Lessons in air tightness and air quality from the Japanese 'sick house' experience

Andy Russell, Proctor Group Australia
Towards Higher Performing Homes: The Role of Ventilation and Airtightness
Wellington, New Zealand 20th March 2018

- Background to the sick house issues in Japan
- Revision to the Japanese Building Standard Law in 2003 (materials & ventilation provisions)
- Trickle vents only one side of the equation
- Trickle vents and 24hr mechanical ventilation in Japan
- Drawing parallels with where we are today

Traditional design for climate

Headline news

Why did sick house syndrome become such an issue?

- House price bubble
- 1970s and 80s saw a big increase in supply
- Manufactured wood products (Plywood, MDF etc.) structural, furnishings, vinyl wall paper, carpets, flooring, mineral fibre insulation
- High emissions of VOCs
- Air tightness low air change rates under 0.2 ach
- Lifestyle changes
- Spread of air conditioning
- High renewal cycle (30 years)

Japanese Ventilation Requirements

- Building Standards Law previously required the supply of outdoor air to habitable rooms.
 - Mechanical Ventilation
 - Natural Ventilation
 - Min ratio of openings to floor area of 1:20 (5%)
 - Local exhaust of bathrooms and kitchens
 - Further new regulation introduced in 2003 to address the sick house problem
 - Also for buildings over 3,000m² & 8,000m² there is a performance requirement and mandatory IAQ testing every 2 months.

Drivers for air tightness

- Energy efficiency effectiveness of insulation
- Thermal comfort reduce infiltration and improve temperature distribution
- Reduce interstitial condensation

Air tightness in Japan

	Specific Leakage Area - cm²/m² (Equivalent ACH @50Pa)			
	Mean	Max	Min	
Detached Dwellings				
Post & beam	5.3 (7.3)	9.8 (13.3)	1.3 (1.8)	
Two by four	2.2 (3.0)	3.9 (5.3)	1.0 (1.4)	
Multi Residential				
Panel	1.0 (1.4)	1.3 (1.8)	0.8 (1.0)	
RC	1.2 (1.7)	2 (2.7)	0.8 (1.1)	

Goal of 2cm²/m² in the colder regions and 5cm²/m² in the more temperate regions

Japan Building Standard Law 2003 - 3 key measures

- Regulation and assessment for formaldehyde and chlorpyrifos.
- Restriction of its use as interior finishing

- Mandatory installation of 24hr mechanical ventilation
- Min 0.5 ACH

- Restriction on materials
- Ceiling air tightness
- Effective roof space ventilation

Regulation of building materials inc. roof space

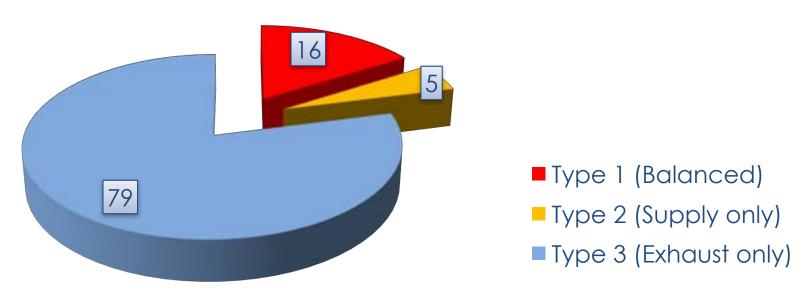
Formaldehyde Emission Rating	Formaldehyde Emission Rate (mg/m²h)	
F*	> 0.12	
F**	>0.02 and ≤0.12	
F***	>0.005 and ≤0.02	
F***	< 0.005	

- F*** can be used without restrictions
- F*** & F** usage limited and determined by formulae that considers the ventilation rate (air changes / hour) and surface area relative to floor area.
- F* prohibited
- F* and F** prohibited in roof space without air tight ceiling and roof space ventilation

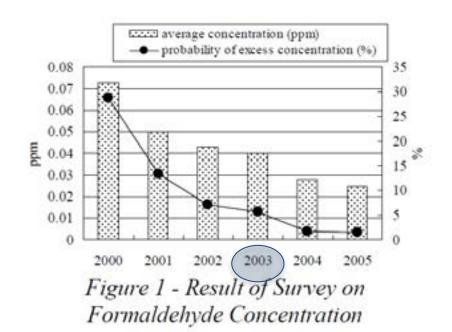
Options for 24hour mechanical ventilation

Mechanical supply and exhaust

Mechanical supply


Mechanical exhaust

Requirement for a calculation with min 9.8Pa pressure difference


Market share of ventilation systems

System market share in Japan (%)

Type 3 is much lower cost than type 1
Type 3 shown to be particularly effective in air tight buildings
Type 3 market share is 65% for the major quality national house builders, 85% with local builders and 80% for apartments and units

Did the new Building Standard Law work?

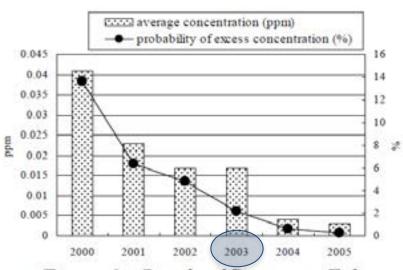
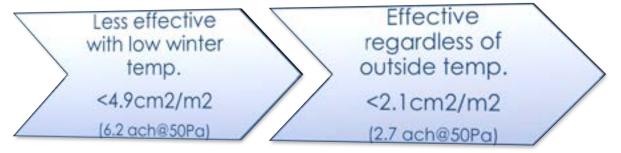
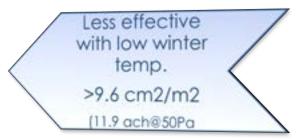


Figure 2 - Result of Survey on Toluene Concentration


Industry had advance notice what was coming

Survey of 5,000 dwellings 2012


- Condensation and mould used as a proxy for IAQ did correlate with health conditions.
- 24 hour ventilation much more effective than intermittent or no use of ventilation.
- Mechanical ventilation with heat recovery lower association with condensation & mould.
- Reasons for not operating related to feeling cold / heat loss, economizing, perception that not required, and acoustics.

Impact of air tightness (particularly in winter) on effectiveness of passive vents in Japan

This approach works better in air tight homes

- Door undercuts needed in ductless systems
- Need for sufficient negative pressure
- Continuous operation

- Occupant behaviour has a huge influence
- This approach works better in air tight and compartmentalised units
- Exhaust is required to create sufficient negative pressure to provide air flow through vents.
- Specification of number and size of passive vents, air change rates /air flow needed and location of passive vents.

Recent UK evaluation could do better

- 200 interviews
- IAQ sampling of 40 homes in winter

- Previous assumptions in regulations were based on passive ventilation devices and doors being open.
- Only intermittent mechanical ventilation

Bedrooms - Open vs closed trickle vents and doors

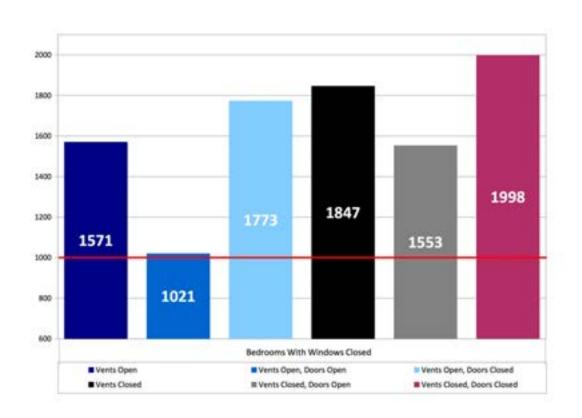
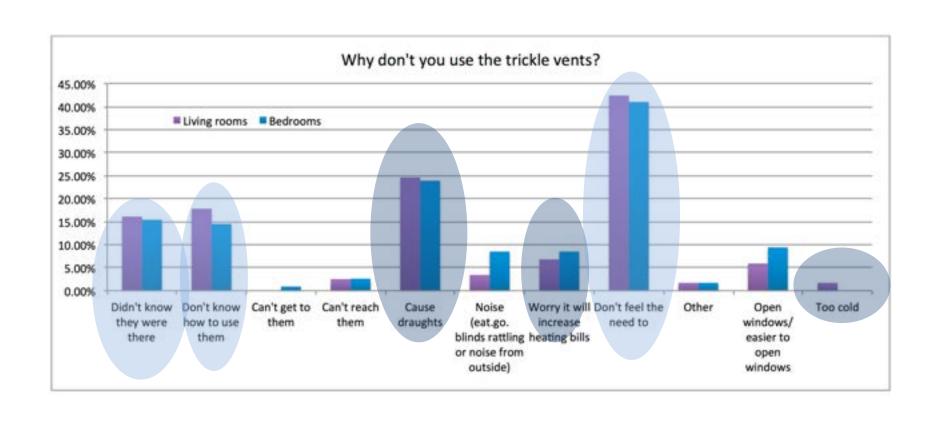


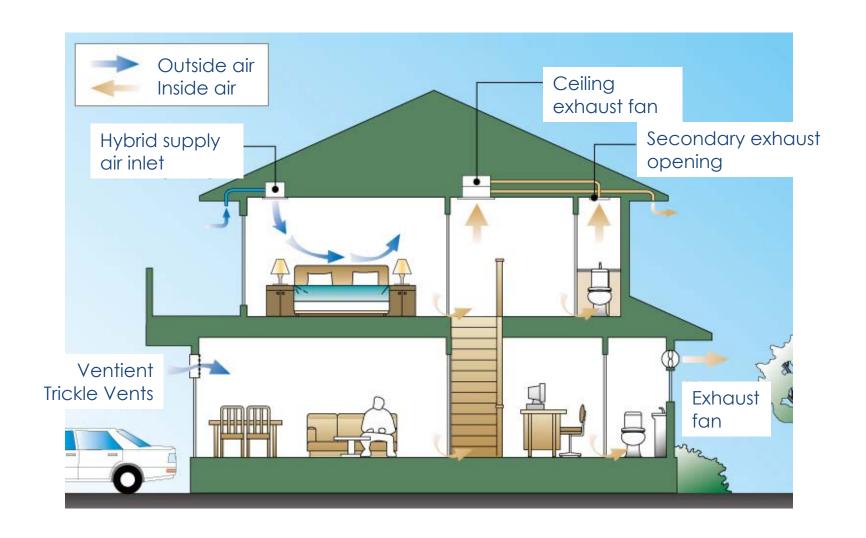
Figure 5. Bedrooms with windows closed-average CO₂ ppm, time weighted average between 11 pm and 7 am.


Occupant Interaction

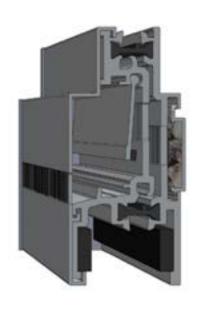
	Bedrooms	Living Areas
Always closed	63%	63%
Always open	28%	24%
Weekly adjustment	9%	13%

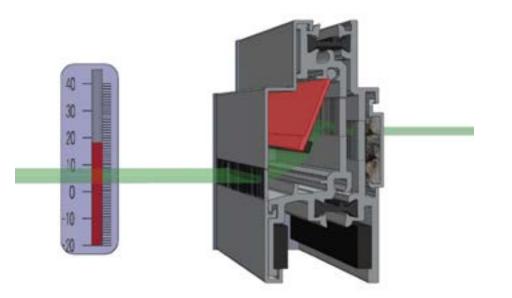
- 92% of respondents described air quality in the bedroom as "good" or "very good"
- But CO2 was an average 1,847ppm for those with the vents closed (83% over 1,000ppm)

Why are trickle vents staying closed?



Daiwa House Research and Development Laboratory, Nara


http://www.daiwahouse.co.jp/lab/about/device.html

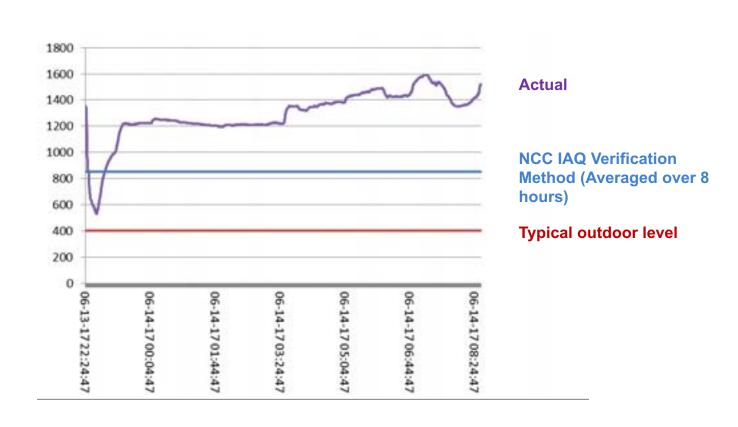

Daiwa House 24hr ventilation system

Shape memory alloy based passive flow regulation

Use of trickle vents at Daiwa House

- Standard trickle vents installed prior to 2003
- Use of "Auto Breathe" (Ventient) since 2003
- Used in all single detached dwellings
- All low rise multi residential up to 5 stories
- Some high rise apartment building

Trickle vent use in a Daiwa House home



Are "operable" windows meeting the NCC Ventilation Performance Requirements

Sydney Unit Bedroom (14th June 2017) Built circa 2007

Why don't we open windows?

- Security
- Noise
- Cold drafts
- Increased heating costs
- Unpredictability of weather
- Insects
- Not being present (unoccupied apartments)

There are moves across the Tasman in Australia

- Based on the nationwide condensation survey, more than 40% of new buildings have condensation and mould.
-any Class 1 or Class 2
 building with a measured
 ACH@50 of under 5 should
 include an automated
 mechanical ventilation
 system for fresh air supply
 within the building.

Improving Australian Housing Envelope Integrity (October 2016)
Building Commission of WA (2014)
Dewsbury, M et al., (Sept 2016)
Roxburgh, T, ABC News (March 2017)

The roles for passive trickle ventilation

- A qualitative IEQ benefit.
- If used as part of a performance or dts solution then 24hour mechanical exhaust is needed.
- Lower cost approach
- Ensure occupants keep passive vents open.
- Shift the balance away from infiltration providing make up air.
- Opportunities to address acoustics and IAQ where windows won't we opened.

Many parallels between now in Australia/ New Zealand and Japan in the 1990s

- Regulatory background (material selection and ventilation)
- High growth in construction
- Levels of air tightness improving
- IAQ, condensation and build quality issues

Some lessons

- Increased air tightness will lead to increased risk....
- but also increased opportunity
- Background trickle ventilation with 24hour mechanical exhaust can be an effective and affordable solution (install, maintenance, running costs & space)
- Keeping passive supply open
- Considering the source of contaminates
- Ambitious regulation with advance notice

Bibliography

Clarke, J and Maxwell, S "Improving Australian Housing Envelope Integrity A Net Benefit Case for Post Construction Fan Pressurisation Testing." The Australian Institute for Refrigeration Air Conditioning and Heating (AIRAH), October 2016.

Crump, Derrick, Andy Dengel, and Michael Swainson. *Indoor air quality in highly energy efficient homes – a review*. NHBC Foundation, 2009.

Dewsbury, M, Law, T, Potgieter, J, Fitz-Gerald, D, McComish, B, Chandler, T and Soudan, A. "Scoping study of condensation in residential buildings - Final report" Australian Building Codes Board; Department of Industry Innovation and Science, University of Tasmania, September 2016

Eastin, Ivan L., and D. E. Mawhinney. "Japanese F-4Star Formaldehyde Rating Process for Value-Added Wood Products." *Center for International Trade in Forest Products Working Paper*, January 2011. www.cintrafor.org/publications/workingpapers/WP120.pdf.

Hasegawa, Tomohiro. "Introduction to Building Standard Law." *Building Centre of Japan*, July 2013.

Hasegawa, K., and H. Yoshino. "National Survey on Ventilation System and Occupants Health in Japan." *Proceedings of the 34th AIVC*, 2013.

Hasegawa, Kenichi, and Hiroshi Yoshino. "National Survey on Ventilation Systems and the Health of Occupants in Japanese Homes." *International Journal of Ventilation* 13, no. 2 (2014): 141-52.

Kukadia, Vina, Martin Liddament, Akshay Gupta, Stuart Upton, Philbert Chan, Stephen Garvin, and John Reid. "The effect that increasing air-tightness may have on air quality within dwellings." *Building Research Establishment*, April 2012.

Maxwell, S., D. Berger, and M. Zuluaga. "Evaluation of Ventilation Strategies in New Construction Multifamily Buildings." 2014.

Bibliography (2)

Maxwell, Sean, David Berger, and Marc Zuluaga. "Evaluation of Passive Vents in New Construction Multifamily Buildings." 2016

Nishizawa, Shigeki, Takao Sawachi, Hiromi Habara, and Hironao Seto. "Measurement of Natural Ventilation Rate in a Japanese Residential Building." *International Journal of Ventilation* 7, no. 1 (2008): 37-47.

Sawachi, T., and M. Tajima. "Trends in the. Japanese building ventilation market and drivers for change." Air Infiltration and Ventilation Centre, no. 25 (May 2008).

www.aivc.org/sites/default/files/medias/pdf/Free_VIPs/VIP25_Japan.pdf.

Sekine, Y., and S. Watts. "Indoor Air Standards in Japan for Healthy Environment." 2006. Accessed June 6, 2017. iaq.dk/iap/iaq2006/Sekine_IAQ2006.pdf.

Sharpe, Tim, Paul Farren, Stirling Howieson, Paul Tuohy, and Jonathan Mcquillan. "Occupant Interactions and Effectiveness of Natural Ventilation Strategies in Contemporary New Housing in Scotland, UK." *International Journal of Environmental Research and Public Health* 12, no. 7 (2015): 8480-497.

Takaki, R., H. Yoshino, K. Mihara, and K. Maatouk. "Study on Performance Evaluation of Mechanical Ventilation Systems for Occupied Houses." 27th AIVC and 4th Epic Conference, 2006.

Yoshino, H. "Airtightness Standards for Residential Buildings in Japan." 1992.