Measurement of air flow rates in ducts by velocity measurements: an overview

Isabelle CARÉ
isabelle.care@cetiat.fr

Context

- Evaluation of air flow in duct by velocity measurements
 - Measurement of local velocity(ies)
 - Representative value of the mean velocity from the shape of the velocity profile
Measurement of local velocity(ies)

- **Pitot tube (Prandtl tube)**
 - Measurement of a differential pressure
 - Velocity range depends on pressure range
 - $V_{\text{min}} > \sim 3 \text{ m/s}$

$$V = k \times \sqrt{\frac{2 \times \Delta P}{\rho}}$$

- **Thermal anemometer**
 - Sensitive to pressure and temperature conditions
 - Fragile
 - $V_{\text{min}} > \sim 0.1-0.3 \text{ m/s}$
Measurement of local velocity(ies)

- **Vane anemometer**
 - Small size ($\varnothing \approx 16$ mm)
 - Start threshold $V_{\text{min}} > \sim 1$ m/s

Measurement of local velocity(ies) in ducts

- **Measurement in the duct**
 - On several diameters
 - At different positions
Position of the measurement points

- **ISO 3966** (circular & rectangular ducts), “reference method”
 - Turbulent flow
 - For any disturbances: 20D/5D (80D/20D)
 - Expected uncertainty: 2% flow rate

- **EN 12599**, **Pr EN 16211**, **NF X 10-113** (ISO 7145)

On site measurement

- **ISO 3966**
 - Time consuming method
 - Straight lengths not always available
 - Low uncertainty not always needed

Question: what would be the method uncertainty if

- Another method is used
- A lower number of local velocities is measured
- The distance from the disturbances is smaller
Circular ducts (Bonthoux et al.)

- Experimental conditions
 - DN 200 (Re \(\approx \) 200000)
 - 2 x 10 points + 1 point at the center
 - Different disturbances
 - At 1D, 4D, 10D, 45D

Circular ducts (Bonthoux et al.)

- Experimental conditions
 - DN 200 (Re \(\approx \) 200000)
 - 2 x 10 points + 1 point at the center
 - Different disturbances
 - At 1D, 4D, 10D, 45D
Circular ducts (Bonthoux et al.)

Figure 2. Profile of velocity U/U_d for an elbow (velocity axis covers a U/U_d from 0.7 to 1.3).

- Maximum measured error (whatever the disturbance is)

Figure 4. E as a function of the points scheme

Figure 3. E as a function of L/D
RECTANGULAR DUCTS
(Caré et al.)

- Disturbances
 - 1 elbow
 - 2 coplanar elbows
 - 2 non coplanar elbows

- Rectangular ducts shape
 - Shape factor (Length/Width) < or > 4

Expected maximum method uncertainty
Circular duct

<table>
<thead>
<tr>
<th>Exploration scheme</th>
<th>Number of diameters</th>
<th>Expected method uncertainty (%)</th>
<th>L/D : Upstream distance from disturbances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ISO 3966 [1]</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>EN 12599 [3]</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Non standardised method</td>
<td>2</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15</td>
<td>9</td>
</tr>
</tbody>
</table>
Expected maximum method uncertainty

Rectangular duct (Length/Width < 4)

<table>
<thead>
<tr>
<th>Exploration scheme</th>
<th>Number of traverses (points)</th>
<th>Expected method uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 3966 [1]</td>
<td>5 (25)</td>
<td>5 3 1</td>
</tr>
<tr>
<td></td>
<td>1 (5)</td>
<td>39 9 8</td>
</tr>
<tr>
<td>EN 12599 [3]</td>
<td>2 (6)</td>
<td>11 10 8</td>
</tr>
<tr>
<td></td>
<td>1 (3)</td>
<td>38 26 19</td>
</tr>
<tr>
<td>Non standardised method</td>
<td>2 (9)</td>
<td>14 16 10</td>
</tr>
<tr>
<td></td>
<td>1 (5)</td>
<td>62 25 17</td>
</tr>
</tbody>
</table>

- To achieve an acceptable measurement uncertainty
 - Circular duct: 5%
 - Rectangular duct: 10%

- It is necessary to
 - Choose a suitable method
 - Measure away from disturbances and/or Increase number of measurement points

- Time consuming
Circular ducts (Caillou et al.)

- One measurement in the middle of the cross-section
 - ISO 7145
 - Simple,
 - The result must be corrected with the “pipe factor” coefficient

![Diagram showing velocity distribution](U = U_c / 0.85)

- Velocity at
 - centre: U_c
 - flow: U_d

Pipe factor vs relative distance from an elbow

Pipe factor vs Reynolds number
Conclusion

- Evaluation of flow rate in duct by velocity profile
 - Compromise between Time & Method uncertainty
 - Circular & Rectangular ducts
 - Additional components of uncertainty
 - Instrument uncertainty
 - Knowledge of the inside duct section
 - Uncertainty of the positioning of the instrument inside the duct
 - Measurement procedure and expertise

Thank you for your attention

Isabelle CARÉ
isabelle.care@cetiat.fr