Is ventilative cooling effective in light weight wooden constructions?

Hilde Breesch (KAHO Sint-Lieven)
Koen Claes (Thomas More)
Kim Goethals (UGent)
Lieven De Boever (TCHN)
• Sustainable innovation wood based applications
 – Air tightness, water & wind tightness
 – Hygrothermal performance
 – Construction and fire safety
 – Acoustics
 – Indoor air quality
 – Summer Comfort
 – Case studies
 – Sustainable management

• Financial support of IWT, BBRI, TCHN
• Summer Comfort
 – Development design guidelines in light weight wooden construction (KAHO, Thomas More)
 • Sensitivity analysis
 • Guidelines residential <> office buildings
 – Optimalisation existing EPBD legislation (UGent)
 • Development of overheating indicator for light weight wooden construction
 • Optimalisation overheating indicator
Summary

• Context
• Design challenges
• Reference buildings
• Method
• Results
• Conclusions
Design challenges

- Ventilative cooling in light weight constructions?
- Impact of weather data on prediction cooling need/overheating risk
Summary

- Context
- Design challenges
- Reference buildings
 - Quality levels
 - Residential <-> office buildings
 - Characteristics: building – HVAC - user
- Method
- Results
- Conclusions
Reference Buildings

- 2 Quality levels: building envelop
 - Insulation level
 - Air tightness
- Flemish EPBD (2014) <> PH standard

<table>
<thead>
<tr>
<th></th>
<th>EPBD 2014</th>
<th>PH standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U [W/m²K]</td>
<td>U [W/m²K]</td>
</tr>
<tr>
<td>Façade/Roof/Floor</td>
<td>0,24</td>
<td>0,15</td>
</tr>
<tr>
<td>Window – glazing</td>
<td>1,1</td>
<td>0,8</td>
</tr>
<tr>
<td>Window – frame</td>
<td>1,8</td>
<td>0,8</td>
</tr>
<tr>
<td>External door</td>
<td>2,0</td>
<td>0,8</td>
</tr>
<tr>
<td>n₅₀ (h⁻¹)</td>
<td>3</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Reference Buildings

- Residential: detached house
 - $A_{\text{floor, tot}} = 252 \text{ m}^2$
 - Zone 1
Reference Buildings

- Office building
 - Zone 1: $A_{\text{floor}} = 200 \text{ m}^2$
Reference Buildings

Characteristics: walls

<table>
<thead>
<tr>
<th>Material</th>
<th>(c) [J/kg.K]</th>
<th>(\rho) [kg/m³]</th>
<th>(\lambda) [W/m.K]</th>
<th>(d) [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>façade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>structure - wood fraction (15%)</td>
<td>1600</td>
<td>500</td>
<td>0.130</td>
<td>0.300</td>
</tr>
<tr>
<td>structure - MW (85%)</td>
<td>1030</td>
<td>50</td>
<td>0.040</td>
<td>0.300</td>
</tr>
<tr>
<td>OSB</td>
<td>1700</td>
<td>650</td>
<td>0.130</td>
<td>0.015</td>
</tr>
<tr>
<td>cavity - wood fraction (15%)</td>
<td>1600</td>
<td>500</td>
<td>0.130</td>
<td>0.050</td>
</tr>
<tr>
<td>cavity - MW (85%)</td>
<td>1030</td>
<td>50</td>
<td>0.040</td>
<td>0.050</td>
</tr>
<tr>
<td>gypsum board</td>
<td>1000</td>
<td>900</td>
<td>0.260</td>
<td>0.013</td>
</tr>
<tr>
<td>internal wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gypsum board</td>
<td>1000</td>
<td>900</td>
<td>0.260</td>
<td>0.013</td>
</tr>
<tr>
<td>structure - wood fraction (15%)</td>
<td>1600</td>
<td>500</td>
<td>0.130</td>
<td>0.100</td>
</tr>
<tr>
<td>structure - MW (85%)</td>
<td>1030</td>
<td>50</td>
<td>0.040</td>
<td>0.100</td>
</tr>
<tr>
<td>gypsum board</td>
<td>1000</td>
<td>900</td>
<td>0.260</td>
<td>0.013</td>
</tr>
<tr>
<td>internal floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>floor covering</td>
<td>1400</td>
<td>1200</td>
<td>0.190</td>
<td>0.010</td>
</tr>
<tr>
<td>OSB</td>
<td>1700</td>
<td>650</td>
<td>0.130</td>
<td>0.015</td>
</tr>
<tr>
<td>structure - wood fraction (11%)</td>
<td>1600</td>
<td>500</td>
<td>0.130</td>
<td>0.200</td>
</tr>
<tr>
<td>structure - MW (89%)</td>
<td>1030</td>
<td>50</td>
<td>0.040</td>
<td>0.200</td>
</tr>
<tr>
<td>gypsum board</td>
<td>1000</td>
<td>900</td>
<td>0.260</td>
<td>0.015</td>
</tr>
</tbody>
</table>
Reference Buildings

- Characteristics: walls

<table>
<thead>
<tr>
<th>material</th>
<th>c [J/kg.K]</th>
<th>ρ [kg/m³]</th>
<th>λ [W/m.K]</th>
<th>d [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>floor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tiles</td>
<td>1000</td>
<td>1700</td>
<td>0.810</td>
<td>0.010</td>
</tr>
<tr>
<td>light concrete</td>
<td>1000</td>
<td>1050</td>
<td>0.320</td>
<td>0.070</td>
</tr>
<tr>
<td>insulation</td>
<td>1400</td>
<td>30</td>
<td>0.035</td>
<td>0.170</td>
</tr>
<tr>
<td>light concrete</td>
<td>1000</td>
<td>1050</td>
<td>0.320</td>
<td>0.050</td>
</tr>
<tr>
<td>reinforced heavy concrete</td>
<td>1000</td>
<td>2400</td>
<td>2.200</td>
<td>0.150</td>
</tr>
</tbody>
</table>
Reference Buildings

- Characteristics: residential building
 - Solar shading
 - $g_{\text{window}} = 0.50$
 - Fixed overhang ($d = 1\text{m}$)
 - Hygienic ventilation rates
 - Zone 1: $n = 1 \text{ h}^{-1}$
 - Extra natural ventilation
 - Daytime ($T_i > 24^\circ\text{C}, 7\text{h}-22\text{h}$)
 - Nighttime ($T_i > T_e+1^\circ\text{C}, T_i > 18^\circ\text{C}, 22\text{h}-7\text{u}$)
 - $n = 0 <> 3 \text{ h}^{-1}$
 - Thermal mass
 - Light weight wooden construction
 - Heavy weight brick internal walls
Reference Buildings

- Characteristics: residential
 - Internal heat gains (ISO 13791)
Reference Buildings

- Characteristics: Office building
 - Solar shading
 - $g_{\text{window}} = 0.55$
 - Fixed overhang ($d = 1\,\text{m}$)
 - Hygienic ventilation rates & occupancy
 - IDA 3 (29 m^3/h)
 - 15 m^2/pers
 - zone 1: $n = 0.67 \, \text{h}^{-1}$
 - Night ventilation
 - $n = 0 <> 3 <> 6 \, \text{h}^{-1}$
Reference Buildings

- Characteristics: Office building
 - Thermal mass

<table>
<thead>
<tr>
<th>Classification (EN 13790)</th>
<th>Heat capacity C_m (J/K)</th>
<th>construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very light</td>
<td>1.13×10^7</td>
<td>All light weight wooden walls</td>
</tr>
<tr>
<td>Light</td>
<td>2.19×10^7</td>
<td>Functional core heavy concrete</td>
</tr>
<tr>
<td>Very heavy</td>
<td>7.91×10^7</td>
<td>Functional core heavy concrete Internal floor + ceiling concrete slab</td>
</tr>
</tbody>
</table>
Reference Buildings

- Characteristics: Office building
 - Internal heat gains

![Graph showing internal heat gains in an office building](chart.png)
Summary

• Context
• Design challenge
• Reference buildings
• Method
 – Dynamic simulations
 – Evaluation overheating
• Results
• Conclusions
Method

• Multizone dynamic simulations
 – Design Builder (E+)
 – Time step = 1h
 – Cooling: $T_i > 26^\circ C$

• Evaluation overheating (EN 15251)
 – Comfort limit: $PMV = 0.5$ – $PPD = 10\%$
 – Weight factor
 \[w_f = \frac{PPD_{actualPMV}}{PPD_{PMVlimit}} \]
 – Max weighted temperature exceedings
 5% on yearly basis = 438h residential
Summary

• Context
• Design challenges
• Reference buildings
• Method
• Results
 – Impact ventilative cooling on cooling need & peak cooling load in office buildings
 – Impact ventilative cooling on overheating risk in residential buildings
 – Effect ventilative cooling in warm weather data
• Conclusions
Results

- Impact ventilative cooling on cooling need in office buildings
Results

- Impact ventilative cooling on peak cooling load in office buildings

![Graph showing peak cooling load with different ventilation rates]

- Peak Cooling [W/m²]
- very light
- light
- very heavy

- 0 vol/h
- 3 vol/h
- 6 vol/h
Results

- Impact ventilative cooling on peak cooling in office buildings
Results

- Impact ventilative cooling on overheating in residential buildings
Results

• Impact weather data on performances
 – Temperature
 – Solar radiation

• Meteonorm 7
 – Synthetical based on measurements
 • temperature (2000-2009)
 • Solar radiation (1986-2005)
 – Average <> Warm weather data (1 per 10 year)
Results

- weather data: temperature

<table>
<thead>
<tr>
<th>Month</th>
<th>Average Uccle (B)</th>
<th>Warm Uccle (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KMI 04-08</td>
<td>Meteonorm 7</td>
</tr>
<tr>
<td>1</td>
<td>4.83</td>
<td>4.00</td>
</tr>
<tr>
<td>2</td>
<td>4.58</td>
<td>4.90</td>
</tr>
<tr>
<td>3</td>
<td>6.57</td>
<td>7.10</td>
</tr>
<tr>
<td>4</td>
<td>10.86</td>
<td>10.70</td>
</tr>
<tr>
<td>5</td>
<td>14.20</td>
<td>14.40</td>
</tr>
<tr>
<td>6</td>
<td>17.03</td>
<td>17.20</td>
</tr>
<tr>
<td>7</td>
<td>18.76</td>
<td>18.60</td>
</tr>
<tr>
<td>8</td>
<td>17.33</td>
<td>18.50</td>
</tr>
<tr>
<td>9</td>
<td>15.80</td>
<td>15.50</td>
</tr>
<tr>
<td>10</td>
<td>12.23</td>
<td>11.80</td>
</tr>
<tr>
<td>11</td>
<td>7.14</td>
<td>7.80</td>
</tr>
<tr>
<td>12</td>
<td>3.93</td>
<td>4.10</td>
</tr>
<tr>
<td>Annual average</td>
<td>11.11</td>
<td>11.22</td>
</tr>
</tbody>
</table>
Results

- Warm weather data: cooling need in office
Summary

- Context
- Design challenge
- Reference buildings
- Method
- Results
- Conclusions
Conclusions

• Is ventilative cooling effective in light weight wooden constructions
 – Office buildings: night ventilation
 • Cooling need: very effective
 • Peak cooling load: less effective - larger impact thermal mass
 – Residential buildings: day & night ventilation
 • Overheating: day ventilation effective

• warm weather data: impact ventilative cooling
 – Office buildings: night ventilation effective
 – Residential buildings:
 • Only day ventilation not effective
 • Need automatically controlled shading device -> good thermal comfort