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ABSTRACT 

Due to age-related physiological changes, older people are more vulnerable than young people to heat or cold conditions. Predicting older people's thermal 
sensations is essential for controlling the built environment and avoiding extreme heat/cold injuries. Previous studies mainly focused on predicting the 
thermal sensation of young people, and the data-driven methods are often not constrained by physiological responses. This study proposes a new integrated 
model to combine the two-node physiological model and the data-driven method random forest classifier. The surveyed data of older people come from 
ASHRAE Global Thermal Comfort Database II. The dataSET has collected the environmental conditions, subjects' factors, and survey results of 
thermal sensation vote (TSV). In this study, with the environmental conditions (air temperature, mean radiant temperature, relative humidity, and 
airspeed) and subject factors (clothing insulation, height, and weight) as inputs, core and skin temperatures, water loss, and standard effective temperature 
(SET) can be calculated by the two-node model of older people. The above physiological parameters and building operation mode (naturally-ventilated/air-
conditioned - NV/AC), older people's gender, surveyed seasons, and climate zones are used to train the data-driven model. The results show that the 
overall accuracy classification score of the integrated model is 90%, which is more accurate than the PMV model and the majority of other data-driven 
studies. The integrated model can also reach above 80% accuracy classification score under different building operation modes (NV/AC), older people's 
gender, surveyed seasons, and climate zones. The correlation between SET and TSV is better than the traditional linear regression. It is found that there 
is a possibility that older people's core temperature increase to a dangerous level (>38℃) even when they just feel slightly warm. 
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INTRODUCTION 

The world population aging process has been escalating: the number of people aged 60 years and over was tripled in the last 
50 years and expected to reach over 2.1 billion in the next thirty years (Issahaku & Neysmith, 2013; Mba, 2010). 
Meanwhile, the projected climate change and global warming in the twenty-first century would intensify the exposure to deadly 
ambient conditions (Mora et al., 2017). Older people are more vulnerable than young people to heat or cold conditions due to age-
related physiological changes (Rida et al., 2014). Older people's thermal sensation is also different from young people, especially 
under hot/cold exposures (Schellen et al., 2010; Soebarto et al., 2019). It is essential to predict older people's thermal sensations 
under different situations and further link it to their physiological responses to investigating the relationship between physical and 
subjective factors. 

Thermal sensations affected by physical and environmental factors have been explored for the past decades. The predicted 
mean vote (PMV) model built by (Fanger, 1970) is based on human body heat balance and chamber experiments, which has been 
widely used but its accuracy remains a contested topic (Zhou et al., 2020). In recent years, many studies have tried to apply data-
driven methods to predict occupants' thermal sensation vote (TSV) and showed good prediction accuracy between 80% to 90% 
(Zhou et al., 2020). Different data-driven methods, including Decision Tree (DT), Support Vector Machine (SVM), Artificial 
Neural Network (ANN), Random Forest (RF), Adaboost(Ab), and Gradient Boosting Machine (GBM) have been investigated for 
thermal sensation predictions (Chai et al., 2020; Katić et al., 2020; Luo et al., 2020). However, these data-driven methods lack the 
constraints of physiological parameters, raising concerns over applying those models to broader situations. 

Therefore, this study aims to propose a method to integrate the physiological model with the data-driven method to predict 
older people's thermal sensation under various situations and further investigate the relationship between older people's 
physiological responses and their thermal sensation to evaluate their thermal risk under cold/hot exposures. 

METHODOLOGY 

Figure 1 shows the framework of the proposed method. With the inputs of air temperature (Ta), relative humidity (RH), air 
velocity (Va), metabolic rate (MET), and clothing insulation (CLO), the physiological model can calculate people's 
physiological responses, including skin temperature (Tsk), core temperature (Tcr) and body water loss. After that, the data-driven 
model is used to establish their relationship with thermal sensation. In this step, additional parameters, including climate zones, 
seasons, gender, outdoor temperature, and building operations strategies, are also inputs of the data-driven model. In the 
integrated model, the data-driven model is constrained by physiological parameters. 

Figure 1 Framework of the proposed method. 
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Data source and pre-processing 

The thermal sensation data of older people (age>60) are from ASHRAE Global Thermal Comfort Database II (Földváry 
Ličina et al., 2018), which including 107,584 samples of thermal comfort data, among them there are 1566 for older people aged 
above 60 years old. The seven-point scale TSV (3: hot; 2: warm; 1: slightly warm; 0: neutral; -1: slightly cool; -2: cool; -3: cold) 
(ASHRAE-55, 2017) is chosen as the targeted comfort index. Eleven variables, including the Ta, RH, Va, MET, ClO, Age, Gender, 
Climate zones (Koppen climate classification (Kottek et al., 2006)), Seasons, Outdoor monthly temperature, Building operation 
strategy, are input features. In total, 1413 samples with all the above variables were qualified. This sample size is comparable with 
previous researches on the data-driven thermal comfort model. Wang et al. (2019) adopted 1040 samples of older people and split 
them as 80% training data and 20% testing data. Megri and El Naqa (2016) used 793 samples for training and 18 samples for 
testing. As shown in Table 1, the unit and data distribution vary with input features. There are numeric numbers including Ta, RH, 
Va, MET, ClO, Age, Tout, and categorical variables including Climate zones, Seasons, Gender, and Building operation strategies.  

It is essential to do the pre-coding to transform the formats of categorical data into numerical data before analyzing their 
impact on TSV prediction. Label encoding can convert categorical data into ordinal data, which does not add any new columns to 
the data but implies an order to the variable (Potdar et al., 2017). However, for our categorical variables, there is no 
quantitative relationship between the individual values. For example, there is no order between different climate zones. In this 
situation, using label encoding can potentially create a fictional ordinal relationship in the data. One-hot encoding is another way 
to deal with categorical data (Rodríguez et al., 2018).  A one-hot is a group of bits among which the legal combinations of values 
are only those with a single high (1) bit and all the others low (0). For example, if one sample has a value of 'Autumn', one-hot 
encoding will set its 'Season' column as '1' and other columns as '0'. They will be fixed in a matrix vector and transformed 
into an array. Therefore, we apply one-hot encoding to deal with our nominal categorical variables, to improve the algorithm 
performance.  

The data are split into training data and test data. The 80% training proportion rule is favored by many researchers (Luo et 
al., 2020). The training data (80%) are used to train our data-driven model, and the test data (20%) are used to validate the model. 

Table 1 Variable description of older people Database II 

Category Variables Unit Range 
Number of 

samples 

Number of 

missing samples 

Target thermal 

comfort index 
Thermal sensation 7-point scale units 1527 39 

Indoor 

environment 

Ta ℃ 13-41 1474 92 

RH % 10.4-86.3 1169 397 

Va m/s 0-2.1 1073 493 

Occupant 

factors 

MET met 0.7-5 1143 423 

ClO clo 0-2.87 1532 34 

Gender Female, Male 1557 9 

Age 60-99 1566 0 

Outdoor 

environment 

Monthly Tout ℃ (-15)-39.9 1342 224 

Climate zones Koppen climate classification  1566 0 

Seasons Spring, Summer, Autumn, Winter 1504 62 

Building 

information 
Operation strategy AC, NV, mix mode 1531 35 

A physiological model of older people 

The physiological model of older people is developed based on the two-node model (Ji et al., 2021). The two-node model 
treats the human body as two concentric cylinders for the core and skin layers. The core and skin layers are represented by one 
node each. A uniform layer of clothing covers the skin layer throughout the body. Metabolic heat is generated at the core layer. A 
small portion of that heat is dissipated through respiration by convection and evaporation, and the remainder is transported by 
conduction and skin blood flow to the skin surface. The heat exchange between the skin surface and the environment is 
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divided into two parts: 1) the sensible heat by conduction, radiation, and convection from the skin surface to the clothing layer 
and then to the environment; 2) the insensible heat by the evaporation of sweat and moisture diffusion from the skin surface. The 
heat balance equations for the core and skin layers are given below. 

𝑚𝑐𝑟𝑐𝑐𝑟
𝑑𝑇𝑐𝑟

𝑑𝜏
/𝐴𝑏 = 𝑀𝑐𝑟 + 𝑆𝐻𝐼𝑉 − 𝑊𝑜𝑟𝑘 − 𝑄𝑟𝑒𝑠 − ℎ𝑠𝑘(𝑇𝑐𝑟 − 𝑇𝑠𝑘)     (1) 

𝑚𝑠𝑘𝑐𝑠𝑘
𝑑𝑇𝑠𝑘

𝑑𝜏
/𝐴𝑏 = 𝑀𝑠𝑘 + ℎ𝑠𝑘(𝑇𝑐𝑟 − 𝑇𝑠𝑘) − 𝐷𝑟𝑦 − 𝐸𝑣𝑎𝑝     (2) 

Where 𝑚𝑐𝑟  and  𝑐𝑠𝑘  are the mass (kg) of the core and skin nodes, respectively; 𝑐𝑐𝑟  and 𝑐𝑠𝑘 are the specific thermal capacity 
(W/kg∙°C) of the core and skin nodes, respectively;  𝑇𝑐𝑟  and 𝑇𝑠𝑘 are the core and skin node temperatures (°C), respectively; 𝑑𝜏 is 
the time step (1 min); 𝐴𝑏 is the Dubois body surface area (m2); 𝑀𝑐𝑟  is the metabolic rate of the core node (W/m2); 𝑀𝑠𝑘 is the 
metabolic rate of the skin node (W/m2); SHIV is the shivering metabolic rate (W/m2); Work is the mechanical work done by the 
body (W/m2); 𝑄𝑟𝑒𝑠 is the heat loss through respiration (W/m2); ℎ𝑠𝑘 is the skin thermal conductance that accounts for the blood 
flow  (W/m2∙°C); Dry and Evap are the sensible and evaporative heat exchanges of the skin node (W/m2), respectively. The steady-
state of heat balance can be achieved after 1 h exposure. 

Under heat or cold conditions, the deviation of the 𝑇𝑐𝑟 , 𝑇𝑠𝑘 or 𝑇𝑏(body temperature) from their threshold values (𝑇𝑐𝑟0, 𝑇𝑠𝑘0 
or 𝑇𝑏0) would be SET as the thermoregulatory control signals. The warm signal is given by Δ𝑇𝑤 = (𝑇 − 𝑇0)+ while the cold signal is 
given by ∆𝑇𝑐 = (𝑇0 − 𝑇)+, where (+) means the only positive value will be taken. Those signals would trigger the regulatory 
sweating, vasodilation, and vasoconstriction, and shivering. As the ambient conditions become hotter and/or more humid with an 
increased activity level, the human body tends to depend on sweat evaporation from the skin surface to cool and maintain its core 
temperature. The sweating rate may be expressed as a function of the body and skin temperature control signals, as shown in 
Equation 3.  

𝑆𝑊𝑅 = 𝐶𝑆𝑊𝐸 × 𝐶𝑆𝑊 × (∆𝑇𝑏,𝑠𝑤 + 𝐴𝑐𝑜𝑓 ∙ ∆𝑇𝑠𝑘,𝑠𝑤) × 𝑒𝑥𝑝 (
∆𝑇𝑠𝑘,𝑠𝑤

10.7
)     (3) 

where CSWE is the sweating attenuation coefficient of older people, Acof and CSW are model constants, 𝑆𝑊𝑅 is the 
sweating rate (g/m2h), ∆𝑇𝑏,𝑠𝑤 is the body temperature control signal for sweating (℃), 𝛥𝑇𝑠𝑘,𝑠𝑤 is the skin temperature control 
signal for sweating (℃).  

Skin blood flow rate (SBF) depends on the body's thermal state and varies between the minimum and maximum values. 
Under heat-stressful conditions, skin blood flow is increased by vasodilatation. Under cold conditions, skin blood flow is, 
however, controlled by vasoconstriction.  The skin blood flow rate is expressed by the following formulation: 

𝑆𝐵𝐹 = [𝑆𝐵𝐹𝑏𝑎𝑠𝑎𝑙 + 𝐶𝐷𝐸 × 𝐶𝐷𝐼𝐿 × ∆𝑇𝑐𝑟,𝑑𝑖𝑙]/[1 + 𝐶𝐶𝐸 × 𝐶𝑆𝑇𝑅 × ∆𝑇𝑠𝑘,𝑐𝑜𝑛𝑠]     (4) 

where SBF is the skin blood flow rate (L/m2/hr),  𝑆𝐵𝐹𝑏𝑎𝑠𝑎𝑙  is the basal (neutral) skin blood flow rate (L/m2/hr), CDIL and 
CSTR are model constants, CDE and CCE are the vasodilation  attenuation coefficient and Vasoconstriction  attenuation 
coefficient of older people, respectively,  ∆𝑇𝑐𝑟,𝑑𝑖𝑙 is the core temperature control signal for vasodilation (℃), ∆𝑇𝑠𝑘,𝑐𝑜𝑛𝑠 is the skin 
temperature control signal for vasoconstriction (℃).  

As body cooling progresses, when the non-shivering thermogenesis during vasoconstriction is not enough to maintain the 
body heat balance, the second line of defense is shivering. Shivering is the random involuntary contraction of superficial muscle 
fibers, which increases heat production. The original two-node model adopted the shivering rate model developed by StolwiJk et 
al. (1971). Shivering is triggered by a multiplicative error signal, which means shivering starts until both skin and core 
vasoconstriction thresholds are exceeded. However, shivering might be triggered by additive control signals, which means 
shivering starts until the skin or core vasoconstriction threshold is exceeded. With this assumption, the shivering metabolic rate is 
expressed by the following Equation: 
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𝑀𝑠ℎ𝑖𝑣 = 𝐶𝑆𝐻𝐸 × 19.4 × ∆𝑇𝑠𝑘,𝑐𝑜𝑛𝑠 + 𝐶𝑜𝑓𝑠𝑐 × ∆𝑇𝑐𝑟,𝑠ℎ + 𝐶𝑜𝑓𝑠𝑠 × ∆𝑇𝑠𝑘,𝑐𝑜𝑛𝑠     (5) 

Where CSHE is the shivering attenuation coefficient of older people,  ∆𝑇𝑐𝑟,𝑠ℎ is the core temperature control signal for 
shivering (℃), 𝐶𝑜𝑓𝑠𝑐 and 𝐶𝑜𝑓𝑠𝑠 are model constants.

Table 2 lists the threshold values of thermoregulatory functions and the attenuation coefficients in the older people's 
model. The maximum sweating rate changes, minimum and maximum skin blood flow rates are also listed. 

Table 2 Age-related changes and optimized parameter values used in the elderly 
model 

Data-driven model and model evaluation 

As the target output is the seven-point scale TSV, which can be regarded as a classification problem. So we selected the 
Random forest classifier as the data-driven method in this study. A random forest is a meta estimator that fits a number of 
decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control 
over-fitting. The complexity and size of the trees are controlled by tree numbers and tree depth. We adopt 'Scikit-learn 
Ensemble' package in python. To optimize the model performance, the number of trees and the depth of trees were tuned by 
grid-search in the range. The model can achieve maximum global accuracy with 180 trees and 18 tree depths. 

For model evaluation, we utilized two indices, the Accuracy Classification Score (ACS) and Mean Absolute Error (MAE). 
ACS is the ratio of the number of correct predictions to the total number of input samples, as shown in Equation 1. MAE is the 
average of the difference between the original values and the predicted values. It gives us the measure of how far the predictions 
were from the actual output. Generally, the higher the ACS and the lower MAE, the better the predicted TSVs are. They are 
calculated as follows: 

𝐴𝐶𝑆 =
𝑁′

𝑁
   (6) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑗 − 𝑦𝑗

′|𝑁
𝑗=1    (7) 

Where 𝑁′ is the number of correct prediction (predicted TSV= actual TSV), 𝑁 is the total number of predictions made, 𝑦𝑗 and 𝑦𝑗
′ 

are the actual TSV and predicted TSV values, respectively.

RESULTS 

Overall prediction results 

Figure 2a shows how TSV and its predicted value vary with Tair. The predicted TSV is also compared with the PMV to 

Parameters Older 

Vasodilation threshold 𝑇𝑐𝑟0,𝑑𝑖𝑙 (℃) 37.29 

Vasoconstriction threshold 𝑇𝑠𝑘0,𝑐𝑜𝑛𝑠 (℃) 33.20 

Sweating threshold  𝑇𝑐𝑟0,𝑠𝑤 (℃) 36.90 

Sweating threshold 𝑇𝑠𝑘0,𝑠𝑤 (℃) 33.90 

Shivering threshold 𝑇𝑐𝑟0,𝑠ℎ (℃) 36.75 

Vasodilation  attenuation coefficient CDE 0.75 

Vasoconstriction  attenuation coefficient CCE 0.50 

Sweating  attenuation coefficient CSWE 0.75 

Shivering  attenuation coefficient CSHE 1 

Min SBF rate (L/h/m2)  0.75 

Max SBF rate (L/h/m2)  63 

Max sweating rate factor  0.9 

© 2021 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, 
or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

IAQ 2020: Indoor Environmental Quality Performance Approaches 5



evaluate its performance compared to the PMV model. The shades are the range of TSV and predicted TSV at each Tair. The bars 
at the bottom stand for sample sizes at every 1 °C temperature bin. The ACS is 90.2% for predicted TSV, higher than the 34.7% 
for PMV, which is increased by 55.4%. Similarly, MAE is 0.08 for predicted TSV, much lower than 0.85 for PMV. The 
comparison of these two indices indicates that the predicted TSV from the proposed integrated model has a smaller error and fits 
much better with actual TSV than the PMV model. Besides, under hot and cold exposures, the deviations from actual TSV and 
PMV values increase. When the temperature is higher than 30 °C, PMV begins to deviate from actual TSV. The maximum 
deviation increased to 3.63 at 37 °C, while the maximum deviation between predicted and actual TSV values is 0.67 at 38℃. 
Therefore, compared with the PMV model that matches with actual TSV only in a narrow neutral temperature range, the 
predicted TSV fit well with actual TSV, which is because while PMV model is based on steady-state human heat balance, the two-
node model within the proposed model includes the thermoregulatory actions under hot/cold exposure. The data-driven model 
considers more factors beyond the physiological responses.    

(a) (b) 

Figure 2 TSV, predicted TSV, and PMV varied with (a) Indoor air temperature and (b) older people's SET. The shaded 
areas are the ranges of TSV and predicted TSV at each Tair. 

Figure 2b shows how TSV and predicted TSV vary with the Standard Effective Temperature (SET). SET is the thermal 
comfort index and a heat/cold stress screening tool. The traditional widely used correlation between SET and TSV is the linear 
regression from McIntyre (1980), as shown in Equation 8. According to the data-driven regression and linear regression, the SET 
at neutral condition (TSV=0) is about 24℃. However, with the variation of SET, the predicted TSV by the linear regression 
deviates from the actual TSV rapidly, while the predicted TSV with the proposed integrated model matches well with the actual 
TSV. 

𝑇𝑆𝑉 = 0.25𝑆𝐸𝑇 − 6.03, 𝑅2 = 0.998    (8) 

Model evaluation under various situations 

Many studies have reported the significant differences between thermal comfort in naturally ventilated (NV) and air-
conditioned (AC) buildings. Figure 3a shows the results of the NV situation. In the NV situation, the ACS of the integrated 
model is 85.9%, which is much higher than the PMV model of 33.1%. The MAE of the integrated model is 0.13, while the MAE 
of the PMV model is 0.94. Figure 3b shows the AC situation. The ACS of the integrated model is 82.2%, which is much higher 
than the PMV model of 34.9%. The MAE of our integrated model is 0.13, while the MAE of the PMV model is 0.72. Based on 
the above two, the integrated model can achieve better performance than the PMV model under both AC and NV situations. 
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(a) (b) 
Figure 3 TSV prediction under (a) natural ventilation and (b) air conditioning 

situation 
Figure 4 shows the comparison of prediction results of the integrated model for males and females. For males, the 

prediction ACS is 92.8%, and MAE is 0.06. For females, the prediction ACS is 88.3%, and MAE is 0.11. When the indoor air 
temperature is between 20℃ and 30℃, the TSV of males and females are comparable. Under the hot exposure when the indoor 
temperature is above 30℃, males tend to feel hotter than females; under the cold exposure, when the indoor air temperature is 
below 17℃, females tend to feel cooler than males. 

Figure 4 TSV prediction for male and female 

Besides building operation mode and gender, the model is also evaluated under different climate zones and seasons, as 
shown in Figure 5. According to the surveyed cities provided by Database II, ASHRAE climate zones from extremely hot to very 
cold are classified. Figure 5 shows that the ACS of the proposed integrated model is above 80% in various situations while the 
ACS of the PMV model is lower than 50%. The MAE of the proposed model is also much less than the MAE of the PMV 
model under various situations. This shows that the integrated model could be applied to various cases and broader situations. 
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(a) (b) 
Figure 5 Comparison of the (a) ACS and (b) MAE of the integrated model and PMV model under different 

situation 
Relationship between physiological parameters and TSV 

To further evaluate older people’s thermal risk under cold/hot exposures, we investigated the relationship between older 
people's physiological responses and their thermal sensation. Figure 6 shows the core temperature (Tcr) and skin temperature (Tsk) 
vary with TSV. Within the TSV range -3 to 3, the core temperature of older people vary from 36.5℃ to 38.1℃. According to ISO 
7933, a core temperature exceeding 38.0 ℃ is defined as dangerous. It should be noted that the maximum core temperature 
(38.1℃) happened when TSV is 1 (slightly warm), which indicates that when older people do not feel hot, their core temperature 
may be already increased to a dangerous level. This result is consistent with the chamber experiment of Tsuzuki and Iwata (2002): 
older subjects felt slightly warm or warm when conducting light exercise under the environment of Tair = 27℃, while their core 
temperature varied from around 37.5℃ to 38.0℃.  Within the TSV range of -3 to 3, the skin temperature of older people varies 
from 30.2℃ to 37.9℃. Even under warm to hot exposure (TSV>0), older people tend to have skin temperature under the normal 
skin temperature of 33.5℃. 

(a) (b) 
Figure 6 The relationship between (a) TSV and core temperature; (b) TSV and skin 

temperature 
CONCLUSION 

This study proposed a method to integrate the two-node physiological model and the data-driven method, random forest 
classifier, to predict the TSV of older people under various situations. The results show that the overall accuracy of the integrated 
model is 90.1%, which is more accurate than the PMV model and the majority of other data-driven studies. The integrated 
model can also reach above 80% accuracy under different building operation modes (NV/AC), older people's gender, surveyed 
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seasons, and climate zones. Another contribution of the integrated model is its linking of the thermal index SET and physiological 
parameters to TSV. The correlation between SET and TSV is better than the traditional linear regression. It is also found that 
older people's core temperature may increases to a dangerous level (>38℃) when they feel slightly warm, which is consistent with 
the previous chamber experimental study. 
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