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ABSTRACT
Sensor errors have an important impact on the operation, control, and detection of building energy systems. Correct and reliable sensors 
can effectively reduce the energy consumption of building energy systems. Virtual in-situ calibration (VIC) based on Bayesian 
inference and Markov Chain Monte Carlo method that no need to increase extra or install new sensors can effectively reduce systematic 
error and random error of the sensor and increase the reliability. However, due to the long calibration time, large amount of data, 
normalization constant and sensitivity coefficient required for the Whole calibration and Local calibration previously studied by the 
research group, all the sensors could not be fully calibrated or the calibration results were unstable. Based on the above problems, we 
proposed a new calibration method -- Component calibration, which divides the complex building energy system into several components 
to achieve accurate calibration without various coefficients, few data and calibration time. First, these three methods are applied to the 
actual primary air return reheating system, and the accuracy of Component calibration method is verified by comparing the results of the three 
calibration methods. Then, different results generated by different division of Local calibration domain are compared, which verifies 
from the side that Component calibration can perfectly calibrate systematic errors and random errors of all sensors. 

1. Introduction
With the continuous development of the economy and society, the process of urbanization is accelerating. A large number 

of people have migrated to the cities, thereby causing significant stress to the cities’ housing infrastructure [1]. Super high-rise 
buildings have become the first choice to relieve this stress and address the scarcity of land area [2]. With the deepening of the 
complexity of building structures, the building energy systems for heating, ventilation, air condition, and refrigeration (HVAC&R) 
are becoming more complex. Statistics show that HVAC&R systems are widely used in civil and commercial buildings, industrial 
plants, data centers, etc. For example, the energy consumption of HVAC&R systems in buildings usually account for 50–60% of their 
total energy consumption [3-5]. To solve the problem of high energy consumption in building systems, various control methods 
are usually used for intelligent adjustment, such as continuous fine tuning [6], analysis optimization [7, 8], and fault detection and 
diagnosis based on building automation systems [9- 13]. 

At present, various traditional methods are being used to calibrate sensors of building energy systems [14-16]. In the existing 
literature, model-based and data-driven sensor fault diagnosis methods have received much attention. However, these traditional 
methods have the following two practical problems in the calibration process: 1) only focusing on a single fault. The building energy 
system is complex in structure, and the sensors are connected with each other. In the process of operation, the fault of one sensor 
may lead to several sensor faults in succession owing to a chain reaction, and the diagnosis of concurrent faults of multiple sensors is 
unavailable at present. 2) Existing sensor fault diagnosis methods only focus on diagnosis and do not involve repair. After the 
building energy system has been running for a period of time, the sensors drift to different degrees. Repair on the basis of 
successful diagnosis is a problem that requires attention. Hence, our research group has introduced the virtual in-situ 
calibration (VIC) method into the sensor network to calibrate the systematic and random error generated during the sensor 
operation [17-19]. In particular, the VIC method can solve the following problems[20]: 1) excess cost and time, 2) the normal 
operation of the system being interrupted, 3) difficulties in removal and installation, and 4) the complex structure of the sensor 
network. There are numerous and complicated sensors in building energy systems, and traditional methods cannot solve the 
different systematic and random errors that sensors may produce in different environments [14]. However, the VIC method 
combines historical data with the model of the system according to basic theorems such as energy conservation and mass 
conservation. On the basis of not removing or installing new sensors, the systematic errors generated in different working 
environments and random errors generated owing to sensor aging can be calibrated simultaneously. 

In previous studies[17], our research group has proposed the idea of whole and local calibration based on the existing building 
energy system. The whole calibration method is to set the complete building energy system into a calibration domain when all 
sensors of the system are calibrated. Subsequently, based on sensitivity analysis and historical experience
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[21], all sensor and system models are built into a function for calibration. Although it is relatively simple to define the 
calibration domain, this method often results in poor calibration results due to considerable requirement of historical data and 
correlation coefficients. In order to improve the accuracy of calibration, our research group later introduced local calibration 
into the sensor calibration of the system. The complete building energy system is divided into two parts, and then based on 
sensitivity analysis and historical experience, the sensor network is divided into two parts and calibrated in turn. Compared with 
whole calibration, this method simplifies sensitivity analysis owing to the reduction in parameters in each equation. 
Simultaneously, it halves the historical data required for calibration, thereby improving the calibration accuracy and 
applicability of calibration. However, the determination of sensitivity and normalizing coefficients in these two methods is 
significantly difficult. The determination of the normalizing coefficient is usually based on experience, while the sensitivity 
coefficient is obtained through a series of complex algorithms, such as the genetic algorithm(GA), which has been discussed in 
our previous study [22]. This leads to a strong randomness of these two parameters and unsatisfactory calibration results. Each 
local calibration domain still contains a large number of sensors in more complex building energy systems. The accuracy of 
calibration results will be significantly reduced when the number of historical data is small. 

To address the drawbacks of the above two calibration methods, this study proposes a new sensor calibration domain division 
method termed as component calibration. The complete building energy system is divided into several interrelated small parts, 
which are then regarded as components and calibrated separately. Component calibration has considerable advantages. First, 
each component contains only two or three sensors; hence, the equations are simple, and the calibration result is very robust and 
ideal. Second, it’s not necessary to calculate the sensitivity and normalizing coefficients; hence, the operation time is relatively 
less. Third, the calibrated data can be substituted into another component associated with it. This is due to the correlation between the 
components, thereby significantly improving the calibration accuracy of the next component related to it. 
2. Virtual in-situ sensor calibration
2.1 Bayesian inference

During the sensor calibration process, the Bayesian inference is used to seek the minimum value of the distance function 
D(x) and solve the offsetting constants and unknown parameters in the sensor network. According to Bayesian theory, the 
posterior distribution P(x| Yb) of variable x (offsetting constants and unknown parameters) is calculated based    

     b|x), as shown in Eq. (1). For the three calibration methods mentioned above, 
their prior distributio  Limit Theorem [23]. The 
mean value and standard deviation in the Gaussian distribution can be obtained from the physical characteristics of the sensors. The 
precision of each sensor can be regarded as the standard deviation of prior distribution, but since there is no strong connection 
between the mean value and the standard deviation, the mean value cannot be calculated. The mean value is a critical parameter 
for the prior distribution and it could be set to zero (no systematic error). For the unknown parameters in the equation, their mean 
value and standard deviation are obtained through references or expert knowledge. As shown in Eq. (2), the likelihood function 
P(Yb|x) is formed by inserting the distance functions D(x) of the whole, local, and component calibration into the Gaussian 
distribution, respectively. When the distance function D(x) is minimum, the likelihood function P(Yb|x) becomes maximum. 

P  x | Y    
P Yb  | x   x

�
(1) 

P Yb 

P Yb  | x  
1 exp 1 

2  2 
D  x (2) 

P Yb    P Yb  | x   x  dx (3) 
where x are the variables, Yb is the benchmark function, D(x) is the distance function, P(Yb) is the normalizing constant,  is the 
standard deviation, and (x), P(x|Yb), and P(Yb|x) are the prior distribution, posterior distribution, and likelihood function of the 
variables, respectively. 

As shown in Eq. (3), it is usually difficult to calculate the normalizing constant P(Yb) analytically, but the posterior 
distribution P(x|Yb) can be derived by constructing Markov Chains, thereby effectively avoiding complicated integration. In this 
study, the Metropolis-Hastings algorithm in Monte Carlo (MCMC) is used to obtain a series of random samples from a joint 
multivariate distribution [24], and then the posterior distribution of offset constants and unknown parameters is calculated. 
2.2 Distance function for VIC method 

When the VIC method is used to calibrate the sensors, the key problem of calibration is to incorporate the distance function 
into the likelihood function, where the distance function represents the difference between the correction functions and benchmarks 
for working sensors in a system. The distance functions of whole, local and component calibration are shown in Eqs. (4)-(6). 
Since the local calibration divides the whole calibration into two or three parts, there are fewer models in the calibration domain 
than the whole domain (k < j). In addition, the overall system is divided into several small parts for component calibration, and each 
part contains only one model. Compared with the whole and local calibrations, there is no sensitivity or normalizing coefficient for 
multiple models in the component calibration domain. According to the above definition, when the measurement of the sensor is 
highly accurate, then a distance function close to zero is obtained. The benchmark can be calculated by reliable output variables 
(e.g. refrigerating capacity, heating capacity, etc.) or calibration functions of relevant working sensors, as shown in Eq. (7). 
Simultaneously, the measurement value of the 
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working sensor is compensated for the systematic error generated by the sensor in the measurement process by adding an offsetting 
constant for the calibration function defined by Eq. (8). The variables to be solved in the sensor calibration process include the 
offsetting constant (x) of all corrected functions and the unknown parameter (xu) of the benchmark function. 

During the operation of the building energy system, the temperature and humidity sensors work at all times, hence there are 
too many offsetting constants (x) and unknown parameters (xu) inside the system models, making the solution of the distance 
function a non-positive definite problem. In order to improve the accuracy of sensor calibration, it is necessary to establish multiple 
sets of steady-state measurement sets (T) to increase the number of equations. The whole system can also be divided into several 
local or component calibration domains to reduce the number of offsetting constants (x) and unknown parameters (xu) so that the 
results are closer to the true values. 

I J 
DW  (x)  n s (Y  Y )2 (4)

h   h      R,h b,h 
i 1   j 1 

DL (x)  n s  (Y Y   )2 k   j) (5) 
k   k      R,k b,k 

i 1  k 1 

I 
C  Y )2 (6) 

i 1 

Yb  f (Yc1,Yc2 ,...,Ycr , xu1, xu 2 ,..., xuq ) 

Yc  g(M , x1, x2 ,..., xk ) 

(7) 

(8)
where DW(x) , DL(x) , DC(x) are the distance functions for the whole, local and component calibrations, respectively, x is the 
offsetting constant, i and I are the number of data sets, j and J are the number of system components in whole calibration, k and K are 
the number of system components in local calibration, n is the normalizing coefficient, s is the sensitivity coefficient, M is the 
measurement from sensors, Ycr is the measurement after correction, xuq are the unknown parameters, YR and Yb are the outputs of 
reliable and benchmark, respectively, f is a system model, and g is a correction function. 

3. Partition of different calibration domains
Return Fan 

Component domain 2
PHI2,PHI6

Component domain 4 
PHI3

Component domain 5 
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Fig.1. Air handling unit system and partition of different calibration domains 
For the three different errors analyzed above, the traditional method cannot accurately identify and repair. In this article, the VIC 

method proposed by our research group is used to calibrate the three different errors based on the three calibration methods. First, 
the air handling unit system is defined as a calibration domain for whole calibration, which includes all temperature sensors, 
humidity sensors, fresh air ratio and mass flow rates. In addition, the offsetting constants generated by all sensors and some 
unknown parameters (mass flow rate, fresh air ratio and humidity of point 3) in the system are incorporated into a distance 
function ( ) to minimize it, thus obtaining the offsetting constants of all sensors and the values of unknown parameters. 

We divide the whole system into two parts based on sensitivity analysis and importance ranking of inputs and outputs for local 
calibration, and these two parts are calibrated in turn. The first calibration domain refers to the mixing phase, which includes the 
return air temperature T6, return air humidity PHI6, mixing air temperature T2, mixing air humidity PHI2 and fresh air ratio Ra. 
Equipments can be used easily to measure the fresh air temperature T1 and fresh air humidity PHI1 outside, thereby it’s assumed 
there’s no error in these two parameters. In the first calibration domain, the energy conservation and mass conservation 
equations are used to construct the benchmark function and the correction function of h2. They are incorporated into a distance 
function ( ) that is to be solved, so that the systematic and random errors of T2, T6, PHI2, PHI6 and the values of unknown 
parameters Ra are calculated. The second calibration domain refers to the 
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cooling and reheating stages, and includes the air temperature T3 and air humidity PHI3 treated by the surface cooler, air supply 
temperature T4 and the air supply humidity PHI4 after passing through the reheater, and the mass flow rate M. Subsequently, based 
on T2 and PHI2 that have been calibrated in the first calibration domain, the benchmark function and correction function of the cooling 
capacity Qc and reheat capacity Qh are constructed and incorporated into the distance function ( ), thus calculating the systematic 
and random errors of T3, T4 and PHI4 and the values of unknown parameters PHI3 and M. 

Compared with the above two calibration methods, component calibration divides the system into five calibration domains, each 
of which contains up to three variables. The reduction of the number of variables can not only increase the accuracy, but also decrease 
the number of required historical data, thus significantly increasing the applicability of the VIC method. The first calibration domain 
includes three parameters, namely mixed air temperature T2, return air temperature T6, and fresh air ratio Ra. The benchmark function  and distance function   ( ) of the mixed air temperature sensor are constructed by using the proportional relation between the 
fresh air and return air, thus the errors of the three variables are obtained from the posterior distribution. The second calibration domain 
consists of mixed air humidity PHI2 and return air humidity PHI6, and they are calibrated based on the calibrated sensor measurements 
(T2, T6, Ra) in the first calibration domain. For the third calibration domain, the temperatures T3, T4 before and after the reheater and the 
mass flow M in the pipeline need to be calibrated. Here, we use the energy Qh on the hot water side of the reheater as a benchmark. 
Subsequently, we construct the correction functions of the temperatures T3, T4 and unknown parameters M according to the 
energy conservation equation, thus obtaining the distance function ( ) of the calibration domain. For the air handling unit 
system, the humidity behind the surface cooler is generally the dew point humidity that is approximately 0.9-0.95, but the specific 
value is unknown. The unknown parameter PHI3 is assumed to be in the fourth calibration domain, and the specific value of PHI3 is 
obtained by the previously calibrated T2, T3, PHI2, M values and the general calculation method of air physical property 
parameters. Similarly, for the last calibration domain, there is only one humidity sensor PHI4. Based on the local domains 3 and 4, 
the benchmark equation  and distance equation  ( )  of PHI4  are established. Based on the above division of calibration 
domains, all sensors and unknown parameters of the entire air handling unit system are calibrated, and the specific results are 
shown in Fig. 1. 
4. Results and discussions
4.1 Results for the three calibration methods

The accuracy of calibration results is expressed by the mean and standard deviation of the posterior distribution. Before calibration, it 
is generally considered that the mean value (systematic error) of the prior probability of sensor error is zero (no systematic error), and 
the standard deviation (random error) is the precision of the sensor, as the sensor operates smoothly in the building energy system. 
For the required values without sensors installed in the system, the mean and standard deviation of the prior probability are usually 
obtained according to historical experience or relevant documents. We gradually correct the prior distribution set at the beginning to a 
reasonable posterior distribution through the system model and a series of steady-state measurement values of sensors based on the 
Bayesian and MCMC methods, thus obtaining the systematic and random errors of all sensors in the system that are to be repaired. 
The real-time and on-line repair of all sensors in the system is realized by not removing the existing sensors and installing new ones, 
thereby saving manpower and material resources and ensuring the stable operation of the system. As shown in Table 2, different ranges 
of systematic errors (30%, 20%, 10%) and random errors (15%, 10%, 5%) and different calibration methods (whole 
calibration, local calibration, component calibration) are set for Cases 1-3. After calibration by the VIC method, the temperature, 
humidity, and unknown parameters (PHI3, Ra, M) are corrected to some degree, as shown in Fig. 2 

Table 2 Definitions of different working stages 
Working condition Systematic error / Magnitude Random error / Magnitude 

Case 1 Large / 30%*1 Large / 15%*1 

Case 2 Medium / 20% Medium / 10% 

Case 3 Small / 10% Small / 5% 
*1: Percentage of error in sensor measurement

The errors in different ranges have no significant influence on the calibration results for whole calibration. All results are not 
ideal with a large error range from 1-1,000%. This is because there is only one distance function in whole calibration, and the function 
contains 7 offsetting constants and 3 unknown parameters. Simultaneously, each item (h2, Qc, Qh) in the distance function 
construction contains normalizing and sensitivity normalizing coefficients. Under the condition of a certain amount of data, due 
to the above-mentioned various unknown quantities and uncertainty coefficients, the constraints between various parameters are 
significantly reduced, and all calibration results completely deviate from the true values during calibration. 

Local calibration that applies the VIC method shows better results than whole calibration. By dividing the AHU system into two 
calibration domains, the first part only involves the mixed air phase. From the case 1-3 results, it can be observed that the mixed air 
temperature T2, return air temperature T6 and fresh air ratio Ra are calibrated. For these three systematic and random errors, the 
maximum error rate is 26.67%. However, it can be observed that the distance function contains only one term and there are too 
many unknown parameters. Hence, all parameters in the local domain 1 are not completely calibrated, resulting in a large 
deviation of 56% between mixed air humidity PHI2 and return air humidity PHI6. The variables calibrated in the local domain 1 
need to be incorporated in local domain 2. However, due to the large error of the 
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two parameters (PHI2, PHI6) in the local domain 1, the calibration results of the four variables (T3, T4, PHI3, PHI4) in local domain 2 
all deviate significantly from the true values. In the local domain 2, the two terms in the distance function both contain M. Under 
multiple constraints, the deviation between the calibration result of M and the true value is less than 30%. In component calibration, the 
key idea of this study is that after all parameters are calibrated in the first component calibration domain, the obtained data close to the 
true values are incorporated into the next component calibration domain, and finally, all sensors are calibrated. Based on the steady-state 
model of the AHU system and several sets of steady-state measurements, all calibration results of component calibration are very close 
to the true values after applying Bayesian MCMC. This is because in the calibration process, the entire system is divided into five 
calibration domains, and the number of unknown parameters in each calibration domain is not more than three. In the calibration 
process, all sensors in the system are calibrated by incorporating the variables in the previous component into the next component after 
calibration, and the calibration is carried out in sequence with the deviation being less than 30%.

Through further depiction in Tables 3-5, it can be observed that the accuracy of the calibration results is significantly 
improved with the gradual reduction of the calibration domain range under the condition of a certain steady-state model and 
amount of data. Compared with whole calibration and local calibration, all the results of component calibration have a smaller 
fluctuation range and the deviation is below 30%. It can be observed that the size of the calibration domain division and the number 
of unknown parameters in the calibration domain significantly affects the accuracy of calibration. Hence, when the VIC method is 
applied for the calibration of complex building energy systems, component calibration can significantly improve the 
effectiveness of the diagnosis results and ensure the stable and reliable operation of building energy systems. 
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5. Conclusion
Based on the correlation between various sensors in the building energy system and the basic conservation laws, the virtual 

in-situ calibration is used to detect and correct the systematic and random error of sensors in the AHU system simultaneously. 
This method constructs the benchmark and correction function for all the sensors and inserts them into the distance function. By 
employing the Bayesian theory and MCMC methods, the offsetting constants and unknown parameters are estimated. The 
accuracy of calibration results is usually determined by the size of calibration domain and sensor error. In this study, whole 
calibration, three different local calibrations, and component calibration are incorporated into the air handling unit system with 
various combinations of systematic and random errors (large, medium, small). Some detailed conclusions could be drawn as 
follows: 
1. For the systematic and random error of various sensors, the component calibration method is the most accurate, the whole 

calibration method is the least accurate, and three local calibrations lie in between. The maximum error of whole, local 
and component calibration reaches 973%, 112.7% and 30%, respectively.

2. The uncertainty of sensitivity and normalizing coefficients in the distance function has a great influence on the 
calibration results. For the whole and local calibration methods, the constraints between various parameters are 
significantly reduced because of the random and uncertain coefficients, and consequently most of correction results deviate 
from the true values. 
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