

ηF 

(-) 

QH 

(m3 

/min) 

QN 

(m3 

/min) 

QL 

(m3 

/min) 

P 

(-) 

β 

(min-1) 

Vacuuming 70 

68 

6μg/m3 

~  

235 

μg/m3 

4.2 
0.

9 
4.8 0.9 2.4 0 0.56 

0.

7 
0.0067 

Coo

king 

Oven 10 

Grilled 283 

Fried 1483 

Others 0 

 

4.4 Occupant’s activities 

 

In this study, the occupant’s activities were divided into seven categories (sleep, resting, 

cooking (oven, grilled, fried), eating, vacuuming, working, exercising) considering the 

emission rates of particulate matters and CO2 concentrations for each activity. Table 6 shows 

the emission rates of PM 2.5 and CO2 concentrations based on the occupant’s activity (He et 

al., 2004; Hu et al., 2012; U.S. DOE., 2019). The occurrence and duration time of each 

occupant’s activity was studied from literature. This study set the occupancy schedules from 

the ICATUS 2016 report (United Nations Statics Division, 2017) and the Time use survey 2019 

(Statics Korea, 2020). Figure 4 shows the emission rate of PM 2.5 and CO2 concentrations 

based on the occupant’s activities. 

 

 

Figure 4: Occurrence and duration time of occupancy activities 



Table 6: Emission rate of PM 2.5 and CO2 concentrations according to occupant’s activities 

 Sleeping Exercise Vacuuming 
Cooking 

Eating Rest Work 
Oven Grilled Fried 

PM 

2.5 

Emission rate of PM 

2.5 (㎍/min) 
0 0 70 10 283 1483 0 0 0 

CO2 

Number of people (-) 1 

Activity level (W) 72 423 360 207 108 108 117 

Emission rate of CO2 

(m3/s) 
1.65e-4 9.69e-4 8.25e-4 4.07e-4 

2.47 

e-4 

1.86

e-4 

2.68 

e-4 

 

5 RESULTS 

 

The results from the suggested advanced optimal control using the DDQN algorithm could be 

compared to the rule-based approach in terms of energy consumption (kWh), and healthy air 

ratio (%) of PM 2.5 and CO2. Total energy consumption is the sum of energy consumption of 

the ventilation system, the air purifier, and the kitchen hood. Like as equation (7), the healthy 

air ratio is defined as the ratio of the time duration under the acceptable level of PM 2.5 and 

CO2 to the reference time duration (5 days).  

 

 Healthy air ratio (%) = 
RST�'�UV SVWXT �YYXZ'�[\X \X]X\ �^_ �.`, aHb� �V c�VS'XL 

�`×�e×fg� c�VS'X  (7) 

 

Table 7:  Comparison of Rule-based control and DDQN 

Evaluation factor Rule-based control  DDQN* Improvement 

Energy 

consumption 

(kWh) 

Ventilation system 1.15 0.15(±0.06) -1.00 

Air purifier 0.25 0.50(±0.02) +0.25 

Kitchen hood 0.33 0.37(±0.08) +0.04 

Total 1.73 1.02(±0.13) -0.71 

Healthy air 

ratio 

(%) 

PM 2.5 93.1 95.6(±0.09) +2.5 

CO2 99.3 99.9(±0.08) +0.6 

*Performance of DDQN expressed as averaged value(±std) of last 50 episodes.  

 

 

Table 7 expresses the performance of the suggested advanced optimal control as the average 

value of the last 50 episodes in DDQN learning. In terms of energy consumption, the total 

energy consumption of the suggested control was 1.02 kWh, which is 45.5% lower than the 

energy consumption from the rule-based control scheme (1.73 kWh). More specifically, in the 

case of DDQN, the air purifier and the kitchen hood consumed slightly more energy (the air 

purifier: 0.25 kWh, the kitchen hood: 0.04 kWh) than the rule-based control scheme. However, 

this increase was offset by the decreased energy consumption of the ventilation system. In the 

operation of the ventilation system, the optimal control consumed 64.1% less energy than the 

rule-based control scheme. This operation showed the advanced optimal control reflected the 

ventilation system’s characteristics that consumes relatively high energy compared to the air 

purifier and kitchen hood. In other words, as shown (a) in Figure 5, the advanced optimal 

control only operated the ventilation system when occupancy activity with high emission rates 

of PM 2.5 and CO2 concentrations such as cooking and exercising. The decrease in removal of 

PM 2.5 due to a reduction in operating time of the ventilation system was offset by increasing 

the operation of the air purifier and the kitchen hood as shown in (b) and (c) in Figure 5. This 

shows that the DDQN control learned the availability of operating the indoor environmental 

devices according to the indoor and outdoor environment and occupancy activity to reduce total 

energy consumption. 



 

Figure 5: Concentrations of PM2.5, CO2 and environmental device operation status 



The healthy air ratio (PM 2.5) of the advanced optimal control was 95.6%, which was 2.5% 

higher than the rule-based control scheme. In the rule-based control, the indoor concentration 

of PM 2.5 was maintained above the acceptable level because the ventilation system, air 

purifier, and kitchen hood were operated after exceeding the acceptable level, 25μg/m3. This 

inefficient operation of the rule-based control scheme could be shown on day 4 to day 5 like as 

(d) and (e) in Figure 5, which is outdoor particulate matter concentration was very unhealthy. 

On the contrary, optimal control operated environmental devices before the indoor 

concentration of PM 2.5 exceeds the upper limit of the acceptable level as shown in the figure, 

and this efficient operation led to an increase in the healthy air ratio of PM 2.5. However, both 

the DDQN and the rule-based control scheme were not able to maintain the acceptable level of 

PM 2.5 when the occupant generated a large amount of particulate matters such as cooking 

(Fried) as shown in (f) in Figure 5. This result provide evidence this residential space needs 

additional measures (e.g., opening windows, installation of high-efficiency filters, etc.) to 

maintain appropriate IAQ.  

The healthy air ratio (CO2) of the DDQN control was 99.9%, which was 0.6% higher compared 

to control scheme. As shown in Figure 5, the indoor CO2 concentrations exceeded the 

acceptable level (1000 ppm) when the occupant’s activity level was high, such as cleaning and 

exercising as shown in (g) in Figure 5. The DDQN control showed an improved healthy air 

ratio compared to the rule-based control scheme by operating the ventilation system before the 

indoor concentration of CO2 exceeds the upper limit of the acceptable CO2 level.  

 

6 CONCLUSION 

 

In this study, we proposed an advanced optimal control algorithm based on reinforcement 

learning to maintain healthy IAQ with low energy consumption. In terms of energy 

consumption, the DDQN control showed a 45.5% reduction compared to the rule-based control 

scheme. This is because the DDQN control actively uses the air purifier and the kitchen hood 

that consume relatively lower energy compared to the ventilation system. In terms of healthy 

air ratio, the DDQN control showed improved performance by 2.5% at PM 2.5. This study 

showed that the advanced control with reinforcement learning could reflected the indoor-

outdoor environmental conditions, the operation status of the environmental control devices, 

and occupant’s activities. The suggested approach could be used to maintain acceptable IAQ 

while reducing energy consumptions in residential buildings. 
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