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ABSTRACT 
 
Some airborne pathogens can infect susceptible people over long distances in buildings when they are transported 
in small respiratory particles suspended in the air. The pathogen concentration in air can be decreased using 
engineering controls, such as ventilation, filtration, or inactivation. To determine their effect, it is common to use 
the Wells-Riley model to estimate the probability that a susceptible person is infected and is a function of the dose 
of infectious pathogen received and a Poisson distribution. Wells proposed a hypothetical dose unit, known as the 
quantum of infection, which is a function of the pathogen emission rate and, in turn, a function of the number of 
infected people and their individual pathogen emission rates. The quanta generation rate can be determined from 
the epidemiological data for an outbreak case of a disease in a space where the proportion of a population of people 
infected with a disease who were initially free of it is known. The quanta generation rate is a temporally and 
activity varying parameter and so this approach only represents its value at the time the infections occurred and 
for that space. It is also unique for every disease and disease variant, and the emission rate varies in different spaces 
because the probability of the presence of infected people also varies. It is unknown at the start of a pandemic, and 
again later when the pathogen mutation period is greater than the time taken to determine uncertainty in its value. 
These factors make uncertainty in its value significant and it may vary by several orders of magnitude. A Monte 
Carlo analysis is used to show that uncertainty in the quanta emission rate for SARS-CoV-2 varies over around 8 
orders of magnitude. There is a general paucity of data of sufficient quality to reduce uncertainty in emission rates. 
This means that there is little confidence in the data located in the tails. The problem with this is demonstrated by 
applying the emission rates to the WR model to estimate that, for an 8 hour exposure in a 50 person office with an 
outdoor airflow rate of 10 l s-1 per person, the probability of infection of each occupant from long range 
transmission is <1% for 95% of events. It is the data in the right-tail of the emission rate distribution that leads to 
an appreciable probability of infection. These are just a few of several factors that make a probability of infection 
estimated by the Wells-Riley model unusable as a metric. 
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1 INTRODUCTION 

Some airborne pathogens can infect susceptible people over long distances in buildings when 
they contained in are transported in small respiratory particles with a range of sizes, some of 
which can remain airborne for long periods. When designing or controlling an indoor space that 
may contain infectious people, many of the factors of concern are fixed either by the health 
problem or by administrative requirements. However, the pathogens concentration in air can be 
decreased using various engineering controls, such as ventilation, filtration, or inactivation. To 
determine their effect, it is common to use the Wells-Riley (WR) model to estimate the 
probability that a susceptible person is infected and is a function of the dose of infectious 
pathogen received and a Poisson distribution. Wells proposed a hypothetical dose unit, known 
as the quantum of infection, defined as the number of infectious airborne pathogen required to 
infect 63% of susceptible people. Quanta comprises physical, biological, and statistical 
properties. It is a function of the pathogen emission rate and, in turn, a function of the number 



of infected people and their individual pathogen emission rates. The quanta generation rate can 
be determined from the epidemiological data for an outbreak case of a disease in a space where 
the proportion of a population of people infected with a disease who were initially free of it is 
known. The quanta generation rate is a temporally and activity varying parameter and so this 
approach only represents its value at the time the infections occurred and for that space. It is 
also unique for every disease and disease variant, and the emission rate varies in different spaces 
because the probability of the presence of infected people also varies. It is unknown at the start 
of a pandemic, and again later when the pathogen mutation period is greater than the time taken 
to determine uncertainty in its value. These factors make uncertainty in its value significant and 
it may vary by several orders of magnitude. This could make a probability of infection estimated 
by the WR model unusable as a metric. Therefore, the aim of this paper is to quantify the 
uncertainty in both quanta emission rates and the probability of infection for SARS-CoV-2 to 
assess the ability of the WR model to universally assess airborne pathogen infection risk. 
2 QUANTA DEFINED 

The WR model describes the probability of becoming infected as a function of the dose of 
infectious agent received and a Poisson distribution (Riley 1978). 

 𝑃(𝐼) = 1 − 𝑒𝑛 (1) 

Here, 𝑃(𝐼) is the probability of becoming infected and 𝑛 is the quanta of infectious agent the 
individual is exposed to. This equation is the defining relationship and can be used to make a 
reasonable estimate of what its value must be. The WR model assumes that quanta and the 
infection probability is proportional to the dose of infectious agent received. The dose of many 
other infectious agents is given by the amount inhaled. Then the probability of infection can be 
expressed as 

 𝑛 = ∫𝑄𝐶(𝑡) 𝑑𝑡 (2) 

where 𝑡 (h) is the time variable, 𝐶 (quanta per m3) is the concentration of infectious material 
the individual is exposed to, 𝑄 (m3 h-1) is the breathing rate of an exposed person. This equation 
assumes that all uninfected people are equally susceptible, and they are not wearing personal 
protective equipment, such as a mask. 
To follow an individual, the integration over time reflects what they are doing, and the 
quantities within it vary. To evaluate what is happening for a specific activity, Equation (2) can 
be simplified further by representing the quantities within the integral with their averages. Then, 

 𝑛 = 𝑄̅𝐶̅𝐷 (3) 

where 𝐷 (h) is the duration of the activity and the overbars of the quantities indicate the time 
average over that duration. 
To find the average concentration, we follow the WR model and make the assumption that the 
infectious material is conserved, but with a first order loss term 𝜙 (h-1), and the only source of 
infectious material is infected people. In this case, the time evolution of the concentration is 
determined by a first order linear differential equation with the time variable assumed. 

 𝑑𝐶

𝑑𝑡
+ 𝜙𝐶 =

1

𝑉
∑𝑞𝑖

𝑗

𝑖=1

 (4) 

Here, 𝑉 (m3) is the volume of the space, and 𝑞𝑖 (quanta h-1) is the emission rate of each of 𝑗 
people in the space, which is zero for those uninfected. The loss term is the sum of the outside 



air change rate 𝜓 (h-1), the biological decay rate of the pathogen 𝜆 (h-1), and the surface 
deposition rate of respiratory particles 𝛾 (h-1). 

 𝜙 = 𝜓 + 𝜆 + 𝛾 (5) 

The viral load of an infector evolves through the course of their infection with a particular 
disease; see Cevik et al. (2020) for SARS-CoV-2, similarly the emission rate is also seen to 
evolve see Zhou et al. (2023). It should be noted that the WR model assumes that there is an 
equivalent number of infected people, and that an infected person emits at a fixed rate. The 
emission rate term might also be reduced by any source removal mechanism, such as local 
capture or filtration immediately adjacent to an infected person, but it is not included here. 
The average concentration can be calculated from the standard solution to a first order 
differential equation, but we can make the simplifying assumption that it can be treated as a 
steady state, when it is possible to remove the overbars so that 

 𝑛 =
𝑄𝐷∑ 𝑞𝑖

𝑗
𝑖=1

𝜙𝑉
 (6) 

The quanta emission rate, 𝑞𝑖 (quanta h-1), for a single infected person can be calculated as a 
function of the emission rate of viable virions, 𝐺 (virions h-1), the fraction of virions absorbed 
by the respiratory tract of a susceptible person after they enter, 𝑘, and the dose constant, 𝐾, the 
reciprocal of the probability that a single virion initiates an infection. 

 𝑞 ≡ 𝑘𝐺 𝐾⁄  (7) 

If the breathing rate of a single infected person is the same as that for susceptible people, 𝐺 is 
determined by adapting Buonanno et al. (2020) to be 

 𝐺 ≡ 𝑄𝑉𝑑𝑟𝑜𝑝
∗ 𝐿𝑣 (8) 

Here, 𝐿 (RNA copies m-3) is the load of viral genomic material in the respiratory fluid, much 
of which is genomic material and not viable virus, and so 𝑣 (virions per RNA copy) is the viable 
fraction. 𝑉𝑑𝑟𝑜𝑝∗  is the total volume (m3) of expelled airborne respiratory particles (respiratory 
fluid) in 1 m3 of exhaled air and is a function of the number of all respiratory particles per unit 
volume of exhaled air, 𝐶𝑑𝑟𝑜𝑝 (# m-3), and the mean diameter of the exhaled respiratory particles, 
𝑑̅ (m). An assumption is made about the hydrated volumes of the respiratory particles measured 
in experiments used to derive 𝑑̅ (see Morawska et al. 2009) and so an evaporation term, 𝐸, is 
used to account for the hydrated volume of 𝑉𝑑𝑟𝑜𝑝∗ . 

 𝑉𝑑𝑟𝑜𝑝
∗ ≡

𝜋

6
(𝑑̅𝐸)

3
𝐶𝑑𝑟𝑜𝑝 (9) 

3 UNCERTAINTY IN THE QUANTA EMISSION RATE 

The derivation in Section 2 treats all parameters as being known precisely, although few of 
them are.  Some, like the duration (𝐷), can be assumed to be known because they are set as part 
of the design process. Others, such as the quanta emission rate (𝑞), are known poorly.  This 
type of parameter is best described by a distribution. Furthermore, it is preferable to predict a 
probability distribution for 𝑃(𝐼) rather than a simple maximum likelihood estimate. It is also 
the only meaningful way to understand 𝑃(𝐼) when parameter values are unknown at a moment 
in time, or when it is desirable to understand the uncertainty in the general risk of being in a 
particular space. Given that the model is the product of many assumedly uncorrelated terms, 
the distribution of its predictions is expected to be approximately log-normal whose variance is 
best described by a geometric standard deviation. 



Each term in Equations 5-9 is considered separately and appropriate values and distributions 
are given in Table 1. The rate of aerosol emission and their origin in the respiratory tract is a 
function of respiratory activity, such as breathing, talking and vocalisation (singing an “aaah”) 
(Morawska et al. 2009). Aerosol diameters range from <1 μm to >100 μm, and their size 
distribution is dependent upon the expiratory activity, usually following a log-normal 
distribution (Morawska et al. 2009). Larger respiratory particles fall ballistically under gravity 
in still air. Respiratory particles with an evaporated diameter of <10 μm can remain airborne 
for several hours. The mean aerosol diameter (𝑑̅) is derived experimentally for people breathing 
for 75% of the time and talking for 25% (Morawska et al. 2009), and their distribution is 
assumed to be log-normal with a mean value of 1.84×10-6 m and an arbitrary standard deviation 
of 10% of the mean. Respiratory particles evaporate reducing their diameter, mass, and terminal 
velocity. Therefore, the diameter of the respiratory particle is likely to be greater when emitted 
(hydrated) than when measured and this is accounted for by the evaporation factor (𝐸) that has 
limits of 2 and 5, but Nicas et al. (2005) advise that this is likely to be closer to 2 than 5 and so 
a beta distribution is used with α=2 and β=5. 

The number of all respiratory particles per unit volume of exhaled air (𝐶𝑑𝑟𝑜𝑝) is also given by 
Morawska et al. (2009) whose data contains concentrations of evaporated respiratory particles 
with a diameter of <5 μm measured during breathing, talking and vocalisation. We assume 25% 
talking and 75% breathing and that 𝐶𝑑𝑟𝑜𝑝 is log-normally distributed with a mean of 
9.8×104 respiratory particles m-3 and has an arbitrary standard deviation of 10% of the mean.  

The viral load (𝐿) of an infected person increases with time from the moment of infection 
peaking just before, or at, the onset of symptoms and decreases thereafter, normally ceasing 
within a week of the onset of symptoms (Cevik 2020, Cevik 2021). The magnitude of 𝐿 also 
varies widely between people at any stage of the infection, which increases uncertainty in it 
(Killingley et al. 2022). Iddon et al. (2022) show the distribution of 𝐿 within an infected 
population is unknown. Therefore, we arbitrarily use the data of Chen et al. (2021b) who predict 
that log10 values of 𝐿 taken from NP swabs of individuals 2 days from symptom onset are 

Table 1: Uncertainty in input parameters 
 Variable Values Source 
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Breathing rate, 𝑄 (m3 h-1) LN(0.56, 0.056) (Adams 1993) 
Respiratory activity, 
breathing:talking (%) 

75:23 (Morawska et al.,2009;  
Iddon et al. 2022) 

Aerosol concentration in exhaled air,  
𝐶𝑑𝑟𝑜𝑝 (respiratory particles m-3) 

LN(1.54×105,1.54×104) (Morawska et al.,2009;  
Iddon et al. 2022) 

Mean aerosol diameter, 𝑑̅ (m) LN(1.91×10-6,1.91×10-7) (Morawska et al.,2009) 
Aerosol evaporation factor, 𝐸 B(2.0,5.0) [2.0,5.0] (Nicas et al. 2005) 
Viral load, 𝐿 (log10 RNA copies ml-1) N(7.0,1.4) (Chen et al. 2021) 
Viable fraction, 𝑣 B(2.0,5.0) [10-4,10-2] (Killingley et al. 2022) 
Respiratory tract absorption fraction, 𝑘 U(0.43,0.65) (Darquenne 2012) 
Dose constant, 𝐾 U(5,15) (Killingley et al. 2022) 

Sc
en

ar
io

 

Number of infected people, 𝑗 1  
Number of occupants 50  
Space volume, 𝑉 (m3) 1350  
Exposure duration, 𝐷 (h) 8  
Outside airflow rate (l s-1 per person) 10  
Outside air change rate, 𝜓 (h-1) 1.33  

Biological decay rate, 𝜆 (h-1) LN(0.63,0.43) (Van Doremalen et al. 2020) 

Surface deposition rate, 𝛾 (h-1) U(0.42,0.61) (Thatcher et al. 2002) 
N(µ,σ), normal(mean, standard deviation); LN(µ,σ), log-normal; U(max,min), uniform; B(α,β) [min, max], 
beta. 
Note that 𝐿 needs to be converted into RNA copies per m3 by multiplying by 106. 

 



normally distributed with a mean of 7 and a standard deviation of 1.4 log10 RNA copies ml-1. 
The reported values of viral load are per ml of the sample medium rather than the respiratory 
fluid, but it is a good surrogate for the range of viral loads. 

The viable fraction (𝑣) is not well understood, but it changes as the disease progresses, and 
there is heterogeneity between patients. Killingley et al. (2022) show that a conservative 
estimate of 𝑣 is between 1: 10-2 and 1: 10-3 viable virions to RNA copies, but it could be as high 
as 1:106. We assume that 𝑣 is closer to 10-2 using a beta distribution with a lower limit of 10-4 
and arbitrary values of α=2 and β=5 to give a mean of 2.9×10-2. 

The respiratory tract absorption fraction (𝑘) is a function of aerosol diameter and the breath 
volume. For the mean 𝑑̅ described earlier, Darquenne et al. (2012) estimates 𝑘 has a range of 
0.4—-0.65 and, in the absence of knowledge, we assume that all values are equally probable 
between these limits. 

There is no direct measured value of a dose constant (𝐾) for the SARS-CoV-2 virus. A SARS-
CoV-2 human challenge infected 53% of participants with a nasally applied solution of 
10 TCID50 (50% Tissue Culture Infectious Dose)1 of viable SARS-CoV-2 virus (Killingley et 

al. 2022, Zhou et al. 2023). A crude estimate is that 1 TCID50 is equivalent to 0.7 PFU 
indicating that the dose was 7 PFU and for the proportion infected would suggest 𝐾 is 
approximately 9.3, for this method of application. Here, we assume that 1 PFU is equivalent to 
a single viable virion, although it is possible that greater than 1 viable virion is required to lead 
to a plaque due to probabilities of binding to the correct receptor, cell fusion and giving rise to 
a successful infection. Therefore, we assume 𝐾 is equally probable between 5 and 15 as a 
reasonable assumption based on this data point. 

1 One TCID50 quantifies the amount of virus required to produce a cytopathic effect in 50% of inoculated tissue 
culture cells. 

 
Figure 1: Emission rates of quanta, RNA copies, and viable virions (all per hour). 

 



It is possible to estimate the uncertainty in the quanta emission rate (𝑞) for a single infected 
person undertaking some activity that is independent of the space they occupy. Personal factors, 
such as 𝐿, vary relative to the population mean but average out when considered over the entire 
population distribution. Scenario specific factors, such as 𝑄, 𝐶𝑑𝑟𝑜𝑝, and 𝑑̅, do not average out 
when considered for a population and are, therefore, unknowable. None of these parameters 
depend on space geometry or outside air delivery rates. Accordingly, when the quanta emission 
rate inputs identified in Table 1 are applied to Equations 5-9 using a Monte Carlo approach (3 
consecutive sets of 105 samples produce identical geometric means for 𝑞 and 𝑃(𝐼) when 
rounded to 3 significant figures), the geometric means (GM) and standard deviations (GSD) of 
𝑉𝑑𝑟𝑜𝑝
∗ , 𝐺, and 𝑞 are calculated and given in Table 2. A probability density function (PDF) and 

cumulative distribution function (CDF) of 𝑞 is given in Figure 1.  

Figure 1 shows that 𝑞 varies over around 8 orders of magnitude. The 95% confidence interval 
for 𝑞 is between 1.4×10-5 and 7.0 quanta h-1, which shows that the uncertainty in its value is 
around 5 orders of magnitude most of the time. The upper interval seems low when compared 
to those reported for SARS-CoV-2 superspreading events; for example, the 970±390 quanta h−1 
reported by Miller et al. (2020) and the 130 quanta h-1 (inter-quartile range of 97-
155 quanta h−1) reported by Vernez et al. (2021). Figure 1 shows that this range of values is 
possible for a single index case, but only for around 0.1% of the time. There is likely to be a 
difference in the breathing rate and the respiratory activity of the occupants reported by Miller 
et al. and Vernez et al. and those described here, which effect the mean aerosol diameter and 
the aerosol concentration in exhaled air. Future work will compare 𝑞 against new empirical 
analyses of emission rates, such as human challenge studies. 
4 UNCERTAINTY IN PROBABILITY OF INFECTION 

The probability of infection, 𝑃(𝐼), in a common space type can be demonstrated using an 
example scenario. We consider an office space with a floor to ceiling height of 2.7m and an 
occupancy density of 10m2 per person, which contains 50 unmasked occupants who are present 
for 8 hours. It is mechanically ventilated with an outside delivery rate of 10 l/s per person 
without filtration. A single infected person is assumed present for the duration. Equation 1 is 
used to estimate 𝑃(𝐼). All inputs are given in Table 1 and outputs are in Table 2. The probability 
of infection of each occupant from a single infected person from long range transmission is 
<1% for 95% of the time. There are problems with this, such as the assumption of a single 
infected person, and in the significant uncertainty in the tails of the distribution of 𝑞, which is 
discussion in Section 5. It does show, however, the need to understand 𝑞 better. 

5 DISCUSSION 

The example highlights problems with inferring quanta empirically for any airborne pathogen 
and applying it in the same location for the same scenario. First, it isn’t always possible to know 
the number of infected people. The probability of any number of infected people increases with 
the community infection rate and the number of occupants Iddon et al. (2022). For low 

Table 2: Uncertainty in calculated parameters 

 GM GSD 
Expelled volume ratio of respiratory particles to air, 𝑉𝑑𝑟𝑜𝑝∗  5.9×10-12 1.8 
Viable virion emission rate 𝐺 (virions h-1) 8.0×10-2 28 
Quanta emission rate 𝑞 (quanta h-1) 3.5×10-3 28 
Removal rate, 𝜙 (h-1) 2.4 1.2 
Equivalent ventilation rate (l s-1 per person) 18 1.2 
Probability of infection, 𝑃(𝐼) 4.7×10-6 29 
GM: Geometric Mean; GSD: Geometric Standard Deviation 

 



community infection rates, the most likely number of infected people in common spaces is zero. 
Furthermore, the viral load varies by time and person, depending on the stage of a disease, inter-
person viral dynamics and the immune response. Secondly, if the space remains unchanged but 
the scenario differs, then the duration and respiratory activity may vary, and consequently so 
do the distributions representing the breathing rate, the aerosol diameter, and the concentration 
of respiratory particles in exhaled air. Thirdly, for a scenario in a new space, the volume and 
occupancy density may change in addition to all other parameters, and consequently so does 
the equivalent ventilation rate (𝜙). Finally, by far the biggest problem that the data analysis 
shows, is a general paucity of data of sufficient quality to reduce uncertainty in 𝑞 and 𝑃(𝐼). At 
the start of a pandemic the viral load, 𝐿, and hence 𝑞, are always unknown. Once a population 
begins to acquire immunity, the proportion of occupants susceptible to infection reduces. When 
infections do not confer sterilising immunity, the proportion of susceptible people is then 
dependent on immunity waning and the ability of a pathogen to mutate to evade immunity. The 
consequence of the low quality of data is that we do not know the true underlying distributions 
of either the inputs or the outputs and so we have little confidence in the magnitudes of the tails 
where there is very little supporting data. Accordingly, there is much uncertainty in the tails, 
and in the confidence intervals given here. They should, therefore, be considered very 
approximate. We report both the GM and the GSD because the distributions of the predictions 
are thought to be log-normal (see Section 2) and indicate where the majority of data lies and 
where there is more confidence in it. It is important to note that other values and distributions 
could be used, but these outcomes will still be true. This also applies to distributions for other 
pathogens, particularly those that are less well studied than SARS-CoV-2. 
There are also more general and fundamental issues with inferring quanta empirically. The WR 
model estimates the infection risk from long range transmission, but it impossible to 
disaggregate it from other exposure pathways. Furthermore, quanta emission rates are derived 
from observational studies of high secondary attack rates of transmission resulting in the 
calculation of high magnitudes, which are then extrapolated to most other cases where its 
magnitudes are low, which introduces significant bias. Many models of infection risk use 
specific values of 𝑞 determined from outbreaks. Figure 1 shows that 𝑞 is a continuum that spans 
8 orders of magnitude and so it needs to be used to estimate 𝑃(𝐼), rather than using specific 
values of 𝑞, if the estimate is to have any context and meaning. Even then, a distribution of 𝑃(𝐼) 
should only be used to show where most predictions lie. 
Together, these factors make an absolute value of the personal risk of long-range airborne 
infection probability, 𝑃(𝐼), unusable as a metric for SARS-CoV-2 or any other airborne 
pathogen. It can, however, be used to give an appreciation of the magnitude of absolute risks, 
which we estimate to be low most of the time. When accounting for the likelihood of the 
presence of an infected person, the magnitude of absolute risk reduces even further; see Iddon 
et al. (2022). 
6 CONCLUSIONS 

The quanta emission rate of an infected person is a continuum that varies over time and between 
people. We find that the uncertainty in the magnitude of quanta emission rate for SARS-CoV-
2 for a single infected person varies by over around 8 orders of magnitude. Unfortunately, there 
is a general paucity of data of sufficient quality to reduce uncertainty in emission rates. This 
means that there is little confidence in the data located in the tails. The problem with this is 
demonstrated by applying the emission rate continuum to the WR model to estimate that, for 
an 8 hour exposure in a 50 person office with an outdoor airflow rate of 10 l s-1 per person, the 
probability of infection of each occupant from long range transmission is <1% for 95% of 
events. It is the data in the right-tail of the distribution of the quanta emission rate, where there 
is little confidence in their magnitudes, which leads to an appreciable probability of infection. 



Therefore, it is impossible to say, with any certainty, the fraction of events that will lead to 
some probability of infection.  
These factors make an absolute value of the personal risk of long-range airborne infection 
probability unusable as a metric for SARS-CoV-2 or any other airborne pathogen. It can be 
used to give an appreciation of the magnitude of absolute risks, which we estimate to be low 
most of the time. 
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