

A review of pollutants and sources of concern and performance-based approaches to residential smart ventilation

Gaëlle Guyot

Cerema - Centre-Est, France

Max Sherman & Iain Walker

LBNL, USA

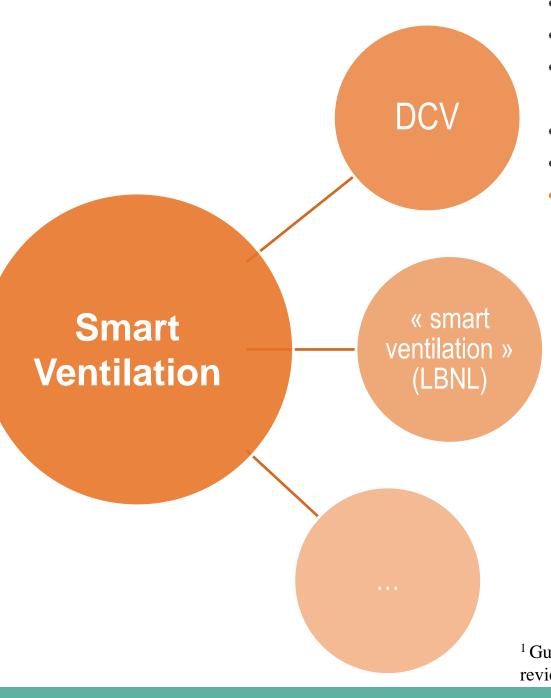
Outline

Scope : smart ventilation strategies

Relevant parameters for smart ventilation

Performance-based approaches in 5 standards and regulations

Perspectives



Our scope: smart ventilation strategies

- Smart ventilation : modulation of ventilation airflows in response to several factors
- ⇒ reduce ventilation energy use and cost while maintaining the same indoor air quality (IAQ) as a continuously operating system, or better

- From a literature review (not a market survey)
 - In-press : Guyot, G., Sherman, M.H., Walker, I., 2017. Residential smart ventilation: a review. Lawrence Berkeley National Laboratory. In-press

- Over 30 years old
- Widely used in countries as FR, BE, NT
- Mostly CO₂ or humidity based with a wide variety of systems and strategies
- IAQ : various results
- Energy savings : -26% + 60% ¹
- Performance-based approaches
 - RIVEC prototype (Sherman and Walker, 2011)
 - ACH = f(outdoor conditions, utility peak loads, occupancy, operation of other air systems)
 - IAQ maintained, sometimes improved
 - Energy savings : >40%, 500-7000 kWh/year/household
 - Performance-based approach = Equivalence principle

¹ Guyot, G., Sherman, M.H., Walker, I., 2017. Residential smart ventilation: a review. Lawrence Berkeley National Laboratory.

Relevant parameters for smart ventilation

Pollutants of concerns

Borsboom, W., De Gids, W., Logue, J., Sherman, M., Wargocki, P., 2016.
 TN 68: Residential Ventilation and Health, AIVC Technical Note 68.

Table 6: Priority pollutants in the indoor residential environment for consideration in making ventilation standards

PRIORITY POLLUTANTS
FOR CHRONIC
EXPOSURE (RANKED BY
POPULATION IMPACT)

POTENTIAL ACUTE EXPOSURE CONCERNS

Particulate matter Mould/ moisture Formaldehyde Acrolein Acrolein
Chloroform
Carbon Monoxide
Formaldehyde
NO₂
PM_{2.5}

Relevant parameters for smart ventilation

Pollutants of concerns

Borsboom, W., De Gids, W., Logue, J., Sherman, M., Wargocki, P., 2016.
 TN 68: Residential Ventilation and Health, AIVC Technical Note 68.

Odors, CO₂ and humidity, temperature

- Correlation between them / with other types of indoor pollutants ?
- No consensus about the conclusions!

Occupancy

Relevant parameters for smart ventilation

- Also an issue of availability and reliability of sensors :
 - Performance, size, extend of signal conditioning, reliability, robustness, maintainability, cost
- Only some CO₂ and humidity sensors seems accurate and reliable enough with affordable costs
- But not only a question of sensors!
 - also control strategies algorithms, regulation type, localization of sensors,

. . . .

Performance-based approaches in some countries Context

- A number of ventilation standards and national regulations with an allowance for smart ventilation strategies and/or DCV systems in residential buildings
- Simultaneously, EP regulations with the opportunity to claim credit for savings from such systems
- ⇒ Performance-based approaches defined and required for smart ventilation strategies
- ⇒ DCV strategies used at massive scale, notably in France and in Belgium, for more than 30 years

ASHRAE 62.2 2016

Compliance required in some State regulations in US and Canada

Ventilation Equivalence method	Person in charge	Calculated IAQ indicators	Credit in EP- calculation	Minimum airflow	Market
Single zone	The	No specifically defined	Rare	Can be null if the	Some DCV
modeling	manufacturer,	pollutant		total airflow rate	systems
∆t<1h	specifier or	Yearly average relative		equivalence is	
Constant pollutant	designer	exposure R<1		required over any	
emission rate		At each time-step R _i <5		3-hour periods	

Relative Exposure R(t)

$$R(t) = \frac{C(t)}{C_{eq}} =$$

To avoid peak exposure

$$R_i = rac{Q_{tot}}{Q_i} + \left(R_{i-1} - rac{Q_{tot}}{Q_i}
ight)e^{-Q_i\Delta t}/v_{space} < 5 \quad if \ Q_i
eq 0$$

Equation 15

$$R_i = R_{i-1} + \frac{Q_{tot}\Delta t}{V_{space}} < 5 if Q_i = 0$$

Where Qtot is the minimum constant ventilation rate calculated according to section 4.1 of the ASHRAE 62.2,

Qi is the real-time airflow in the variable mechanical ventilation system at time step i,

 Δt is the time-step used in the calculation,

 V_{space} is the volume of the space.

France Avis techniques

Performance-based approach	Person in charge	Calculated IAQ indicators	Credit in EP- calculation	Minimum airflow	Market
Multi-zone modeling ∆t =15 min	The manufacturer	Per room, over the heating period:	Average equivalent	Switch off not allowed	> 30 years
Conventional entry data: meteorological, homes geometries, airleakage		1/CO ₂ cumulative exposure indicator E ₂₀₀₀ < 400.000 ppmh 2/Number of hours	exhausted airflow (m³/h) can be implemented in the EP-calculation	10-35 m ³ /h according to the number of rooms	23 DCV systems with agreements (mostly RH controlled)
distribution, occupancy,)		T _{RH>75%} <600 h in kitchen, 1000 h in bathrooms, 100 h in other rooms	~ -40%	in the building	> 90% new homes

$$E_{2000} = \sum_{t=0}^{T} C_{CO_2 > 2000}(t) * t < 400 \ 000 \ ppm. h$$

Spain Documento de Idoneidad Técnica

Performance-based approach	Person in charge	Calculated IAQ indicators	Credit in EP- calculation	Minimum airflow	Market
Multi-zone modeling ∆t =40 s Conventional entry data: meteorological, homes geometries, occupancy,)	The manufacturer	Per room, over the year: 1/CO ₂ cumulative exposure indicator E ₁₆₀₀ < 500.000 ppmh 2/ Yearly average CO ₂ concentration < 900 ppm	Yearly average ventilation airflow could be implemented in the EP-calculation		3 DCV systems with agreements (recent procedure)

2017: Towards a performance-based approach for every new building equipped with any type of ventilation system, using a software and some conventional data

Belgium *No more ATG-E since 2015*

Former performance- based/equivalence	Person in charge	Calculated IAQ indicators	Credit in EP- calculation	Minimum airflow	Market
approach					
Multi-zone modeling ∆t =5 min Conventional entry data both deterministic and stochastic	The manufacturer	Per person, over the heating period, At least equal that the worst performing reference system: 1/CO ₂ cumulative exposure indicator E' ₉₅₀ 2/Monthly average RH> 80% on critic thermal bridges from December 1st to March 1st 3/Exposure to a tracer gas emitted in toilets and in	An energy saving coefficient f _{reduc} is extrapolated and can be implemented in the EP-calculation		34 DCV systems with agreements (mostly CO ₂ controlled)
		bathrooms			

No more ATG-E since 2015

- 2014: DCV systems considered as mature enough to be directly integrated in the EP-calculation method
- A study (Caillou et al., 2014b) evaluated the 35 systems gaining the ATG-E through an advanced equivalence method
- 2016: only the energy saving coefficients f_{reduc} given in the tables of an Ministerial Order (Moniteur Belge, 2015) can be used directly in the EP-calculation
 - Sensors accuracy requirement
 - Minimum airflows over 10% of the minimum constant airflow for each room.

Type of detection in dry spaces	Type of regulation of air inlets in dry spaces	Local detection in humid spaces with regulation of air outlet	Local detection in humid spaces with regulation of air outlet	Other or no detection in humid spaces
		Local regulation	No local regulation	
	Local	0.35	0.38	0.42
CO ₂ -local : at least a sensor in each	2 zones (night/day) or	0.41	0.45	0.49
dry space	more			
	Central	0.51	0.56	0.61
CO ₂ - partially local : at least a sensor in each bedroom	Central	0.60	0.65	0.70
CO ₂ - partially local : at least a sensor in the main bedroom + at least a	2 zones (night/day) or more	0.43	0.48	0.53
sensor in the living room	Central	0.75	0.81	0.87
CO ₂ -central : at least a sensor in the exhaust duct(s)	Central	0.81	0.87	0.93
	Local	0.54	0.60	0.64
Occupancy-local : at least a sensor in each dry space	2 zones (night/day) or more	0.63	0.67	0.72
	Central	0.76	0.82	0.88
Occupancy-partially local : at least a sensor in each bedroom	Central	0.87	0.93	1.00
Occupancy-partially local : at least a sensor in the main bedroom + at	2 zones (night/day) or more	0.66	0.72	0.78
least a sensor in the living room	Central	0.87	0.93	1.00
Other or no detection in dry spaces	No, local, per zone, or	0.90	0.95	1.00

The Netherlands

Standard NEN 8088 & a complementary performance-based approach

Standard and performance-based approaches	Person in charge	Calculated IAQ indicators	Credit in EP- calculation	Minimum airflow	Market
Correction factors are given in the standard NEN 8088 for quite a few DCV systems	The person involved in EP-calculation (standard approach)	Per person, over the heating period : Cumulative CO ₂	Given correction factors directly used in the EP-calculation	A function of the number of type of	37 DCV systems with agreements
OR	OR	exposure over 1200 ppm:	OR	occupants	
A complementary performance- based approach uses a multi- zone modeling, in a semi- probalistic approach	the manufacturer (performanc-based approach)	LKI ₁₂₀₀ < 30.000 ppm.h	New correction factors are calculated		

$$LKI_{1200} = \sum_{t=0}^{T} \left(\frac{C_{CO_2 > 1200}(t) - 1200}{1000} \right) * t < 30 \text{ kppm. } h$$

Equation 22

Where $C_{CO_2>1200}(t)$ is the absolute concentration at which an occupant is exposed at t time-step, if it is higher than 1200 ppm, or 800 ppm above the outdoor concentration.

15

Conclusions

Performance indicators used in performance-based approaches for smart ventilation strategies are related to CO₂ exposure and condensation risk (exc. ASHRAE 62.2)

As many smart ventilation systems types than regulations and performance-based methods, because manufacturers have to adapt their systems...

Perspectives

- Smart ventilation strategies success is not ready to end ...
 - Two recently European published directives (Ecodesign n°1253/2014 EcoLabeling n°1254/2014): toward a generalization of DCV and balanced heat recovery systems at the 2018 horizon
- Can we use this background for the definition of a performancebased approach at the design stage of every new dwellings equipped with any type of ventilation system?

Thank you for your attention!

The authors would like to thank Samuel Caillou (BBRI, Belgium), Pilar Linares and Sonia García Ortega (CSIC, Spain), and Wouter Borsboom (TNO, the Netherlands) for their help in the description of the past and current performance-based approaches for DCV systems in their countries.

Towards an health performance-based approach?

■ As proposed in Sherman, M.H., Walker, I.S., Logue, J.M., 2012. Equivalence in ventilation and indoor air quality. HVAC&R Research 18, 760–773. doi:10.1080/10789669.2012.667038

$$DALY = \sum_{i}^{\square} Concentration_{i} * UDE_{i}$$
 Equation 23
$$DALY_{limit} = \sum_{i}^{\square} Standard_{i} * UDE_{i}$$

Equation 24

Compound	$UDE\left[\frac{\mu DALYS}{year*person}*\frac{m^3}{\mu g}\right]$	Chronic Standard $\left[\frac{\mu g}{m^3}\right]$	Chronic Standard damage $\left[\frac{\mu DALYS}{year*person}\right]$
Priority Pollutants			
1,3 Butadiene	0.02	0.06	0.001
1,4-dichlorobenzene	0.03	0.91	0.024
Acetaldehyde	0.3	3.7	0.96
Acrolein	190	0.02	3.7
Benzene	0.08	0.34	0.025
Formaldehyde	6.8	1.7	11.4
Naphthalene	0.47	0.29	0.14
Nitrogen Dioxide	0.70	40	27
$PM_{2.5}$	500	15	7,500
Other contaminants			
Ammonia	0.23	200	46
Ozone	1.4	147	200
Crotonaldehyde	1.02	N/A	N/A