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SUMMARY 
 
Airborne transmission has been widely proven to be the main means of contagion of SARS-CoV-2 (Severe Acute 
Respiratory Syndrome Coronavirus 2) , as multiple studies have established (Greenhalgh et al., 2021; Miller et al., 
2021; Lidia Morawska & Cao, 2020; Tang et al., 2021; World Health Organization, 2021), Furthermore, the main 
documented COVID-19 outbreaks have occurred indoors (Qian et al., 2021; Randall et al., 2021; Wang et al., 
2022), with medium and long-range transmission —beyond 1.5 m— as a especially relevant transmission way in 
poorly bad ventilated spaces (Li, 2021; Z. Peng et al., 2022). 
Thus, it is necessary to promote healthy indoor spaces through self-protection practices and an adequate indoor air 
quality (IAQ). In this way, the removal of the virus-containing aerosols from indoor air —either by ventilation, air 
filtration or UV radiation— must be an essential part of the prevention strategy. 
One of the main ways to assess the degradation of the IAQ in occupied spaces —with no other significant sources 
or sinks of indoor carbon dioxide (CO2) — is monitoring the indoor CO2 level. This parameter can be a good proxy 
—affordable and easy to handle— to evaluate and control the aforementioned ventilation rates, especially in spaces 
with high occupancy density (American National Standards Institute and American Society of Heating 
Refrigerating and Air-Conditioning Engineers, 2019; Pavilonis, Ierardi, Levine, Mirer, & Kelvin, 2021; Z. Peng 
et al., 2022; Persily & de Jonge, 2017; Zhu et al., 2020). Given that virus-containing aerosols are emitted during 
the respiratory process as CO2 does, the measurement of the excess CO2 level exhaled (∆CO2) can also be used to 
estimate the airborne transmission risk of respiratory diseases such SARS-CoV-2, tuberculosis, or measles.  
Thus, the estimation of the COVID-19 infection risk indoors ―strictly via aerosols― can be performed with the 
online tool COVID Risk airborne (https://www.covidairbornerisk.com/), a non-profit software developed by 
Campano et al. (Campano-Laborda et al., 2021) and based on the adaptation of the Wells-Riley model (Rudnick 
& Milton, 2003) performed by Peng and Jiménez (Jimenez Palacios & Peng, 2021; Zhe Peng & Jimenez, 2021). 
The methodology on which this tool is based has been validated by comparison with existing COVID-19 outbreaks 
(Z. Peng et al., 2022). 
This tool (Figure 1), which has been designed to be used both by scientists and technicians (detailed calculation) 
and by nonprofessional users (simplified calculation), uses the average excess CO2 level exhaled (∆CO2) during a 
given event as a proxy to calculate how many 'quanta' inhaled each occupant (a 'quanta' can be considered as the 
minimum infectious dose of the aerosol pathogen whose inhalation leads to infection in 63% of vulnerable people). 
Inhalation of quanta depends on: 

 SARS-CoV-2 variant under analysis. 
 Room dimensions and environmental conditions (rate of decay of infection intensity and surface 

deposition rate). 
 Removal/inactivation of aerosols from the environment (filtering, UV exposure, face masks). 
 Number of people present, number of infectious occupants, activity involved (metabolic and vocalization) 

and immunity to the infection (by vaccines or previous infections).  
 Event duration. 
 Ventilation rate / Mean ∆CO2 value during the event. 



 

Figure 1: Landing page of COViD Risk airborne. 

With this data input, this tool can estimate both the number of secondary cases in the given event, and the Risk of 
Infection (H) ―in terms of the size of the outbreak―, but it can also calculate two additional risk indicators, which 
are not referred to the number of vulnerable occupants (those who are liable to contract the disease), so they can 
be used regardless of the number of people vaccinated or the effectiveness of the different vaccines: 

 Attack rate (AR): The proportion of occupants in the event who could have inhaled a 'quanta'. 
 Relative risk of infection (Hr): Number of 'quanta' emitted by a single infected person which are inhaled 

by a single person for a given exposure time and premises of the volume specified. There are three 
categories of risk (low, medium, and high) for Hr, according to previous studies of different indoor 
scenarios and existing documented outbreaks (Z. Peng et al., 2022; Zhe Peng & Jimenez, 2021). 

 
Among the various considerations made by this tool, it should be noted that: 

 The model EXCLUDES droplet and contact/fomite transmission and assumes that 2 m (6 ft) social 
distancing is honoured. Otherwise, the infection rates calculated would be higher. 

 As the model also assumes the atmosphere in the premises/room at issue to be uniformly distributed, it 
does not accommodate the thermal stratification or floatability characteristic of very high clearance 
indoor spaces. 

 The increased transmissibility of the SARS-CoV-2 variants is obtained from the reports of the European 
and North American Centres for Disease Control and Prevention (Campbell et al., 2021; Centers for 
Disease Control and Prevention, 2022). 

 The estimation of the airborne viral emission is performed through the expiratory activity, which depends 
on the metabolic and vocalization activities (Buonanno, Stabile, & Morawska, 2020; L. Morawska et al., 
2009). 

 The evaluation of the average ventilation rate and the recommended short-term exposure values for 
inhalation, in m³/h per occupant, are calculated through the metabolic rate, which depends on activity, 
age and gender (Z. Peng et al., 2022; Wang, Wang, Wei, Wang, & Duan, 2011), as well as the CO2 
emission (Persily & de Jonge, 2017). 

 The decay rate of the virus infectivity in aerosols depends on the Air Temperature (Ta), Relative Humidity 
of the air (HR), the UV index and the deposition of virus-containing aerosols to surfaces (Schuit et al., 
2020; Smither, Eastaugh, Findlay, & Lever, 2020; van Doremalen et al., 2020). 

 The theoretical aerosol retention efficiency of masks, respirators and face shields depends on the type of 
the mask and its fitting (Davies et al., 2013; Melikov, 2015; Milton, Fabian, Cowling, Grantham, & 
McDevitt, 2013). 

 
In conclusion, this online tool proposes a validated and precise method for simulating SARS-CoV-2 disease 
propagation, strictly via aerosols. One possible purpose would be to determine the risk of infection under 
circumstances defining a given planned event and the possibility of lowering such risk. Whilst it is not an 
epidemiological model, it can be used as a component of such approaches to estimate variations in aerosol 
propagation across a range of inputs. Thus, it can be very useful to scientists, technicians, building managers, 
designers, and citizens to reduce the risk of airborne transmission of SARS-CoV-2 in indoor events. 
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