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ABSTRACT 

Productivity of workers is greatly affected by their comfort in the workplace. Research has shown that thermal comfort is one of the most influential parameters 

on worker productivity, and that the running costs of a Heating, Ventilation and Air Conditioning (HVAC) system could be up to ten times lower 

compared to productivity losses that would be incurred in a free-runing building. With the increased availability of Internet of Things (IoT) devices, it is 

now possible to continuously monitor multiple variables that influence a user’s thermal comfort and to act pre-emptively to prevent discomfort situations. 

Smart buildings make use of technology that enable them to become more efficient, reduce costs and emissions and become more transparent in terms of 

operation. To this end, this work has the following two-fold aim; first, to develop a machine learning model to predict setpoint temperatures in an HVAC 

system towards the vision of making this system autonomous; second, to use exploratory data analysis techniques to evaluate the current operation and energy 

performance of an HVAC system in an office block by analyzing and comparing patterns and trends between building management system (BMS) 

parameters and thermal comfort standards. Results demonstrate that our machine learning model was able to predict the user’s setpoint temperature with 

94.14% accuracy using only environmental parameters, with this accuracy increasing to 97.68% when time-related features were added to the model. 

Subsequently, our exploratory data analysis revealed that over 50% of the room temperature readings in our sensor-acquired raw dataset lied outside the 

comfort zone for all seasons, while the setpoint deviation was equal to zero for only 4.31% of the cases, with an average value of 3.38°C (6.08°F). 

INTRODUCTION 

Research has shown that thermal comfort levels in the workplace has significant impact on the productivity of workers 

(Seppanen 2006). The running costs of a Heating, Ventilation and Air Conditioning (HVAC) system to maintain a productive 

temperature is ten times lower compared to the economic losses incurred as a result of lower worker productivity in a free-running 

building (Robertson 2016). Furthermore, studies have shown (Sarkar 2015) that buildings in the United States use 65% of all 

electricity produced, with HVAC and lighting systems accounting for 75% of this consumption. This work reports on the first steps 

taken towards implementing an autonomous HVAC system.  

USER BEHAVIOUR SIMULATION 

Achieving the vision of an autonomous HVAC system has a two-fold requirement; first, the system needs to self-configure 

and self-adapt itself to respond to the users’ needs without intervention from the users themselves; second, the HVAC system 

should operate with a balanced trade-off between thermal comfort and energy efficiency. 

Previous literature has considered the use of linear, ensemble, genetic and deep machine learning algorithms to predict the 
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behavior of an indoor environment (Fayaz 2018, Jain 2017). Results from thermostat field studies using set point models have also 

shown that user behavior profiles can improve the interpretability of observed energy consumption (Urban 2013). In the context 

of our work and based on the raw sensor data available to us, we use the setpoint temperature (STP) as the feature of interest for 

emulating the users’ behavior. This is due to the fact that the STP is the only feature that can be adjusted manually by the user with 

this intervention taking place by the user in an attempt to maximise their thermal comfort in the room they are occupying. 

Data Preparation 

The data considered in this work was acquired from individual sensors deployed in an 11-story commercial office building in 

Athens, Greece over 21 months between December 2017 and September 2019. The data comprises individual spreadsheets, one 

for each sensor, for three different rooms in this building. The building did not employ any other sensors except the ones provided 

in the dataset. It is worth highlighting that this is not a new build; it was constructed in the 1990’s with some refurbishments in the 

HVAC system over the past decades. 

For the purpose of this work, we considered Room 103 which was located on the fifth floor of this building with a southwest 

orientation, thus facing towards the sun and calling for a higher usage of air-conditioning. The variables available in the dataset 

include the following: 

 

• RoomTemp (RT): Room temperature measured in °C (°F), with 0.5 °C (0.9 °F) precision. 

• SetTemp (STP): Setpoint temperature measured in °C (°F), with 0.5 °C (0.9 °F) precision. The setpoint temperature is 

essentially the “thermostat temperature” which can be adjusted by the user (but can also return automatically to 

preconfigured values set for the HVAC system depending on the time of the day). 

• OnOffState (OOS): Indicates whether the HVAC system is on or off, with one (1) representing On and zero (0) 

representing Off. 

• OperationModeState (OMS): Operation mode of the HVAC system, which can take on one of four values; one (1) for 

Cooling, two (2) for Heating and three (3) for Ventilation. 

• OUTAIRHUMD: Outdoor Air Humidity measured in % Relative Humidity with 0.005% resolution. 

• OUTAIRTEMP: Outdoor Air Temperature measured in °C (°F), with 0.1 °C (0.18 °F) precision. 

• AlarmState (AS): Returns a value of one (1) if there is a problem with the HVAC system, otherwise is zero (0). 

• Timestamp: Given in string format as “Day.Month.Year Hour:Minute:Seconds”. 

 

As mentioned above, the raw data provided to us was in the form of a separate spreadsheet for each individual feature, that 

is to say, there were eight spreadsheets pertaining to each of the three rooms. The first step was to therefore combine these eight 

spreadsheets into a single structured table. In the interest of space, the reader is referred to Appendix 1 for an illustration of this 

merging process. Figure 1 shows the data preparation process for generating the final clean dataset for Room 103. Two key 

challenges had to be addressed during this process. 

First, we had to account for the fact that recordings for the indoor features (OOS, OMS, RT, STP, AS) were acquired at fixed, 

periodic intervals (approximately every 10 minutes) while recordings for the outdoor features (outdoor air temperature and 

humidity) were acquired through state-change detection, that is to say, whenever the value of the feature changed beyond a 

predefined threshold (in this case, being the precision of the feature itself). The second challenge involved dealing with time 

mismatches across the different features which occurred as a result of sensor failures, time misalignment during the merging process 

or data losses. Initially we dealt with the indoor features and by using time slicing and synchronization techniques, we achieved in 

generating a first partial dataset comprising the five indoor features with a total of 89,082 observations. Subsequently, we had to 

expand this partial dataset to include the outdoor features. Due to the event-driven nature of the outdoor recordings, we had to 

“fill in” missing values amounting to 80.14% for the outdoor temperature and 55.11% for the outdoor humidity. While sophisticated 

techniques exist for filling in missing values in building sensor data (Chong 2016), it was determined that the best and simplest 

approach would be to hold previous values between time periods provided that a change had not been registered in that time period. 

If a change had been detected, then the outdoor recording closest (in terms of time) to the timestamp under consideration was used 

instead.  
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Figure 1     Data preparation process for generating the clean dataset. 

Feature Engineering 

Following the data preparation and cleaning process, the next step involved augmenting this dataset by removing unwanted 

features and adding new features that could improve the accuracy of our prediction model. After exploratory analysis, it was 

discovered that there was a single instance of the Alarm State having a value equal to one which upon close examination was found 

not to have an impact on the remaining features or the system itself. This feature was thus removed from the dataset. On the other 

hand, it was evident that the timestamp feature contained useful information around seasonality, yet the timestamp feature in its 

original format was not suitable for the model. Hence, the timestamp was extracted into four separate time-related features being 

the year, season, month of the year and hour of the day. 

Machine Learning Model 

Since we used the STP as the feature for emulating the users’ behavior, we defined this variable to be the output response 

variable. The STP has quantitative values and hence at first glance it might seem that a regression algorithm is suitable for this 

application. Yet, the exploratory analysis revealed that the STP takes on 18 values in total, ranging from 19 ºC (66.2 °F) to 28 ºC 

(82.4 °F) in steps of 0.5 ºC (0.9 °F). Since the STP recordings within this dataset take on only these specific, 18 discrete values, it 

was determined that a classification approach would be best suited to this problem, whereby the STP values constitute “labels” for 

the possible outcomes. 

While a comparison of all potential machine learning techniques for this scenario is beyond the scope of this work, previous 

studies have shown that black-box models are well-suited for simulation of indoor environments since they do not require complex 

calibration as white-box models and are more flexible in terms of inputs compared to grey-box models (Arendt 2018). For 

classification, ensemble models have been found to offer the best trade-off between accuracy and interpretability (Hall 2018). To 

this end, this work employs a Majority Voting Classifier (MVC) algorithm (Ruta 2005) which combines three classifiers namely a 

Random Forest Classifier (RFC), an Extreme Gradient Boosting Machine (XGBM), and a Support Vector Machine (SVM). Since 

all three underlying classifiers of the MVC algorithm are black boxes, that is to say, their inner working mechanisms are unknown, 

consequently the MVC algorithm itself also constitutes a black box. 

The idea behind the MVC algorithm is to combine multiple machine learning classifiers in order to profit from the benefits 

provided by each classifier. Specifically, in this work, the RFC and XGBM are ensemble techniques which avoid model overfitting 

and improve the split regions in decision trees, respectively. The SVM is a kernel technique which optimizes decision boundaries 

between classes. When running the MVC algorithm, each classifier independently generates a prediction for each label with the 

MVC subsequently using a majority vote (hard voting in this case) to predict the corresponding class label.  That is to say, the output 

label corresponds to the class that achieved the highest number of votes across the three classifiers. 

Having selected our machine learning algorithm, the next step involved splitting our original, raw dataset into training and test 

sets. An initial trial of splitting the dataset randomly into a 70% training set and 30% test set yielded poor results and hence was 
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abandoned quickly. In the second trial, the data was divided in an interleaved fashion taking the first three weeks of each month as 

the training set and the last week as the test set, thereby resulting in roughly a 75%-25% split between training and test sets. The 

accuracy of the model was obtained in terms of misclassification error with the aid of a confusion matrix. Specifically, the accuracy 

was measured by the ratio of the sum of class labels that were predicted correctly by the algorithm to the total number of estimated 

labels in the test set. Additional statistical metrics, such as F1 and R2 scores (not included here for simplicity) were used during the 

evaluation of the models to corroborate the accuracy levels obtained. 

The accuracy level obtained was 91.82%, which although seemed good, left room for further improvement. Examining the 

confusion matrix, it transpired that the cause of the errors was due to the fact that some labels were not present in the training set, 

yet appeared in the test set. To mitigate this problem, we adopted a more granular approach to the splitting of the dataset. 

Specifically, we first divided the dataset into daily subsets and split the observations for each day randomly into a 70% training 

subset and 30% test subset. We then consolidated the training and test subsets to yield the final training and test sets. In doing so, 

we achieved in increasing the model accuracy to 94.14%. It is worth noting that the 70%-30% split between training and test sets is 

in line with relevant work in this field (Chong 2016). 

In the aforementioned models, the dataset used included only the environmental features (indoor and outdoor) excluding the 

Alarm State. We wanted to investigate the impact of including time-related features in the model’s input variables and hence repeated 

the above process but this time including year, season, month of the year and hour of the day as additional model inputs. This 

increased the accuracy even further to 97.68%. The prediction accuracy of each component in the MVC algorithm for this final 

model is illustrated in Table 1. While this prediction accuracy might seem high, it is worth noting that accuracies ranging from 80% 

(Fayaz 2018) through to 99% (Jain 2017) have been reported in the literature. 

 

Table 1.   Prediction Accuracies for Majority Voting Classifier (MVC) 

MVC Component Prediction Accuracy 

Random Forest Classifier 98.21% 
XGBoost Classifier 84.69% 
Support Vector Classifier 97.93% 
Voting Classifier 97.68% 

ANALYSIS OF THERMAL COMFORT AND ENERGY EFFICIENCY 

Having developed our prediction model, we now turn our attention to evaluating the HVAC system in terms of thermal 

comfort and energy efficiency. Standards, such as CIBSE KS06 (2006), ASHRAE 55 (2017), CEN EN15251 (2006) and ISO 7730 

(2005), all utilize Fanger’s model (Charles 2003) to provide the most accurate measure of thermal comfort in buildings. The general 

formula for this model can be found in Appendix 2. This general formula makes certain assumptions about the physical 

specifications of the bulding, which were not available to us in this work. To overcome this issue, we employed Berkeley’s CBE 

Comfort Tool (Hoyt 2019) instead, being a variant of Fanger’s model which relies on environmental features and which uses the 

formula shown in Equation 1 to calculate the PMV: 

 

 𝑃𝑀𝑉 =  𝑇𝑠 ×  (𝑀𝑊 − ℎ𝑙1 − ℎ𝑙2 − ℎ𝑙3 − ℎ𝑙4 − ℎ𝑙5 − ℎ𝑙6)   (1) 
 

where Ts is the surface temperature, MW is the metabolic rate-outside work product, and hl1 to hl7 represent the heat losses 

through skin, sweating, latent respiration, dry respiration, radiation and convection, respectively. The reader is referred to Appendix 

2 for a detailed breakdown of the parameters shown in Equation 1.  

The next subsection presents the results and analysis obtained by using Fanger’s adapted model shown in Equation 1. We 

only considered the recordings during which the HVAC system was turned on in Room 103, in order to evaluate its performance 

with respect to maintaining optimum thermal comfort levels while minimizing energy consumption. In absence of actual data 

recordings for the indoor room’s relative humidity (RH), we set the interval to be from 30% to 70%, which is standard practice 

according to ASHRAE’s handbook (2017) on moisture management in buildings. 
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Results and Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2     PMV versus room temperature (RT) for different modes when the HVAC is ON. 

 

Figure 2 is dense but provides unique insights. The x-axis lists the range of room temperature (RT) values found in the dataset 

which are from 15 ºC to 39.5 ºC (irrespective of whether the HVAC is on or off). The green horizontal bars show the bounds of 

interest for the PMV being ±0.5. The orange vertical bars (which are essentially dots, as indicated in the legend) represent the PMV 

value for a given room temperature (RT) but with the relative humidity (RH) ranging between 30% and 70% for each RT value. 

The red, magenta and blue lines show the distribution of room temperature values when the HVAC is on and operating in heating 

mode, cooling mode, and across all operating modes, respectively. Finally, the black square (straight lines) shows the range of RT 

values that provide optimum thermal comfort (for the given RH range) being 22.5 ºC (72.5 °F) to 24.5 ºC (76.1 °F). The extended 

black rectangle (dashed lines) shows an extended thermal comfort range that can be achieved by imposing additional constraints on 

the RH range. Specifically, a RT of 21.5 ºC (70.7 °F) with a RH > 57%, through to a RT of 25.5 ºC (77.9 °F) with a RH < 43%, are 

considered to be in the ideal thermal comfort range given by PMV = ±0.5. 

The first observation is that the RT values range from 15 ºC (59 °F) to 33.5 ºC (92.3 °F) and that as the RT increases, the 

range of PMV values also increases for the same fixed range of RH values. The second observation is that none of the three bell-

shaped RT distributions lie completely within neither the black square or extended black rectangle. This affords greater discussion. 

Let us assume that the HVAC operation was configured to maintain optimum thermal comfort without considering energy 

efficiency. In this case, the ideal situation would be that all RT values were within the comfort range of 22.5 ºC (72.5°F) to 24.5 ºC 

(76.1°F). To put it differently, we would expect the peak and the tails of the bell-shape distribution to lie entirely within this RT 

range. Figure 2, however, shows that this is not the case. Instead, considering for example the RT distribution when the HVAC is 

operating in heating mode, we observe that only 21% of the RT values lie in the comfort range while approximately 59% of the 

values lie within 1 ºC (1.8 °F) of the bell shape peak value being 26.5 ºC (79.7 °F). Similar trends are shown for the cooling mode 

and indeed across all modes, that is to say, that the HVAC system has not been configured appropriately to optimize thermal 

comfort. It seems that a shift of the distribution towards the lower temperatures by 3 ºC (5.4 °F) would ensure that the HVAC 

system would provide optimum thermal comfort for over 50% of the time. A more detailed design review, however, would be 

required to determine how to configure the HVAC system in such a way that would enable it to maintain the RT at a value of 

23.5ºC (74.3°F) and within 1ºC (1.8°F) deviation from the RT distribution peak value. 

The aforementioned analysis led us to consider the difference between the RT and the setpoint temperature (STP) throughout 

the period under consideration. The absolute difference between these two features is shown in Figure 3. Figure 3 shows that there 

is a notable fluctuation between the RT and STP values. Of course, some fluctuation is expected, which would occur when the 

HVAC system is initially turned on and therefore require some amount of time for the RT to reach the STP, especially in view of 
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the fact that optimum start functionality is not present. Figure 3, however, shows that the average difference is 3.38 ºC (6.08 °F). 

Worse even, the data shows that the RT reached the SPT for only 4.31% of the total recordings in the aforementioned period while 

the HVAC system was on. Relaxing this constraint to an RT deviation of 0.5 ºC (0.9 °F) from the SPT increased the number of 

recordings in agreement to 13.3%, which is still very low. 

 

 

Figure 3     Difference between RT and SPT across all operation modes when the HVAC is ON. 

 

The analysis thus far has only considered thermal comfort. Yet, a well-designed HVAC system would consider a balanced 

trade-off between thermal comfort and energy efficiency. Table 2 presents different approaches for configuring the setpoint 

temperature. The first row shows the STP values recommended by the CEN EN15251 standards (2006) for optimum energy 

efficiency without considering thermal comfort. The second and third rows present the STP values identified in this work for 

providing optimum thermal comfort based on insights obtained from Figure 2 without considering energy efficiency. The fourth 

row illustrates one example of recommended STP values to achieve a balanced trade-off between thermal comfort and energy 

efficiency. This recommendation is based on the thermal comfort and energy efficiency ranges identified in the previous rows and 

was put forward as an STP configuration that satisfies the two conditions as closely as possible. 

 

Table 2.   Comparison of different HVAC setpoint temperatures (STP) approaches 

STP Approach Heating Mode Cooling Mode 

STP for optimum energy efficiency 20.0ºC (68°F) 26.0ºC (78.8°F) 

STP for optimum thermal comfort 
22.5ºC (72.5°F) - 24.5ºC 

(76.1°F) 
22.5ºC (72.5°F) - 24.5ºC 

(76.1°F) 

STP for safe but slight thermal discomfort 
21.5ºC (70.7°F) - 25.5ºC 

(77.9°F) 
21.5ºC (70.7°F) - 25.5ºC 

(77.9°F) 
Recommended STP for balanced trade-off 22ºC (71.6°F) 25ºC (77°F) 

 

Having considered both thermal comfort and energy efficiency levels, our last task was to evaluate the performance of the 

HVAC system taking into account the optimum values identified previously. We considered the worst-case scenario that was present 

in the dataset, when the HVAC was operating in cooling mode. This date corresponded to the 12th August 2019, as illustrated in 

Figure 4. Figure 4 shows that the ideal STP value has been set to 25 ºC (77 °F) in line with Table 2. The horizontal black and red 

curve depict the SPT value set by the user on this date. The black section of this line corresponds to the time period during which 

the HVAC system was off, while the red section corresponds to the period the HVAC was on. First, we observe that the user-

defined SPT is lower compared to the ideal SPT. This implies that the HVAC is operating inefficiently in terms of energy, since it 

will need to “work harder” in order to maintain the lower SPT that has been defined. The second point is that the RT does not 
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reach the SPT at any point while the HVAC is on, which as can be seen from Figure 4, is for approximately 11 hours between 8 am 

and 7 pm. Herein lies a two-fold problem; first, the HVAC system is not able to maintain the RT at the desired STP – it is clear that 

there is an offset of 3 ºC (5.4 °F) between the RT and the STP, which corroborates the statistics shown for Figure 3; second, as a 

result of this inability, the thermal levels in the room lie outside the optimum comfort range. Another unexpected observation is 

that the RT started to increase in the afternoon around 15:30 while the HVAC was still actively cooling the room until it was turned 

off more than three hours later. Finally, Figure 4 shows that the RT follows the same trend as the outdoor temperature when the 

HVAC system is off, accounting of course for a reasonable delay between the transient and steady-state periods. While it is not 

possible to determine the causes of the aforementioned discrepancies (since we do not have access to the system’s full information), 

it is clear that the data analytics process has been successful in revealing hidden trends and providing useful insights that we would 

have otherwise been unable to extract. 

 

Figure 4     HVAC performance evaluation in terms of thermal comfort and energy efficiency. 

Discussion 

A close examination of the dataset revealed that there were no extreme values of RH, that is to say, having high humidity at 

large temperatures (too humid) or low humidity at low temperatures (too dry). Hence, this factor was not considered in any further 

detail. Figure 2 showed that in heating mode, only 1.22% of the RT values are below 20ºC (68°F) while in cooling mode, almost 

62% of the RT values are above 26ºC (78.8°F) with most of these being recorded at values between 26.5ºC (79.7°F) and 29ºC 

(84.2°F). This would imply that the HVAC system operates better in heating mode (activated during winter) compared to cooling 

mode (activated during summer). In terms of STP, it was found that in heating mode, the STP was set at 24ºC (75.2°F) or higher 

for 99% of the recordings. While from a thermal comfort point of view, this setpoint is acceptable, the results analysed in the 

previous section came across as being contradictory. Specifically, even though the STP was set at 24ºC (75.2°F), we found that 59% 

of the RT values were recorded between 25.5ºC (77.9°F) and 27.5 ºC (81.5°F), that is to say, outside the comfort range meaning 

that the STP value did not give an accurate picture of the actual thermal comfort levels in the room. At the same time, this value of 

STP is 4ºC (7.2°F) higher than the level required to achieve optimum energy efficiency. Hence, this raises questions as to whether 

the HVAC system is indeed working better in heating mode or not. In cooling mode, it was found that for 66% of the recordings 

the STP value was set to be below 26ºC (78.8°F), yet almost 62% of the RT values were above this temperature threshold. We also 

found that the STP was varied more widely in cooling mode compared to heating mode.  

CONCLUSION 

Building data analytics and machine learning models can contribute significantly to the transparent operation and performance 

Energy waste 

Under-fitted system 

Unexpected trend 
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of smart buildings by identifying patterns of poor performance while eliminating occupants’ intervention to the system. These self-

adaptive systems can predict occupants’ setpoint preference and balance the trade-off between thermal comfort and energy 

efficiency. In this study, we developed a machine learning model to predict setpoint temperatures of an HVAC system in an office 

building and used data analytics to assess the thermal comfort and energy performance to balance this trade-off. The results suggest 

that the implementation of a machine learning model will be able to predict the users’ setpoint temperature, improve occupants’ 

thermal comfort, and optimise the system’s energy efficiency, thus providing benefits to both occupants and building owners. While 

the data analytics process identified hidden patterns that cause discomfort and energy waste, it did not explain the causes behind 

them due to lack of information regarding the whole system and building. Future work will look at further automating the process 

of identifying such unexpected patterns and trends and raising an alert for the end user. It would also be desirable to enable the 

algorithm to provide a reason for the cause of discrepancy encountered, however, to do so, would require access to additional 

features beyond the environmental and date/time parameters that were available to us in the given dataset. 
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