AIVC Conference

Session 6: Case Studies of Two Whole-Building Air Leakage Tests

19 April 2013
Washington, DC

Jason S. Der Ananian, P.E., Senior Staff II
Matthew J. Monaghan, Staff I

Copyright Materials

This presentation is protected by U.S. and international copyright laws. Reproduction, distribution, display, and use of the presentation without written permission of the speaker is prohibited.

© Simpson Gumpertz & Heger Inc. 2012
Presentation Objectives

- Learn contemporary whole-building airtightness code requirements, industry standards, and guidelines.

- Understand the differences between qualitative and quantitative whole-building air leakage testing, the purpose of each, and governing ASTM standards.

- Understand how to effectively performing whole-building air leakage testing on new buildings and high-rise construction and analyze the results.

Presentation Outline

- Why Test?

- Code Requirements for Whole-Building Airtightness and Industry Standards / Guides

- Field Testing Standards

- Case Studies of Field Testing
Presentation Outline

- Why Test?
- Code Requirements and Industry Standards / Guides
- Field Testing Standards
- Case Studies of Field Testing

Why Test?

- **Air leakage in a real building is essentially impossible to determine analytically**
 - Complexity
 - Workmanship
 - Unique buildings / lack of data

- **Air leakage data is important for**
 - Energy calculations (identify air infiltration/exfiltration at low pressures)
 - Mechanical system design
 - Forensic analysis
 - Compliance with an airtightness specification or regulation

- Repair costs for a failed air barrier are prohibitively high
- Repairs are only effective by removing cladding
Presentation Outline

• Why Test?

• Code Requirements and Industry Standards / Guides

• Field Testing Standards

• Case Studies of Field Testing

2012 IECC – New Requirement for Air Barriers

C402.4.1.2 Air Barrier Compliance Options

• Requires a continuous air barrier for the opaque building envelope.

• Three compliance paths:

 1. Building Air Leakage Test
 • Leakage rate through the envelope not to exceed 0.4 cfm/ft² at 0.3 in. water (75 Pa) per ASTM E779.

 2. Approved Assembly
 • CMU coated with block filler & two coats of paint or a sealer coating
 • Portland cement/sand parge and 1/2 in. stucco or plaster
 – Joints sealed

 3. Approved Materials
 • Joints are sealed and installed per manufacturer’s instructions
 • Less than 0.004 cfm/ft² air leakage at 0.3 in. water (75 Pa).
Definitions

• An **air barrier material** is a primary element that provides a continuous barrier to the movement of air
 – Self adhered membrane
 – Fluid applied membrane
 – Rigid sheathing

Other Approved Air Barrier Materials:

1. Plywood—minimum 3/8 in.
2. Oriented strand board—minimum 3/8 in.
3. Extruded polystyrene insulation board—minimum 1/2 in.
4. Foil-faced urethane insulation board—minimum 1/2 in.
5. Exterior gypsum sheathing or interior gypsum board—minimum 1/2 in.
6. Cement board—minimum 1/2 in.
7. Built up roofing membrane
8. Modified bituminous roof membrane
9. Fully adhered single-ply roof membrane
10. A Portland cement/sand parget, stucco, or gypsum plaster—minimum 1/2 in. thick
12. Sheet metal.
13. Closed cell 2 lb/ft³ nominal density spray polyurethane foam—minimum 1 in.

US States Requiring Air Barriers in Energy Code

• Many states are requiring continuous air barriers in all commercial buildings.

• …the list of states requiring air barriers is growing.
Other Standards / Guides

- **ASHRAE 90.1-2010**
 - The building envelope requires a continuous air barrier.

- **Air Barrier Association of America (ABAA)**
 - 0.40 cfm/ft² under a pressure differential of 0.3 in. water (75 Pa)

- **U.S. Army Corps of Engineers**
 - 0.25 cfm/ft² under a pressure differential of 0.3 in. water (75 Pa)
 - Recent studies show that buildings meet or exceed this criteria.

Measured Data – US Army Corp

Leakage Rate vs. Building Size

![Graph showing leakage rate vs. building size](source.jpg)

Source: J. Durston, M. Heron – Summary & Analysis of Large Building Air Leakage Testing for USDOD
Presentation Outline

• Why Test?
• Code Requirements and Industry Standards / Guides

Field Testing Standards

• Case Studies of Field Testing
 – Quantitative
 – Qualitative

Field Air Leakage Testing – Qualitative

• ASTM E1186 “Standard Practices for Air Leakage Site Detection in Building Envelopes and Air Barrier Systems”

 – Purpose: Identify locations of air barrier breaches

 – Impose pressure differential (min. 20 Pa) on building to improve visualization of air leakage using:
 • Infrared thermography
 • Tracer smoke
 • Airflow measuring devices (anemometer), tracer gas, sound detection, leak detection liquid, other methods

• Make probe openings to verify findings (not req. by standard)
Field Air Leakage Testing – Quantitative

“Blower Door Testing”

• ASTM E779 “Standard Test Method for Determining Air Leakage Rate by Fan Pressurization”

• Purpose: Quantifies air leakage rate through building enclosure (CFM/ft²).

• Use blower doors (i.e. fans) to determine relationship between building pressure and leakage.

• Limitations: This test does not identify air barrier breaches. Designed for simple detached buildings (single-zone).

Presentation Outline

• Why Test?

• Code Requirements and Industry Standards / Guides

• Field Testing Standards

• Case Studies of Field Testing
Whole Building Air Leakage Case Studies

• High-Rise Residential Tower, Northeast US (June 2012)
• New Art Museum, Northeast US (July 2012)

Case Study #1 - High-Rise Residential Tower

• 16 story dorm built in 1960’s

• Brick veneer with CMU-backup, 1 in. XPS insulation in cavity, and EPDM roof.

• Steel framed, monolithic glass windows (operable casement and fixed sash)
High-Rise Residential Tower - Test Preparation

• Turn off mechanical equipment

• Air seal envelope penetrations and partitions

High-Rise Residential Tower - Test Preparation

• Prop open doors (~450)

• Fill P-traps with water
Case Study #1 - High-Rise Residential Tower

Challenges of performing a single zone test:

- Zone separation
- Fan location
- Stack effects

High-Rise Residential Tower - Equipment Layout

- 12 blower door fans
 - 1st and 16th Floor Doors
 - 2nd, 7th, 10th, and 13th Floor Windows
- 12 DG-700 Pressure Gauges
 - 6 Control Fan Speed Controllers
 - 2 Measure Envelope Pressures
 - 4 Measure Interzonal Pressures
High-Rise Residential Tower - Typical Window Setup

- Omni-directional exterior pressure taps to measure envelope pressure
- Window frames designed and built in-house.

High-Rise Residential Tower - Test Procedure

Perform negative and positive building pressurization.

Begin each test with all fans sealed (0 CFM).

Specify target pressure. Automated software regulates fan speeds to achieve target pressure.

Unseal fans as necessary to increase air flow to meet target pressures.

End each test with all fans sealed (0 CFM).
High-Rise Residential Tower - Test Results

- Setup: 6 staff / 2 days
- Execution: 7 staff / 2 hours
- Maximum building pressure:

<table>
<thead>
<tr>
<th>Test</th>
<th>Air Leakage (CFM)</th>
<th>Air Leakage Rate (CFM/sq. ft.) @ 75 Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressurization</td>
<td>37250</td>
<td>0.88</td>
</tr>
<tr>
<td>Depressurization</td>
<td>33000</td>
<td>0.77</td>
</tr>
</tbody>
</table>

High-Rise Residential Tower - Smoke Test

- Tested 2nd floor office, typical dorm room, and 15th floor classroom.
- Air leakage was primarily through the steel framed, monolithic glass windows.
Case Study #2 - New Art Museum

- Two-story art museum completed in 2012
- Precast concrete, terra cotta, and curtain wall cladding systems with self-adhered AVB membrane

New Art Museum - Test Preparation

- Assumed a 0.40 cfm/sq. ft. air leakage rate → 4 fans
- Limited time frame for air leakage testing
- Curtain wall, overhead door not installed.
New Art Museum - Test Preparation

- Contractor installed temporary stud walls at construction openings and sealed openings with polyethylene sheets.

- Air sealed around temporary walls, basement area way, roof penetrations, roof vents, and basement door.

New Art Museum - Test Results

- The building enclosure airtightness exceeded the current industry standards.
- Setup: 5 staff / 1/2 day
- Execution: 5 staff / 2 hours

<table>
<thead>
<tr>
<th>Test</th>
<th>Air Leakage (CFM)</th>
<th>Air Leakage Rate (CFM/sq. ft.) @ 75 Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressurization</td>
<td>3200</td>
<td>0.1</td>
</tr>
<tr>
<td>Depressurization</td>
<td>3900</td>
<td>0.12</td>
</tr>
</tbody>
</table>
New Art Museum - Smoke Test

- Performed smoke testing and observed multiple locations of air barrier leaks.

New Art Museum - Key Takeaways

- Smoke testing allowed contractor to observe air leakage sources firsthand.

- Construction progress and sequencing of air test will dictate significance of air test results.

- Communication with architect, owner, and contractor about schedule is paramount.
Key Takeways

- State energy codes are beginning to require continuous air barriers and whole-building testing
- Air testing is becoming more common
 - New buildings with air barriers can meet code requirements
- Incorporate whole-building tests in project specifications and coordinate with project team
- Value of quality control through qualitative testing

Simpson Gumpertz & Heger Inc.

Thank you for your time.

Jason S. Der Ananian
Matthew J. Monaghan