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ABSTRACT  
Data from mechanical extract ventilation units of Renson Ventilation nv installed in Belgium is utilized to detect space 
occupancy through machine learning. Challenges with the detection of occupancy using data captured by these smart devices 
are (1) absence of labelled data for training a machine learning model, and (2) occupant’s CO2 generation rate and building 
layouts influence the measured CO2 concentrations, which prevents simple rule-based models to be used for data labelling. 
Therefore, the methodology proposed here to detect occupancy consists of a two-step process. The first step utilizes a 
gradient-based method to generate occupancy labels for a given time series. In the second step, a neural network algorithm 
is trained on the labelled time series. Training the neural network on the generated labels is done to remove statistically 
insignificant mislabelling of the gradient-based method. The method is tested on two different stages. The first stage utilized 
the data from a single device for which actual occupancy is known. The developed neural network model has a test accuracy 
of 95% (on actual occupancy labels) or 85% (on generated labels). The second stage utilized data from 35 devices, from 
which the data from 25 devices are used for training and cross-validating the neural network models. The remaining device 
data is used for testing the model. The developed neural network model has a test accuracy of 60% (on generated labels). 
Since the accuracy is estimated on generated labels, which contains few mislabels, it is expected that actual accuracy is 
higher than 60%. The relatively high test accuracy indicates the potential for transferring a model developed on selected 
device data to other similar devices. 

INTRODUCTION 

The connected mechanical extract ventilation (MEV) units of Renson Ventilation nv (hereafter called Renson) have 
sensors located at extraction points to measure parameters like CO2 concentration, humidity, volatile organic compounds, and 
temperature. These measurements allow the MEV to operate based on indoor air quality (IAQ) requirements defined in 
standards and regulations. Identifying the occurrence of events like space occupancy allows for smarter control that, apart 
from IAQ requirements, also accounts for non-IAQ objectives like energy efficiency. The paper evaluates the possibility of 
detecting occupancy through the measurements obtained from Renson MEV units.  
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A simple method to detect occupancy is by estimating gradients and setting thresholds for occupancy (Ansanay-Alex 
2013). Calì et al. (2015) pointed out the simplicity of the gradient-based method for occupancy detection, which makes it 
ideal for large scale occupancy detection. At the same time, however, the gradient method is prone to sudden changes in CO2 
concentration due to window opening and closing or operation of the HVAC system (Calì et al. 2015). Other occupancy 
detection methods proposed in the literature are using rule-based models, probabilistic models, neural networks, and grey-box 
models (Chen, Jiang, and Xie 2018). However, the limitations mentioned by Calì et al. (2015) will be observed for any 
occupancy detection methodology for Renson MEV data, as the data is inclusive of all the effects caused by window or door 
openings. Removing those effects is impossible as the occurrence of these events is unknown to Renson. Therefore, this 
paper presents a methodology to extend the gradient-based occupancy detection to meet the needs of smart home data.  

Varying factors like floor plan, occupant’s age, presence of window grills, etc. influence the amplitude of measured 
CO2 concentration. Therefore, for each device or for each group of devices, the thresholds need to be determined. The sheer 
amount of connected devices makes it impossible to determine thresholds manually. Therefore, a method for occupancy 
detection that automatically adapts to the context of the device is important. At the same time, the absence of labelled data 
prevents the direct utilization of machine learning approaches. Therefore, in this paper, the gradient method is extended to an 
automatic labelling process. The labels are converted into probabilistic estimation through a machine learning algorithm, 
which is used for further predictions. The probabilistic estimation enables the implementation of an uncertainty based 
decision-making process over the final predictions on occupancy. Other challenges include the distinction of CO2 variations 
due to occupancy on the one hand and internal airflow, on the other hand. Therefore, the underlying assumption for the 
gradient-based labeller is that any change in CO2 is due to the presence or absence of an occupant. 

In this paper, a gradient-based method for data labelling and a neural network model to detect occupancy are presented. 
Section 2 describes the methodology for the gradient-based method and the machine learning model for occupancy detection. 
In sections 3 and 4, the method and results to validate the proposed methodology are presented. Finally, section 5 and 6 
discuss and conclude the findings in this study. 

MACHINE LEARNING FOR OCCUPANCY DETECTION 

Gradient-based segregation for data labelling 

For occupancy detection, the time series data can be segregated into two types of states, which are steady state and 
transition state. Steady state is a condition in which the measured signal is balanced by appropriate ventilation rates. While 
transition states are conditions in which the measured signal is not in balance with ventilation rates. For instance, a steady 
state occurs during stable occupancy when the CO2 generation rate is balanced by equivalent fresh air. Similarly, a transition 
state occurs when an occupant leaves or enters a space, as the CO2 generation rate is not balanced by equivalent fresh air. The 
objective of gradient-based segregation is to separate time series into steady and transition states based on gradients. The 
segregated regions are associated with appropriate labels for occupancy based on generic rules. 

The gradient-based segregation is a two-step process. The first step is model identification for gradient estimation, 
followed by segregation of gradients into two states (steady and transient). These states are then further clustered to associate 
different states of occupancy:  entering, leaving, occupied, and not occupied. In this section, the different stages of the 
methodology are further elaborated.    

Model identification for gradient estimation. Equation (1) shows the formula to estimate gradients for a function f(x): 

   (1) 

Gradients show the changes in f(x) for small changes in x. In this paper,  f(x) predicts CO2 concentration at current 
timestep t based on x = (CO2 concentration, airflow rate) at previous timestep t-1. Ansanay-Alex (2013) used actual data to 
estimate gradients; this approach results in undefined values when data points in subsequent timesteps do not change. A 
simple data model of the form shown in equation (2) is utilized to prevent the occurrence of undefined values: 
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      (2) 

 
The simple model is developed through the ordinary least squares regression methodology. Furthermore, estimating 

gradients through a model opens the possibility to include other relevant environmental signals like noise into the occupancy 
estimation process. Identifying relevant features is out of the scope of this paper. Equation (3) calculates the gradient for the 
function shown in equation (2): 

,          (3)  

 It has to be noted that power n for x needs to be greater than 1; to ensure gradients that are significantly different can be 
easily distinguished by a clustering algorithm. 

Gradient segregation. Gradient segregation is a hierarchical process. First, gradient segregation ratios are measured 
using Equation (4), in which gradients are estimated using Equation (3): 

   (4)  

Then, the ratios are clustered using the k-means algorithm to automatically determine transient (entering/leaving) and 
steady states (occupied/not occupied). Finally, generic rules are added to associate a state with occupancy, as shown in Table 
1. Information on the transition states and the conditions based on CO2 reduces the oscillation between all four occupancy 
states.  

Table 1.   Generic rules for Occupancy Detection 
Occupancy states Rule 

Entering (Transient state of gradients) AND (CO2, t-1 > CO2, t) 
Leaving (Transient state of gradients) AND (CO2, t-1 < CO2, t) 

Occupied (Steady state of gradients) AND (CO2, t > mean(CO2)) 
Not occupied Steady state of gradients 

Neural networks for occupancy detection 

Equations (3) and (4) are used to identify if the data is in a steady or transient state of a dataset. The states, along with 
the generic rules defined in Table 1, make it possible to label a data point in a time series. The result of the data labelling 
process is a table that contains CO2 at t and t-1, and the airflow rate at timestep t, and corresponding occupancy states. This 
information is captured by a neural network (NN) model. The NN input layer obtains CO2 at t and t-1, and the airflow rate at 
timestep t. The output layer of the NN model is a softmax activation, which transforms the binary 0 or 1 per occupancy state 
into probabilities of the occupancy states. The predicted occupancy state with the highest probability is considered as the 
final occupancy. 

End-to-end representation of occupancy detection method 

The scalability of the occupancy detection method is important due to the growing number of connected Healthbox 
systems. Figure 1 shows the schematic representation of the cloud architecture utilized for occupancy detection. In this 
architecture, a containerized program, which implements the process mentioned in the above sections extracts historic CO2 
time-series data from every device to develop a user-specific occupancy detection model. The developed models are stored in 
a server that a user’s HealthBox can utilize to infer on occupancy states of each room.  

It has to be noted that Renson does not collect information on building type, building layout, room types, number of 
occupants, and the exact number of rooms in a building. The number of rooms known to Renson is based on the 
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configuration of the ventilation systems. Therefore, the data labelling method has to be general enough that the resulting 
occupancy models generalise for users on a large scale.   

 

 

 
Figure 1 Schematic representation of the occupancy detection method(a). 

VALIDATION OF THE OCCUPANCY DETECTION METHOD 

The method is evaluated in two stages. The validation starts by evaluating the method to detect occupancy for a single 
device. Subsequently, the method is validated on a small group of randomly chosen Renson MEV units.  

Validation of the method in a single device 

The Data collected for training and testing is for a single device. The objective of performing the analysis on a single 
device is to verify if the method is behaving as intended. CO2 and airflow rate from a bedroom connected to a Renson MEV 
unit located in Belgium is collected in two stages. In the first stage, data is collected between January 7 and January 21, 2020. 
This data is used for data labelling and training of the NN model (Note: at this point, no information on occupancy is 
available). In the second stage, data is collected between January 21 and January 24, 2020, while the user provides feedback 
on his occupancy. This information is used to test the developed model. 

The training data is used to train a NN model using the methodology presented in the previous section. The NN model 
is developed in Flux.jl package (Innes 2018). The NN model is trained using a Poisson loss function, which measures the 
difference in the predicted distribution and the expected distribution. The NN model is optimized using the ADAM 
algorithm.  

The developed NN model is utilized to estimate occupancy for the test data. The predicted occupancy is compared with 
the occupancy provided by the user. Equation (5) shows the formula to determine accuracy: 

  (5)  

Validation of the method on multiple devices 

The objective of this step is to verify (1) the validity of the method on a larger scale, and (2) if models developed with 
data for groups of devices can be transferred to other devices. Therefore, a small group of devices is randomly chosen for 
analysis.  

CO2 and airflow rate from bedrooms of 35 randomly chosen Renson MEV units located in Belgium are collected from 
January 2019. The choice for the number of devices is limited to 35 to reduce the size of the NN model required to train it. 
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However, the choice data from 2019 is arbitrary.   
Out of the 35 devices, data from 15 devices are used to train the NN model, data from 10 devices are used to cross-

validate (CV) the model, and the remaining device data is used to test the model. The above segregation in training, CV, and 
testing device results in 121,776 data points for training the model, 88,944 data points to CV the model, and 98,153 data 
points to test the model. In this paper, CV data is utilized to manually tune the hidden units with the NN model and 
regularization parameters. Testing data is an independent dataset that is not utilized in the training process. Since Renson has 
no occupancy information on a large scale, the accuracies (based on equation 4) are based on the generated labels. 
Furthermore, visual inspection is used to determine the quality of a prediction. 

RESULTS 

Occupancy detection – Model development and testing for data from a single device 

For occupancy detection, the coefficient n in equation 2.1 is set equal to 2 as it allows for effective segregation of 
gradients into the two states. Other values of n did not result in effective segregation of the steady and transient states. 
Equation (6) is the model obtained through an ordinary least squares regression method: 

   (6) 

This model is used to generate the gradients for segregation. Figure 2 shows the data labels generated for the training 
data. It can be noted from Figure 2 (middle and bottom) that the segregation ratio during occupied and non-occupied periods 
are similar. Likewise, transition periods have similar segregation ratios. The appropriate labels associated with the data 
shown in Figure 2 (bottom) are determined using the generic rules in Table 1. However, it has to be noted from Figure 2 
(bottom) that the labels for entering and leaving fluctuate a lot, mainly caused by the quick fluctuations in the data at 
subsequent timesteps. Data smoothing could reduce fluctuation between entering and leaving, which has not been evaluated 
in this study. 

 

 

 
Figure 2 (Top) CO2 concentration for the training period. (Middle) Gradient segregation ratio for the training period. 

(Bottom) Derived data labels. 

© 2022 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, 
or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

IAQ 2020: Indoor Environmental Quality Performance Approaches 5



Figure 3 shows the predictions on the test data. Figure 3(middle) shows the softmax output probabilities from the NN 
model. It can be noted that depending on the CO2 concentration and airflow rate, the probabilities of different occupancy 
states vary. The final occupancy (shown in Figure 3(bottom)) is the occupancy state with the highest probability. Periods of 
room entering are more extended than a pure spike in occupancy state; this is due to the slowly evolving nature of the CO2 
concentration signal. However, room leaving is only for a short period; this is due to a steep reduction in CO2 concentration. 
Since the user feedback mentions only a duration1 of occupancy, entering and leaving states are rounded to occupied and 
non-occupied while estimating accuracy.  

The accuracy based on true labels (i.e., through user feedback) is 95%, and accuracy based on generated labels is 85%. 
It can be noted that the accuracy estimated through generated labels is lower than accuracy estimated with true labels. The 
reason for the reduction is due to inaccuracies in generated labels. For example, Figure 2 (bottom) shows that regions of 
labels for entering and leaving are fluctuating a lot. These fluctuations are removed during the training process, as NN learns 
statistically significant labels. 

 

 

 
Figure 3 (Top) CO2 concentration for the test period. (Middle) NN predictions of occupancies. (Bottom) Predicted 

occupancy compared to actual occupancy data. 

Occupancy detection – Model development and testing for data from multiple devices 

The training, CV, and test accuracies based on generated labels are 65%, 70%, and 60%, respectively. Figure 4 and 
Figure 5 show the predictions for seven days from two test devices. The CO2 signal in Figure 4 has a lot of fluctuations and 
does not have a clear cyclic behaviour, as in Figure 3. Even with a difficult dataset, the model predicts occupancy that 
appears logical (based on visual inspection). Similarly, Figure 5 shows the prediction for a test device that has a cyclic 
behaviour. The prediction for this device also appears logical. Therefore, the actual accuracy in predicting occupancy can be 
higher than estimations based on generated labels. Furthermore, device data shown in Figure 4 is noisier than the device data 
shown in Figure 5. Hence, accuracies on a device level can be higher. Finally, the absence of true labels makes it hard to 
verify predictions during short occupancy periods, which are the result of CO2 spikes. These spikes could also be due to air 
flowing from neighbouring rooms. Hence, a form of user feedback is important to refine model predictions. 

 
1 i.e., Occupied between ___P.M to ___A.M 
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Figure 4 Occupancy detection (for seven days) in a test device with difficult CO2 signal. 

 

 
Figure 5 Occupancy detection (for seven days) in a test device with easier CO2 signal. 
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CONCLUSION 

The proposed methodology enables Renson to overcome the challenge of labelled data, adaptability, and scalability. 
The gradient-based labelling methodology enables the algorithm to adapt to a new context, and reduces the need for manual 
intervention. The NN model converts the labelled data into probabilities, which facilitates effective decision making. The two 
approaches combined enable a scalable method for occupancy detection.  
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