prEN 16211

- Measurement of air flows on site methods
- Nordic guide from the 1970s by Prof Anders Svensson:
 "Methods of measuring air flow in ventilation installations"
- Denmark, Norway, Sweden and Finland has a tradition of mechanical ventilation of exhaust, supply and heat exchangers.
- In Sweden, since early 1990s law of obligatory ventilation check
- 1000 of technicians using the methods but not a EN.
- EN 12599 implies a mathematical method for pionts in duct.
- EN TC 156 ok to develop prEN 16211, revise EN 12599:2000.

Carl Welinder, Stockholm, Suède

EN 12599 : 2012

 Ventilation of buildings – Test procedures and measuring methods for handing over installed ventilation and air conditioning systems

PrEN 16211: UAP in 2014

 Ventilation for buildings – Measurement of air flows on site methods

Carl Welinder, Stockholm, Suède

EN 12599, prEn 12599

87 pages: 19 pages air flow.

What to check, extent of check and measurements, What to measure, (Electric current, air flow, air temperature, filter pressure drop, ductwork leakage, humidity, sound, air velocity) and special agreed measurements, uncertainty, Test reports, How to measure?

prEN 16211

49 pages: Air Flow field measuring methods and their uncertainties

prEn 16211

Real & standard density, ch 4.5
Systematic errors, ch 5
Random errors -Measurement uncertainty, ch 6
Air flow measurement in duct, p. 13, ch 8
At Supply air terminal, p. 25, ch 9
At Exhaust air terminal, p. 26, ch 10
Example of calculation of Uncertainty

prEn 16211

Chapter 8:

Point measurement in duct:

Pito static pipe or hot wire anemometer

Fixed devices

Tracer gas

Air Flow in duct cross section

Air flow in duct cross section EN 12599 PrEN 16211

- Equal area method, annular rings
- Uncertainty calculations or tables: n points - distance to disturbanc
- Circular duct: multiple of 4points
- Uncertainty: 10% 9points, 6D_h(instrument=5%)
- Min probe dia 2,4mm, ex at 2m/s
- x 94%, ex 9mm probe, duct dia 100mm

- Vel <1,4 center, no backflow
- Disturbances >5...6D_h away
- Points according to table
- Circular duct: 4, 5 or 8 points
- Uncertainty: 10% (instrument=5%, method 8%, 95% confidens level)
- x 89%, dia<=160mm
- Density compensation

Air flow in duct cross section **PrEN 16211** EN 12599 Dsqroot(1-(2i-1)/2n) Ø100-160mm Ø200-400mm Ø500-1250mm 0,0436D, 0,1464D, 0,2959D 0,29D 0,43D, 0,29D 0,1D, 0,5D Height 100-400 H 401-800 H 801-2000 L₂150-300mm L₂300-2000mm L₂300-2000mm $\times \times \times \times \times \times$ $\times \times \times \times \times \times$ $\times\times\times\times\times$ $\times \times \times \times \times \times$ $\times \times \times \times \times \times$ 0,06, 0,235, 0,43, 0,57, 0,765, 0,94 L, 0,08, 0,43, 0,57, 0,92 L₂ A(2i-1)/2n 0,167A, 0,5A, 0,833A 0,125B, 0,375B, 0625B, 0875B

Reference pressure PrEN 16211

Reference pressure q = k $(p_u)^n$ Pressure drop - Throttle device heat exchangers, plenum boxes, (PrEN12599, E.2.4.1)

Flow = k-faktor x squar root of differential pressure In duct - fixed device/valve (ex: orfice plates)

Tracer gas EN 12599

Tracer gas E.2.4.1.3

Gas meter For tracer gas? E.2.4.1.1

PrEN 16211

Tracer gas q= q_s/C_s Uncertainty 5 / 10%

prEn 16211

Chapter 9, 10: Measurments at terminal devices

Reference pressure

Tight bag method, only at supply

Flow hood -direct

Flow hood compensated

Pito static pipe or hot wire anemometer

Reference pressure EN 12599, PrEN 16211

Reference pressure $q = k (p_u)^n$ Pressure drop - Throttle device heat exchangers, plenum boxes, (PrEN12599, E.2.4.1

Flow = k-faktor x squar root of differential pressure In duct - fixed device/valve (ex: orfice plates)

Exhaust air

Measuring hook

Pressure connectors (Unusual)

Supply valve (Pressure connectors)
Plenum box supply (number of straights)
Inside plenum box

Bag method EN 12599 D.1.5.3, PrEN 16211

Bag with a calibrated volume Fill up time -the time it takes to fill the bag

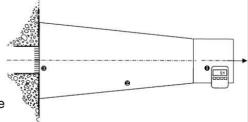
Over pressure (3 Pa) is measured in the bag

 $q = V/t (m^3/s)$

 $V = Volume (m^3)$

t = time(s)

Funnel / Flow hood

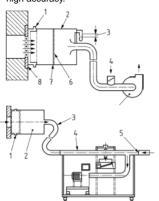


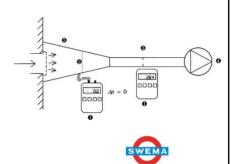
EN 12599

Different Funnels exist. High requirements om accuracy – use compensation method

PrEN 16211

Flow hood (Funnel) uncompensated Minimum length $\geq 3 D_h$ supply

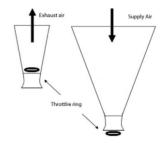



Comment: Supply valves: unstable air stream and different spread pattern. The air stream must even out

Compensation method EN 12599 PrEN 16211

 Compensation (zero) method compensation method should be used for high accuracy.

Flow hood (Funnel)
 Compensated with auxiliary fan


Funnel / Flow hood

PrEN 16211

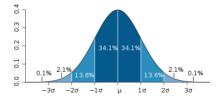
Flow hood (Funnel)

calculated from two levels of pressure drop

PrEN 16211

Gross errors: Human factor: stress, tiredness, lack of knowledge and understanding

Systematic errors: *Measurements values deviates at same direction. Adjust instrument?*


Random uncertainties: Instrument uncertainty, method uncertainty and reading uncertainty

Standard or Expanded Uncertainty

Standard measurement uncertainty covers 68% of all cases Standard measurement uncertainty multiplied with 2 = expanded measurement uncertainty.

That means that with the expanded measurement uncertainty 95% of the measurements will be covered and 5% will not be.

PrEN 16211

Measurement uncertainty

- Standard Measurement uncertainty 68% $u = ((u_1)^2 + (u_2)^2 + (u_3)^2)^{1/2}$
- u₁ = standard instrument uncertainty
- u₂ = standard method uncertainty
- u₃ = standard reading uncertainty
- Expanded Measurement uncertainty, U=2u (95%)
- will cover approximately 95% of the measurements.

PrEN 16211 Standard Instrument uncertainty, u₁

should be stated by instrument manufacturer

Rectangular distributed:

value/(3) ½ is at 68% (Easy to think at 95% with 12599)

Correct by using corrections

Note: calibration uncertainty,uncertainty from the instrument itself such as hysteresis, temperature compensation, drift... can not be corrected.

PrEN 16211 Standard method uncertainty u₂ - 68%

Accurately specified method should be used orientation of a probe, distance between the probe and a grille Influence of flow pattern
Flow pattern

PrEN 16211 Standard reading uncertainty u₃ - 68%

Digital instrument - 1/(2(3) 1/2) unit of last digit

Density compensation PrEN 12599 PrEN 16211

Density. Fans at 1,2 kg/m3 7.3.1.2

When presenting a measured air flow or velocity, it should be stated if it is the real air flow or the flow converted to standard conditions that is presented.

 $v_s = v_m \cdot \rho_m / \rho_s \text{ m/s}$

Standardization

Air flow measurements on site are practised according to prEN 16211..

prEN16211 is limited to measurements of air flow rates on site, easy to use and edit.

By approving prEN 16211 as an European standard, the daily work of measurement technicians will be standardised.

Merci beaucoup de votre attention

Carl Welinder, Stockholm, Suède

