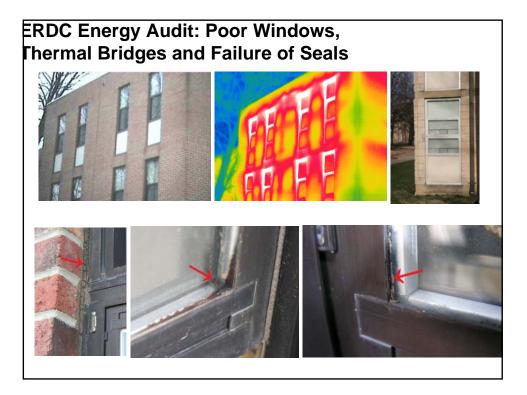


New Construction Site Energy: Baseline EUIs and Energy Reduction Target EUIs (barracks/dormitories)

Climate Zone	ASHRAE 90.1- 2004 EUI (kBTU/sq ft-yr)	ASHRAE 90.1- 2007 EUI (kBTU/sq ft-yr)	EPACT 2005 Target EUI + plug loads (kBTU/sq ft- yr)	ASHRAE 189.1 Target EUI incl. plug loads (kBTU/sq ft-yr)	ECB 2010-14 Target EUI + plug loads (kBTU/sq ft yr)
1A	102	98	78	78	67
2A	102	98	78	78	67
2B	65	62	52	49	45
3A	91	87	70	69	60
3B	63	60	50	48	44
3C	67	64	53	51	47
4A	95	91	73	72	63
4B	68	65	54	52	47
4C	80	76	62	61	54
5A	97	93	74	74	64
5B	75	72	58	57	51
6A	103	98	78	78	67
6B	88	84	68	67	59
7A	111	106	84	84	72
8A	143	137	106	109	90

New Construction and Major Renovation Source Energy: EISA 2007 Energy Goals Requirement CBECS (2003) % Energy Reduction Baseline

	A 2010 -source		55		
EISA	A 2015 -source		65		
EISA	A 2030 -source		100		
Sou	rce Fossil Fuel Ene	ergy Baseline (CBEC	CS 2003), kBTU/ft2 per ye	ear	
Climate	Barracks	Maintenance Facilities	Company Operations Facilities	Brigade HQ	Dining Facilities
Zone	Median Total Fossil Fuel Generated EUI - Dormitory	Median Total Fossil Fuel Generated EUI - Other Services	Median Total Fossil Fuel Generated EUI (Composite)	Median Total Fossil Fuel Generated EUI – Gov't Office)	Median Total Fossil Fuel Generated EUI – Fast Food
1A	136	200	129	165	888
2A	133	186	122	157	856
2B	111	152	99	128	728
3A	127	163	107	139	737
3B	114	150	98	127	737
3C	105	132	86	109	629
4A	144	164	109	142	746
4B	95	114	75	97	585
4C	106	116	78	99	592
5A	153	164	108	141	731
5B	131	157	96	124	681
6A	183	184	125	163	818
6B	142	144	97	126	761
7A	181	175	117	153	880
8A	248	219	158	210	1028


	Proposed ASHRAE Std 100 Energy Target EUI																	
	for Existing Buildings (53 bldg types)																	
	EUIs by Building Type by Climate Zone (kBtu/sf-yr)																	
			_		_	2015	y 001				te Zor							_
						3B-	3B-											
No.	Commercial Building Type	1A	2A	2B	3A	Coast	Other	3C	4A	4B	4C	5A	5B	5C ¹	6A	6B	7	8
1	Admin/professional office	39	40	39	42	33	39	33	46	40	40	48	42	39	54	47	58	81
2	Bank/other financial	55	57	56	59	46	55	47	65	56	57	68	59	56	76	67	82	115
3	Government office	49	50	49	52	41	48	42	57	49	50	60	52	49	67	59	72	101
4	Medical office (non-diagnostic)	33	34	33	35	28	33	28	39	34	34	41	36	33	46	40	49	69
5	Mixed-use office	45	46	45	48	38	45	39	53	46	47	56	48	45	62	55	67	94
6	Other office	38	39	38	40	32	37	32	44	38	39	47	40	38	52	46	56	78
	Laboratory	178	176	171	175	147	165	159	194	173	179	209	187	181	232	211	249	331
	Distribution/shipping center	12	16	16	20	11	18	14	27	23	22	36	30	24	49	40	60	113
9	Non-refrigerated warehouse	6	8	8	10	5	9	7	13	11	11	17	14	12	24	19	29	54
	Convenience store	135	146	135	152	127	139	141	166	150	157	178	162	167	193	179	208	263
	Convenience store with gas	108	118	109	122	102	112	114	133	121	126	144	130	135	156	144	168	212
12	Grocery/food market	112	122	113	127	106	116	118	138	125	131	149	135	139	161	149	174	219
13	Other food sales	34	37	34	38	32	35	36	42	38	40	45	41	42	49	45	53	66
14	Fire/police station	66	65	63	64	54	61	59	71	64	66	77	69	67	85	78	92	122
	Other public order & safety	60	59	57	59	49	55	53	65	58	60	70	63	61	78	71	84	111
16	Medical office (diagnostic)	33	32	32	32	30	32	27	32	30	28	30	30	28	31	30	31	35
17	Clinic/other outpatient health	50	48	49	48	45	48	40	48	46	42	46	45	42	47	45	46	52
18	Refrigerated warehouse	69	68	66	68	57	64	62	75	67	69	81	72	70	90	82	96	128
19	Religious worship	23	23	22	23	19	22	21	25	23	23	27	25	24	30	28	33	43
20	Entertainment/culture	23	23	22	23	19	21	21	25	23	23	27	24	24	30	28	32	43
21	Library	61	61	59	60	50	57	55	67	60	61	72	64	62	80	73	86	114
22	Recreation	26	26	25	26	22	24	24	29	26	26	31	28	27	34	31	37	49
23	Social/meeting	28	27	26	27	23	26	25	30	27	28	32	29	28	36	33	39	51
24	Other public assembly	28	28	27	28	23	26	25	31	27	28	33	30	29	37	33	39	52
	College/university	62	61	60	62	45	58	50	72	60	65	78	65	65	90	78	99	147
26	Elementary/middle school	38	37	36	37	30	35	32	41	36	36	42	37	35	46	41	49	72
27	High school	45	45	44	46	33	42	37	52	44	47	57	48	47	66	57	72	107
28	Preschool/daycare	49	48	46	48	39	45	41	52	46	47	54	47	46	60	53	63	93
29	Other classroom education	25	25	25	25	18	24	21	29	25	26	32	27	27	37	32	40	60
30	Fast food	261	268	263	277	237	266	253	305	280	284	332	301	295	364	333	393	497
31	Restaurant/cafeteria	141	145	141	150	126	143	137	166	151	156	179	163	166	195	181	213	268
32	Other food service	77	79	77	82	69	78	75	91	83	85	98	89	91	107	99	116	146
33	Hospital/inpatient health	142	143	140	141	134	138	130	143	129	135	139	126	135	142	130	144	166
34	Nursing home/assisted living	84	83	81	83	69	78	75	91	82	84	99	88	85	109	100	118	156

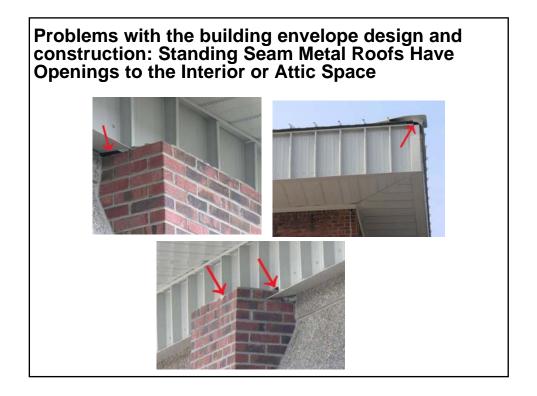
Г

	ilding Portf Soals (2003	
FY	% Reduction	
2006	2	
2007	4	
2008	9	
2009	12	
2010	15	
2011	18	
2012	21	
2013	24	
2014	27	
2015	30	

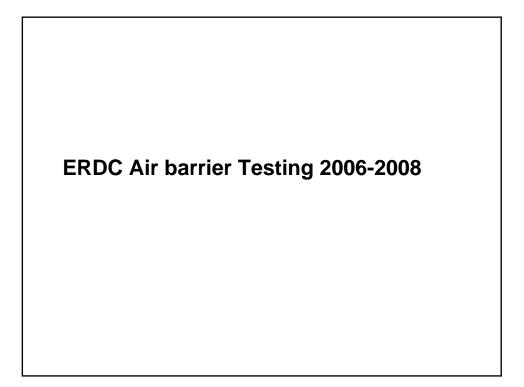
Major Building Envelope Related Factors Contributing to Energy Inefficiency and Mold

- Many older buildings have significant problems with exterior walls that would affect their useful life and allow air and water penetration
- High cooling and heating loads due to problems with the building envelop (insulation, air barrier)
- Poor control of moisture penetrating the building (moisture dams, vapor barrier)
- Most of energy wastes and mold issues come hand-in-hand

Extended envelope surface, .g., open courtyard



Excessive heat losses and gains through the extended building envelope (external wall surface can be reduced), additional sensible and latent load on heating and cooling systems.

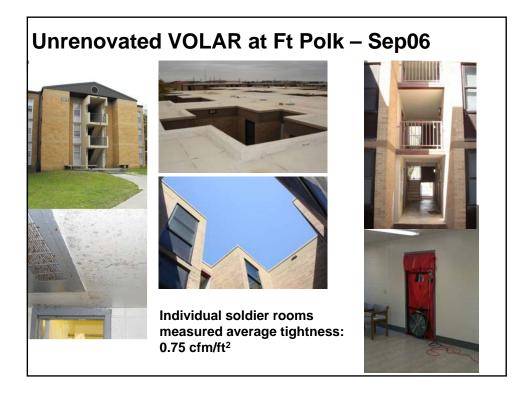


oldiers' rooms are open directly to the utside in humid climates result in a huge latent ad on AC, which can't be satisfied

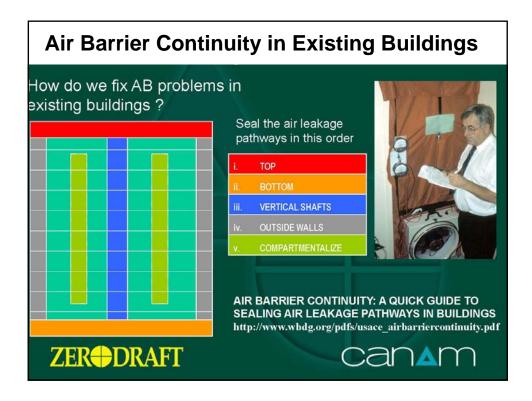
<section-header><image><image><image><image><image><image><image><table-row><table-row><table-row>:<image>

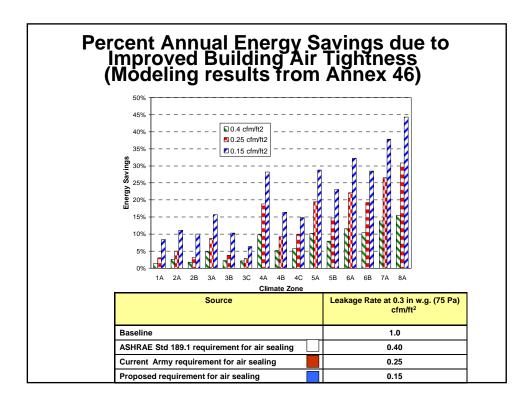
Existing Army Barracks Constructed without Air Tightness Requirement – Test Results

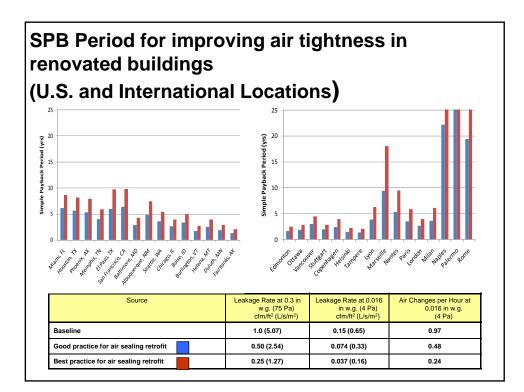
Ft Meyer UEPH tested Feb06

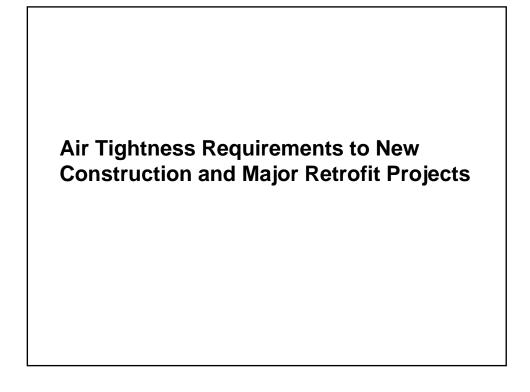


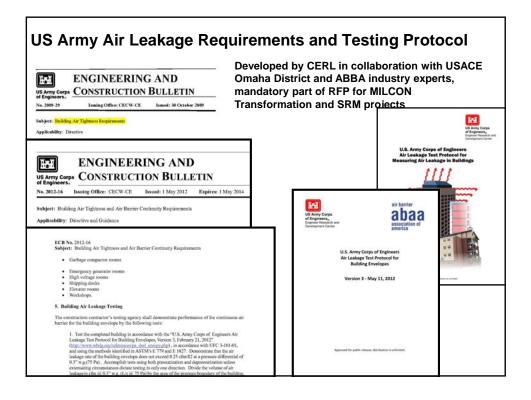
Ft Bragg UEPH tested May 06

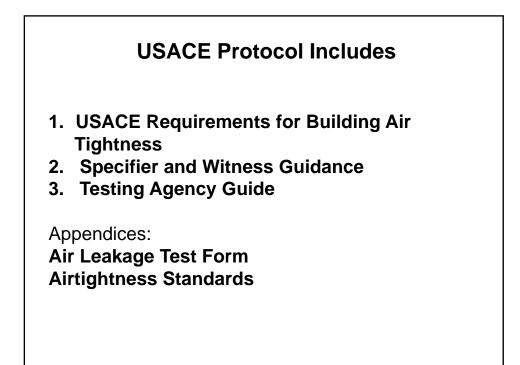

- Tested by ERDC/CERL •
- Measured leakage rate was 0.57 CFM/sq ft (2.89 L/s*m²) envelope area @ 75Pa


- Tested by ERDC/CERL
- Measured leakage rate unrenovated was 0.56CFM/sq ft (2.84 L/s*m²) envelope area @ 75Pa
- Measured leakage rate for renovated was 0.77CFM/sq ft




Initial Issues/Barriers for AB (2009)


- Lack of skills on the market resulting in resistance and temptation to overturn/negotiate new requirements or inadequate pricing
- Inadequate understanding of new requirements from Army garrisons and project managers resulting in elimination or misinterpretation of new requirements in RFP and inadequate QC
- Perceived significant increase in costs
- Problems with adaptation of specific requirements to existing buildings
- Lack of incentives/perseverance



				_
Country	Source	Requirement	cfm/ ft ² at 75Pa	
USA	ASHRAE 189		0.40	
UK	TS-1Commercial Best Practice	5 m3/h/m2 at 50 Pa	0.36	
USA	LEED	1.25 in2 EfLA @ 4 Pa / 100 ft ²	0.30	
Germany	DIN 4108-2	1.5 1/h at 50 Pa	0.28	Lo
•	USACE Requiremen	nt is 0.25 cfm/ft2 at 75 Pa		
UK	TS-1Commercial Tight	2 m3/h/m2 at 50 Pa	0.14	Tig
CAN	R-2000	1 in ² EqLA @10 Pa /100ft ²	0.13	
Germany	Passive House Std	0.6 1/h at 50 Pa	0.11	

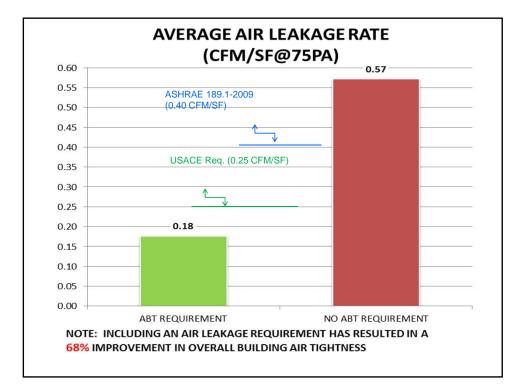
USACE Requirements

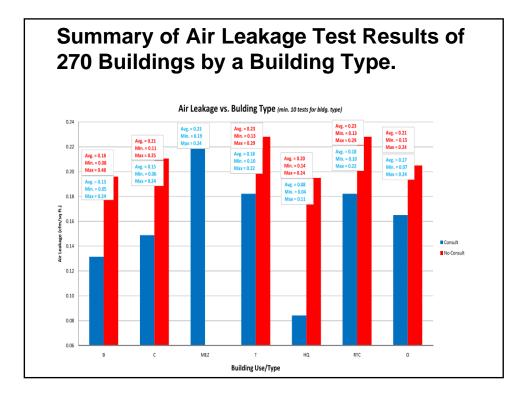
- Design and construct the building envelope for office buildings, office portions of mixed office and open space (e.g., company operations facilities), dining and barracks facilities with a continuous air barrier to control air leakage into, or out of, the conditioned space.
- Clearly identify all air barrier components of each envelope assembly on construction documents and detail the joints, interconnections and penetrations of the air barrier components.
- On the design drawings, clearly identify the boundary limits of the building air barriers, and of the zone or zones to be tested for building air tightness.

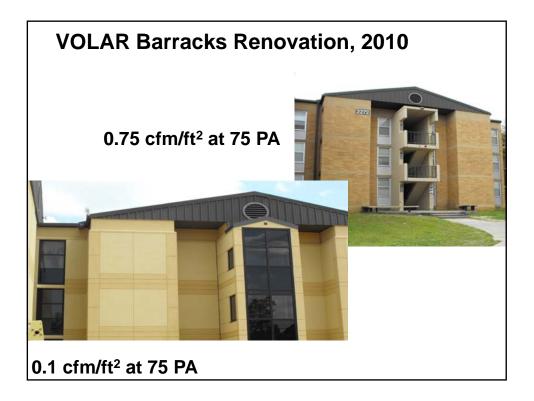
USACE Design Requirements

- a) A continuous plane of air-tightness must be traced throughout the building envelope with all moving joints made flexible and sealed.
- b) The air barrier material(s) must have an air permeance not to exceed 0.004 cfm / sf at 0.3" wg [0.02 L/s.m2 @ 75 Pa] when tested in accordance with ASTM E 2178
- c) The air barrier material of each assembly shall be joined and sealed in a flexible manner to the air barrier material of adjacent assemblies, allowing for the relative movement of these assemblies and components.

Specified Testing Requirements


• Submit the qualifications and experience of the testing entity for approval.


 (a) Test the completed building and demonstrate that the air leakage rate of the building envelope does not exceed 0.25 cfm/ft² at a pressure differential of 0.3" w.g.(1.25 L/s.m² @ 75 Pa) in accordance with ASTM E 779 (2003) or E-1827-96 (2002)


Specified Testing Requirements

1. Test the completed building in accordance with the "U.S. Army Corps of Engineers Air Leakage Test Protocol for Building Envelopes, Version 3, February 21, 2012" (http://www.wbdg.org/references/pa_dod_energy.php), in accordance with UFC 3-101-01, and using the methods identified in ASTM's E 779 and E 1827. Demonstrate that the air leakage rate of the building envelope does not exceed 0.25 cfm/ft2 at a pressure differential of 0.3" w.g.(75 Pa). Accomplish tests using both pressurization and depressurization unless extenuating circumstances dictate testing in only one direction. Divide the volume of air leakage in cfm @ 0.3" w.g. (L/s @ 75 Pa) by the area of the pressure boundary of the building,

Location	Building Type / #	Air Barrier Envelope Size (ft ²)	Result (CFM / ft²)	% Better than 0.25 CFM/ft ²
Ft. Bliss, TX	IBCT 1 UEPH 1	71,312	0.05	81%
Ft. Bliss, TX	IBCT 1 UEPH 2	71,312	0.06	76%
Ft. Sam Houston, TX	BRAC METC Dorm 1	371,099	0.07	73%
Ft. Bliss, TX	IBCT 1 UEPH 7	71,312	0.07	72%
Ft. Bliss, TX	BCT 3 UEPH 1	72,573	0.10	62%
Ft. Polk, LA	Barracks (Renovation)	52,476	0.10	60%
Ft. Sam Houston, TX	METC Dorm 1	141,893	0.10	60%
Ft. Bliss, TX	BCT 3 TEMF1	24,632	0.13	48%
Ft. Riley, KS	COF	43,115	0.14	44%
Ft. Leonard Wood, MO	Battalion HQ	63,276	0.14	44%

Current U.S.A. Air Sealing – Air Barrier Requirements

- International Energy Conservation Code
 - "Openings and penetrations in the building envelope shall be sealed with caulking materials or closed with gasketing systems compatible with the construction materials and location. Joints and seams shall be sealed in the same manner or taped or covered with a moisture vapor-permeable wrapping material..."
 - No quantitative requirements
 - Require insulation without specifying Rvalue

Current U.S.A. Air Sealing – Air Barrier Requirements

- Minnesota Commercial Energy Code
 - Incorporates ASHRAE Standard 90.1
 - Similar language to IECC, no quantitative requirement
 - Requires "air barrier materials" but no standard defined
 - Requires air barrier to be shown on the drawings

Current U.S.A. Air Sealing – Air Barrier Requirements

• ASHRAE Green Building Standard 189.1

- Provides three options for compliance:
 - 1. Use air barrier materials on walls (0.004cfm/ft2), or
 - 2. Use tested assemblies on walls (0.04 cfm/ft2), or
 - 3. Whole building test (0.4cfm/ft2)
- Path of least resistance is #1

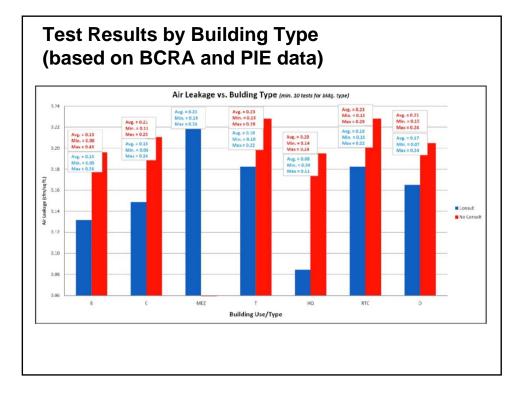
Conclusion

 Specified requirements to air tightness of conditioned buildings or parts of buildings (0.25 cfm/ft2 at 0.3 in w.g.[1.27 L/s*m² at 75Pa]) result in sustainable buildings, energy use reduction and improved soldiers wellbeing

 Contractor is provided with specific requirements to continuous air barrier and specific air tightness testing protocol

 US Army Corps of engineers conducts training in collaboration with the industry for involved actors (USACE and DPW engineers, architects and Project Managers, as well as to contractors to ensure understanding of requirements resulting in high quality of design and construction work

Conclusion


 USACE requires performance measurements after completion

 These efforts result in development of the market in the USA for high quality construction and energy efficient retrofits

 Since 2009, more than 300 buildings have been built and renovated to meet or exceed the Army requirement

 Estimated first cost increase is \$0.50/sq ft of floor area for new construction

Simple pay-back is 2-10 years

Conclusions

- Air barriers play an important role in building durability, energy use and occupants wellbeing;
- Till recently AB in the USA have been poorly integrated in the design and construction industry;
- Since 2009 industry has corroborated the USACE implementation of the air leakage requirement, which includes whole building performance verification testing.
- US Army has built and renovated more than 370 buildings to meet or exceed requirement for BE air tightness of 0.25 cfm/sq level.
- Based on experience, it is recommended that requirements for envelopes under 15,000 sq ft remain at the 0.25 cfm/sq ft level.

Conclusions (Cont)

- The data show the importance of including an experienced independent building envelope consultant on the project to review drawings and to perform site visits for quality control review;
- The USACE requirement has proven to be achievable and applicable to all building types and locations; it does not limit the design and construction process to any one set of materials or systems.
- The USACE move toward tighter buildings will continue, beginning with the tightening of the USACE requirement for an air tightness of 0.15 cfm/sq ft @75Pa for High-Performance Buildings. The data presented in this paper clearly indicate that these results are already achievable.

What information do we need in the future and what do we measure?

- Current AB testing protocol is designed to test design and workmanship of the BE fabric when all intended penetrations sealed
- Building performance depends upon overall air leakage, including mechanical systems inlets and outlets and flues
- There are no air leakage requirements for building performance which reflects total building air leakage "as is" with all unsealed intended openings
- Buildings such as offices, residential buildings, schools probably may have air barrier requirements similar to current ones tested with all openings sealed (central system BE duct penetration area is relatively small;

What information do we need and what do we measure? (Cont)

- However, hospitals, restaurants, labs, laundries and other buildings with significant areas of mechanical systems penetrations of the building envelope, probably will need different targets for air tightness
- Testing for this requirement will not be much more expensive, since buildings can be tested before or after penetrations are sealed.

Questions or Comments??

Dr. Alexander Zhivov, Ph.D.

Senior Researcher at US Army Corps of Engineers Engineer Research and Development Center

Alexander.M.Zhivov@usace.army.mil