Ventilative Cooling in Standards and Regulations Country Report from Austria

Dipl.-Ing. Dr. Peter Holzer
IPJ Ingenieurbüro P. Jung and
Institute of Building Research & Innovation
Vienna

National Code B 8110-3 (2012)
Thermal protection in building construction
Part 3: Prevention of summerly overheating

Background and Area of Application

- Part of the OENORM B 8110 series "Thermal protection in building construction"
- Revised and relaunched in March 2012
- Valid for all types of rooms with constant human occupancy, without technical cooling

Criteria

- Max. 27°C op. Temperature in each room
- Max. 25°C op. Temp. in sleeping rooms at night

Dynamic Heat Balance according to EN ISO 13791

- Climate
- Geometry
- Thermal Properties
- Solar properties, including shading
- Internal load profiles
- Ventilation

Dynamic Heat Balance according to EN ISO 13791

- Climate
- Geometry
- Thermal Properties
- Solar properties, including shading
- Internal load profiles
- Ventilation

Site sensitive, hourly climate data, defined as a constantly repeated mid summer design day (obligatory)

To be taken from OENORM B 8110-5 by mean day temp of 15. July plus defined day/night swing $\pm 7 \, \mathrm{K}$

Further Referring to

- EN 13791 (sky temp.)
- EN ISO 13370 (ground temp)

Dynamic Heat Balance according to EN ISO 13791

- Climate
- Geometry
- Thermal Properties
- Solar Properties, including Shading
- Internal Load Profiles
- Ventilation

Dynamic Heat Balance according to EN ISO 13791

- Climate
- Geometry
- Thermal Properties
- Solar Properties, including Shading
- Internal Load Profiles
- Ventilation

Referring to

EN 13786 (usable thermal mass)

Dynamic Heat Balance according to EN ISO 13791

- Climate
- Geometry
- Thermal Properties
- Solar Properties, including Shading
- Internal Load Profiles
- Ventilation

Default values plus referring to

- EN 13363 (shading properties)
- EN 13561 and EN 13659 and EN 13791 (wind resistance)
- EN 13791 (fixed obstacles)

Dynamic Heat Balance according to EN ISO 13791

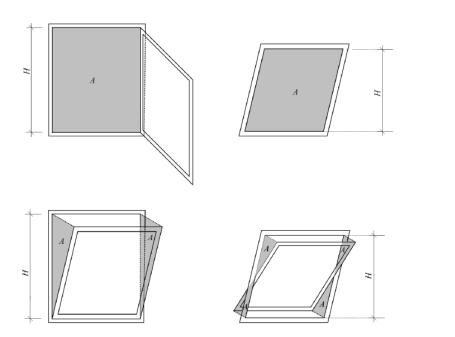
- Climate
- Geometry
- Thermal Properties
- Solar Properties, including Shading
- Internal Load Profiles
- Ventilation

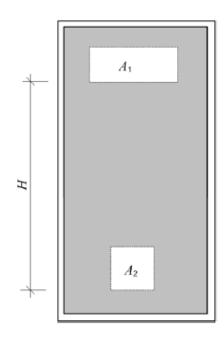
Mandatory lists of

hourly internal load profiles and hygienic ventilation rates

for residential, office, schools and hospitals,

[W/m²], [W/workplace], [m³/h,pers]

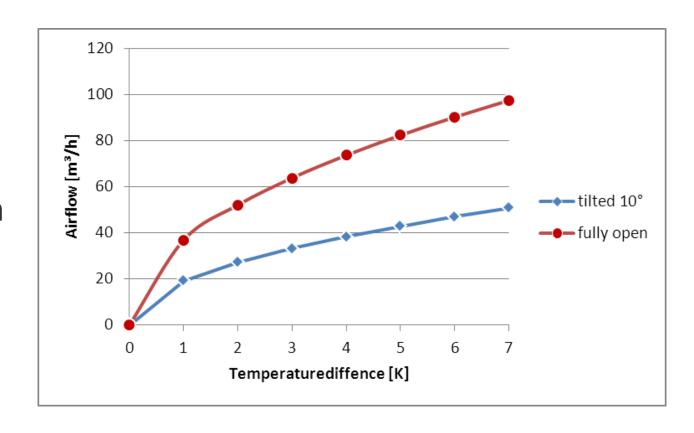

Dynamic Heat Balance according to EN ISO 13791


- Climate
- Geometry
- Thermal Properties
- Solar Properties, including Shading
- Internal Load Profiles
- Ventilation

- Window ventilation by formula, $V[m^3/h] = f(A_{window}, H_{window}, dT)$
- Mechnical ventilation
 up to 1,5 ach in occupied rooms
 up to 2,5 ach in unoccupied rooms
 including thermal load from vents

Ventilative Cooling by Window Opening

$$\dot{V} = 0.7 \cdot C_{\text{ref}} \cdot A \cdot \sqrt{H} \cdot \sqrt{\Delta T}$$



Ventilative Cooling by Window Opening

$$\dot{V} = 0.7 \cdot C_{\text{ref}} \cdot A \cdot \sqrt{H} \cdot \sqrt{\Delta T}$$

W = 40 cmH = 120 cm

Learnings

Thank you